ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/applications/staticProps/Hxy.cpp
Revision: 2751
Committed: Fri May 12 21:34:43 2006 UTC (18 years, 1 month ago) by xsun
File size: 11430 byte(s)
Log Message:
Changes to calculate undulation spectrum

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 *
41 *
42 * Hxy.cpp
43 * OOPSE-2.0
44 *
45 * Created by Xiuquan Sun on 05/09/06.
46 * @author Xiuquan Sun
47 * @version $Id: Hxy.cpp,v 1.1 2006-05-12 21:34:43 xsun Exp $
48 *
49 */
50
51 /* Calculates the undulation spectrum of the lipid membrance. */
52
53 #include <algorithm>
54 #include <fstream>
55 #include "applications/staticProps/Hxy.hpp"
56 #include "utils/simError.h"
57 #include "io/DumpReader.hpp"
58 #include "primitives/Molecule.hpp"
59 #include<stdio.h>
60 #include<string.h>
61 #include<stdlib.h>
62 #include<math.h>
63 #include<fftw3.h>
64 #include<mkl_lapack64.h>
65
66 namespace oopse {
67
68 Hxy::Hxy(SimInfo* info, const std::string& filename, const std::string& sele, int nbins_x, int nbins_y, int nrbins)
69 : StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan_(info), nBinsX_(nbins_x), nBinsY_(nbins_y), nbins_(nrbins){
70
71 evaluator_.loadScriptString(sele);
72 if (!evaluator_.isDynamic()) {
73 seleMan_.setSelectionSet(evaluator_.evaluate());
74 }
75
76 gridsample_.resize(nBinsX_*nBinsY_);
77 gridZ_.resize(nBinsX_*nBinsY_);
78
79 sum_bin.resize(nbins);
80 avg_bin.resize(nbins);
81 errbin_sum.resize(nbins);
82 errbin.resize(nbins);
83 sum_bin_sq.resize(nbins);
84 avg_bin_sq.resize(nbins);
85 errbin_sum_sq.resize(nbins);
86 errbin_sq.resize(nbins);
87
88 setOutputName(getPrefix(filename) + ".Hxy");
89 }
90
91 void Hxy::process() {
92 DumpReader reader(info_, dumpFilename_);
93 int nFrames = reader.getNFrames();
94 nProcessed_ = nFrames/step_;
95
96 std::vector<double> mag, newmag;
97 double lenX_, lenY_;
98 double gridX_, gridY_;
99 double halfBoxX_, halfBoxY_;
100 int binNoX, binNoY;
101 double interpsum, value;
102 int ninterp, px, py, newp;
103 int newx, newy, newindex, index;
104 int new_i, new_j, new_index;
105 double freq_x, freq_y, zero_freq_x, zero_freq_y, freq;
106 double maxfreqx, maxfreqy, maxfreq, dfreq;
107 int whichbin;
108
109 for (int istep = 0; istep < nFrames; istep += step_) {
110
111 int nMolecules = reader.getNMolecules();
112
113 fftw_complex *in, *out;
114 fftw_plan p;
115
116 in = fftw_malloc(sizeof(fftw_complex) * (nBinsX_*nBinsY_));
117 out = fftw_malloc(sizeof(fftw_complex) *(nBinsX_*nBinsY_));
118 p = fftw_plan_dft_2d(nBinsX_,
119 nBinsY_,
120 in, out,
121 FFTW_FORWARD,
122 FFTW_ESTIMATE);
123
124 int i, j;
125
126 for(i=0; i < nBinsX_*nBinsY_; i++){
127 gridsample_[i].clear();
128 gridZ_[i].clear();
129 }
130
131 for(i=0; i < nbins; i++){
132 sum_bin[i].clear();
133 avg_bin[i].clear();
134 errbin_sum[i].clear();
135 errbin[i].clear();
136 sum_bin_sq[i].clear();
137 avg_bin_sq[i].clear();
138 errbin_sum_sq[i].clear();
139 errbin_sq[i].clear();
140 }
141
142 mag.resize(nBinsX_*nBinsY_);
143 newmag.resize(nBinsX_*nBinsY_);
144
145 for(i=0; i < nBinsX_*nBinsY_; i++){
146 mag[i].clear();
147 newmag[i].clear();
148 }
149
150 StuntDouble* sd;
151 reader.readFrame(istep);
152 currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot();
153
154 Mat3x3d hmat = currentSnapshot_->getHmat();
155
156 lenX_ = hmat(0,0);
157 lenY_ = hmat(1,1);
158
159 gridX_ = lenX_ /(nBinsX_);
160 gridY_ = lenY_ /(nBinsY_);
161
162 double halfBoxX_ = lenX_ / 2.0;
163 double halfBoxY_ = lenY_ / 2.0;
164
165 if (evaluator_.isDynamic()) {
166 seleMan_.setSelectionSet(evaluator_.evaluate());
167 }
168
169 //wrap the stuntdoubles into a cell
170 for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) {
171 Vector3d pos = sd->getPos();
172 currentSnapshot_->wrapVector(pos);
173 sd->setPos(pos);
174 }
175
176 //determine which atom belongs to which grid
177 for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) {
178 Vector3d pos = sd->getPos();
179 //int binNo = (pos.z() /deltaR_) - 1;
180 int binNoX = (pos.x() + halfBoxX_) /gridX_;
181 int binNoY = (pos.y() + halfBoxY_) /gridY_;
182 //std::cout << "pos.z = " << pos.z() << " halfBoxZ_ = " << halfBoxZ_ << " deltaR_ = " << deltaR_ << " binNo = " << binNo << "\n";
183 gridZ_[binNoX*nBinsY_+binNoY] += pos.z();
184 gridsample_[binNoX*nBinsY_+binNoY]++;
185 }
186
187 // FFT stuff depends on nx and ny, so delay allocation until we have
188 // that information
189
190 for (i=0; i< nBinsX_; i++) {
191 for(j=0; j< nBinsY_; j++) {
192 newindex = i*nBinsY_ + j;
193 mag[newindex] = 0.0;
194 newmag[newindex] = 0.0;
195 }
196 }
197
198 for(i = 0; i < nBinsX_; i++){
199 for(j = 0; j < nBinsY_; j++){
200 newindex = i * nBinsY_ + j;
201 if(gridsample_[newindex] > 0){
202 gridZ_[newindex] = gridZ_[newindex] / (double)gridsample_[newindex];
203 }
204 }
205 }
206
207 for (i=0; i< nBinsX_; i++) {
208 for(j=0; j< nBinsY_; j++) {
209 newindex = i*nBinsY_ + j;
210 if (gridsample_[newindex] == 0) {
211 // interpolate from surrounding points:
212
213 interpsum = 0.0;
214 ninterp = 0;
215
216 //point1 = bottom;
217
218 px = i;
219 py = j - 1;
220 newp = px*nBinsY_ + py;
221 if ((py >= 0) && (gridsample_[newp] > 0)) {
222 interpsum += gridZ_[newp];
223 ninterp++;
224 }
225
226 //point2 = top;
227
228 px = i;
229 py = j + 1;
230 newp = px*nBinsY_ + py;
231 if ((py < nBinsY_) && (gridsample_[newp] > 0)) {
232 interpsum += gridZ_[newp];
233 ninterp++;
234 }
235
236 //point3 = left;
237
238 px = i - 1;
239 py = j;
240 newp = px*nBinsY_ + py;
241 if ((px >= 0) && (gridsample_[newp] > 0)) {
242 interpsum += gridZ_[newp];
243 ninterp++;
244 }
245
246 //point4 = right;
247
248 px = i + 1;
249 py = j;
250 newp = px*nBinsY_ + py;
251 if ((px < nBinsX_) && (gridsample_[newp] > 0)) {
252 interpsum += gridZ_[newp];
253 ninterp++;
254 }
255
256 value = interpsum / (double)ninterp;
257
258 gridZ_[newindex] = value;
259 }
260 }
261 }
262
263 for (i=0; i < nBinsX_; i++) {
264 for (j=0; j < nBinsY_; j++) {
265 newindex = i*nBinsY_ + j;
266
267 c_re(in[newindex]) = gridZ_[newindex];
268 c_im(in[newindex]) = 0.0;
269 }
270 }
271
272 fftw_execute(p);
273
274 for (i=0; i< nBinsX_; i++) {
275 for(j=0; j< nBinsY_; j++) {
276 newindex = i*nBinsY_ + j;
277 mag[newindex] = pow(c_re(out[newindex]),2) + pow(c_im(out[newindex]),2);
278 }
279 }
280
281 fftw_destroy_plan(p);
282 fftw_free(out);
283 fftw_free(in);
284
285 for (i=0; i< (nBinsX_/2); i++) {
286 for(j=0; j< (nBinsY_/2); j++) {
287 index = i*nBinsY_ + j;
288 new_i = i + (nBinsX_/2);
289 new_j = j + (nBinsY_/2);
290 new_index = new_i*nBinsY_ + new_j;
291 newmag[new_index] = mag[index];
292 }
293 }
294
295 for (i=(nBinsX_/2); i< nBinsX_; i++) {
296 for(j=0; j< (nBinsY_/2); j++) {
297 index = i*nBinsY_ + j;
298 new_i = i - (nBinsX_/2);
299 new_j = j + (nBinsY_/2);
300 new_index = new_i*nBinsY_ + new_j;
301 newmag[new_index] = mag[index];
302 }
303 }
304
305 for (i=0; i< (nBinsX_/2); i++) {
306 for(j=(nBinsY_/2); j< nBinsY_; j++) {
307 index = i*nBinsY_ + j;
308 new_i = i + (nBinsX_/2);
309 new_j = j - (nBinsY_/2);
310 new_index = new_i*nBinsY_ + new_j;
311 newmag[new_index] = mag[index];
312 }
313 }
314
315 for (i=(nBinsX_/2); i< nBinsX_; i++) {
316 for(j=(nBinsY_/2); j< nBinsY_; j++) {
317 index = i*nBinsY_ + j;
318 new_i = i - (nBinsX_/2);
319 new_j = j - (nBinsY_/2);
320 new_index = new_i*nBinsY_ + new_j;
321 newmag[new_index] = mag[index];
322 }
323 }
324
325 maxfreqx = 1.0 / gridX_;
326 maxfreqy = 1.0 / gridY_;
327
328 // printf("%lf\t%lf\t%lf\t%lf\n", dx, dy, maxfreqx, maxfreqy);
329
330 maxfreq = sqrt(maxfreqx*maxfreqx + maxfreqy*maxfreqy);
331 dfreq = maxfreq/(double)(nbins-1);
332
333 //printf("%lf\n", dfreq);
334
335 zero_freq_x = nBinsX_/2;
336 zero_freq_y = nBinsY_/2;
337
338 for (i=0; i< nBinsX_; i++) {
339 for(j=0; j< nBinsY_; j++) {
340
341 freq_x = (double)(i - zero_freq_x)*maxfreqx*2 / nBinsX_;
342 freq_y = (double)(j - zero_freq_y)*maxfreqy*2 / nBinsY_;
343
344 freq = sqrt(freq_x*freq_x + freq_y*freq_y);
345
346 whichbin = (int) (freq / dfreq);
347 newindex = i*nBinsY_ + j;
348 // printf("%d %d %lf %lf\n", whichbin, newindex, freq, dfreq);
349 bin[whichbin][istep] += newmag[newindex];
350 samples[whichbin][istep]++;
351 }
352 }
353
354 for ( i = 0; i < nbins; i++) {
355 if ( samples[i][istep] > 0) {
356 bin[i][istep] = 4.0 * sqrt(bin[i][istep] / (double)samples[i][istep]) / (double)nMolecules;
357 }
358 }
359
360 }
361
362 for (i = 0; i < nbins; i++) {
363 for (j = 0; j < nFrames; j++) {
364 sum_bin[i] += bin[i][j];
365 sum_bin_sq[i] += bin[i][j] * bin[i][j];
366 }
367 avg_bin[i] = sum_bin[i] / (double)nFrames;
368 avg_bin_sq[i] = sum_bin_sq[i] / (double)nFrames;
369 for (j = 0; j < nFrames; j++) {
370 errbin_sum[i] += pow((bin[i][j] - avg_bin[i]), 2);
371 errbin_sum_sq[i] += pow((bin[i][j] * bin[i][j] - avg_bin_sq[i]), 2);
372 }
373 errbin[i] = sqrt( errbin_sum[i] / (double)nFrames );
374 errbin_sq[i] = sqrt( errbin_sum_sq[i] / (double)nFrames );
375 }
376
377 printSpectrum();
378 }
379
380 void Hxy::printSpectrum() {
381 std::ofstream rdfStream(outputFilename_.c_str());
382 if (rdfStream.is_open()) {
383
384 for (int i = 0; i < nbins; i++) {
385 if ( avg_bin[i] > 0 ){
386 rdfStream << i*dfreq << "\t"
387 <<pow(avg_bin[i], 2)<<"\t"
388 <<errbin_sq[i]<<"\t"
389 <<avg_bin[i]<<"\t"
390 <<errbin[i]<<"\n";
391 }
392 }
393 } else {
394
395 sprintf(painCave.errMsg, "Hxy: unable to open %s\n", outputFilename_.c_str());
396 painCave.isFatal = 1;
397 simError();
398 }
399
400 rdfStream.close();
401 }
402
403 }