ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/applications/staticProps/Hxy.cpp
Revision: 2763
Committed: Mon May 22 15:30:42 2006 UTC (18 years, 1 month ago) by xsun
File size: 12931 byte(s)
Log Message:
fixed the bugs of Hxy.cpp.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 *
41 *
42 * Hxy.cpp
43 * OOPSE-2.0
44 *
45 * Created by Xiuquan Sun on 05/09/06.
46 * @author Xiuquan Sun
47 * @version $Id: Hxy.cpp,v 1.5 2006-05-22 15:30:42 xsun Exp $
48 *
49 */
50
51 /* Calculates the undulation spectrum of the lipid membrance. */
52
53 #include <algorithm>
54 #include <fstream>
55 #include "applications/staticProps/Hxy.hpp"
56 #include "utils/simError.h"
57 #include "io/DumpReader.hpp"
58 #include "primitives/Molecule.hpp"
59 #include<stdio.h>
60 #include<string.h>
61 #include<stdlib.h>
62 #include<math.h>
63
64 namespace oopse {
65
66 Hxy::Hxy(SimInfo* info, const std::string& filename, const std::string& sele, int nbins_x, int nbins_y, int nrbins)
67 : StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan_(info), nBinsX_(nbins_x), nBinsY_(nbins_y), nbins_(nrbins){
68
69 evaluator_.loadScriptString(sele);
70 if (!evaluator_.isDynamic()) {
71 seleMan_.setSelectionSet(evaluator_.evaluate());
72 }
73
74 gridsample_.resize(nBinsX_*nBinsY_);
75 gridZ_.resize(nBinsX_*nBinsY_);
76 mag.resize(nBinsX_*nBinsY_);
77 newmag.resize(nBinsX_*nBinsY_);
78
79 sum_bin.resize(nbins_);
80 avg_bin.resize(nbins_);
81 errbin_sum.resize(nbins_);
82 errbin.resize(nbins_);
83 sum_bin_sq.resize(nbins_);
84 avg_bin_sq.resize(nbins_);
85 errbin_sum_sq.resize(nbins_);
86 errbin_sq.resize(nbins_);
87
88 bin.resize(nbins_);
89 samples.resize(nbins_);
90
91 setOutputName(getPrefix(filename) + ".Hxy");
92 }
93
94 Hxy::~Hxy(){
95 gridsample_.clear();
96 gridZ_.clear();
97 sum_bin.clear();
98 avg_bin.clear();
99 errbin_sum.clear();
100 errbin.clear();
101 sum_bin_sq.clear();
102 avg_bin_sq.clear();
103 errbin_sum_sq.clear();
104 errbin_sq.clear();
105
106 for(int i=0; i < bin.size(); i++)
107 bin[i].clear();
108 for(int i=0; i < samples.size(); i++)
109 samples[i].clear();
110
111 mag.clear();
112 newmag.clear();
113 }
114
115 void Hxy::process() {
116 #if defined(HAVE_FFTW_H) || defined(HAVE_DFFTW_H) || defined(HAVE_FFTW3_H)
117 DumpReader reader(info_, dumpFilename_);
118 int nFrames = reader.getNFrames();
119 nProcessed_ = nFrames/step_;
120
121 for(int k=0; k < bin.size(); k++)
122 bin[k].resize(nFrames);
123 for(int k=0; k < samples.size(); k++)
124 samples[k].resize(nFrames);
125
126 RealType lenX_, lenY_;
127 RealType gridX_, gridY_;
128 RealType halfBoxX_, halfBoxY_;
129
130 int binNoX, binNoY;
131 RealType interpsum, value;
132 int ninterp, px, py, newp;
133 int newx, newy, newindex, index;
134 int new_i, new_j, new_index;
135
136 RealType freq_x, freq_y, zero_freq_x, zero_freq_y, freq;
137 RealType maxfreqx, maxfreqy, maxfreq;
138
139 int whichbin;
140 int nMolecules;
141
142 for (int istep = 0; istep < nFrames; istep += step_) {
143
144 reader.readFrame(istep);
145 currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot();
146 nMolecules = info_->getNGlobalMolecules();
147
148 Mat3x3d hmat = currentSnapshot_->getHmat();
149
150 #ifdef HAVE_FFTW3_H
151 fftw_plan p;
152 #else
153 fftwnd_plan p;
154 #endif
155 fftw_complex *in, *out;
156
157 in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * (nBinsX_*nBinsY_));
158 out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) *(nBinsX_*nBinsY_));
159
160 #ifdef HAVE_FFTW3_H
161 p = fftw_plan_dft_2d(nBinsX_, nBinsY_, in, out,
162 FFTW_FORWARD, FFTW_ESTIMATE);
163 #else
164 p = fftw2d_create_plan(nBinsX_, nBinsY_, FFTW_FORWARD, FFTW_ESTIMATE);
165 #endif
166
167 int i, j;
168
169 std::fill(gridsample_.begin(), gridsample_.end(), 0);
170 std::fill(gridZ_.begin(), gridZ_.end(), 0.0);
171 std::fill(sum_bin.begin(), sum_bin.end(), 0.0);
172 std::fill(avg_bin.begin(), avg_bin.end(), 0.0);
173 std::fill(errbin_sum.begin(), errbin_sum.end(), 0.0);
174 std::fill(errbin.begin(), errbin.end(), 0.0);
175 std::fill(sum_bin_sq.begin(), sum_bin_sq.end(), 0.0);
176 std::fill(avg_bin_sq.begin(), avg_bin_sq.end(), 0.0);
177 std::fill(errbin_sum_sq.begin(), errbin_sum_sq.end(), 0.0);
178 std::fill(errbin_sq.begin(), errbin_sq.end(), 0.0);
179 std::fill(mag.begin(), mag.end(), 0.0);
180 std::fill(newmag.begin(), newmag.end(), 0.0);
181
182 for(i=0; i < bin.size(); i++)
183 std::fill(bin[i].begin(), bin[i].end(), 0.0);
184
185 for(i=0; i < samples.size(); i++)
186 std::fill(samples[i].begin(), samples[i].end(), 0);
187
188 StuntDouble* sd;
189
190 lenX_ = hmat(0,0);
191 lenY_ = hmat(1,1);
192
193 gridX_ = lenX_ /(nBinsX_);
194 gridY_ = lenY_ /(nBinsY_);
195
196 halfBoxX_ = lenX_ / 2.0;
197 halfBoxY_ = lenY_ / 2.0;
198
199 if (evaluator_.isDynamic()) {
200 seleMan_.setSelectionSet(evaluator_.evaluate());
201 }
202
203 //wrap the stuntdoubles into a cell
204 for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) {
205 Vector3d pos = sd->getPos();
206 currentSnapshot_->wrapVector(pos);
207 sd->setPos(pos);
208 }
209
210 //determine which atom belongs to which grid
211 for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) {
212 Vector3d pos = sd->getPos();
213 //int binNo = (pos.z() /deltaR_) - 1;
214 int binNoX = (int) ((pos.x() + halfBoxX_) / gridX_);
215 int binNoY = (int) ((pos.y() + halfBoxY_) / gridY_);
216 //std::cout << "pos.z = " << pos.z() << " halfBoxZ_ = " << halfBoxZ_ << " deltaR_ = " << deltaR_ << " binNo = " << binNo << "\n";
217 gridZ_[binNoX*nBinsY_+binNoY] += pos.z();
218 gridsample_[binNoX*nBinsY_+binNoY]++;
219 }
220
221 // FFT stuff depends on nx and ny, so delay allocation until we have
222 // that information
223
224 for(i = 0; i < nBinsX_; i++){
225 for(j = 0; j < nBinsY_; j++){
226 newindex = i * nBinsY_ + j;
227 if(gridsample_[newindex] > 0){
228 gridZ_[newindex] = gridZ_[newindex] / (RealType)gridsample_[newindex];
229 }
230 }
231 }
232
233 for (i=0; i< nBinsX_; i++) {
234 for(j=0; j< nBinsY_; j++) {
235 newindex = i*nBinsY_ + j;
236 if (gridsample_[newindex] == 0) {
237 // interpolate from surrounding points:
238
239 interpsum = 0.0;
240 ninterp = 0;
241
242 //point1 = bottom;
243
244 px = i;
245 py = j - 1;
246 newp = px*nBinsY_ + py;
247 if ((py >= 0) && (gridsample_[newp] > 0)) {
248 interpsum += gridZ_[newp];
249 ninterp++;
250 }
251
252 //point2 = top;
253
254 px = i;
255 py = j + 1;
256 newp = px*nBinsY_ + py;
257 if ((py < nBinsY_) && (gridsample_[newp] > 0)) {
258 interpsum += gridZ_[newp];
259 ninterp++;
260 }
261
262 //point3 = left;
263
264 px = i - 1;
265 py = j;
266 newp = px*nBinsY_ + py;
267 if ((px >= 0) && (gridsample_[newp] > 0)) {
268 interpsum += gridZ_[newp];
269 ninterp++;
270 }
271
272 //point4 = right;
273
274 px = i + 1;
275 py = j;
276 newp = px*nBinsY_ + py;
277 if ( (px < nBinsX_ ) && ( gridsample_[newp] > 0 )) {
278 interpsum += gridZ_[newp];
279 ninterp++;
280 }
281
282 value = interpsum / (RealType)ninterp;
283
284 gridZ_[newindex] = value;
285 }
286 }
287 }
288
289 for (i=0; i < nBinsX_; i++) {
290 for (j=0; j < nBinsY_; j++) {
291 newindex = i*nBinsY_ + j;
292
293 c_re(in[newindex]) = gridZ_[newindex];
294 c_im(in[newindex]) = 0.0;
295 }
296 }
297
298 #ifdef HAVE_FFTW3_H
299 fftw_execute(p);
300 #else
301 fftwnd_one(p, in, out);
302 #endif
303
304 for (i=0; i< nBinsX_; i++) {
305 for(j=0; j< nBinsY_; j++) {
306 newindex = i*nBinsY_ + j;
307 mag[newindex] = pow(c_re(out[newindex]),2) + pow(c_im(out[newindex]),2);
308 }
309 }
310
311 #ifdef HAVE_FFTW3_H
312 fftw_destroy_plan(p);
313 #else
314 fftwnd_destroy_plan(p);
315 #endif
316 fftw_free(out);
317 fftw_free(in);
318
319 for (i=0; i< (nBinsX_/2); i++) {
320 for(j=0; j< (nBinsY_/2); j++) {
321 index = i*nBinsY_ + j;
322 new_i = i + (nBinsX_/2);
323 new_j = j + (nBinsY_/2);
324 new_index = new_i*nBinsY_ + new_j;
325 newmag[new_index] = mag[index];
326 }
327 }
328
329 for (i=(nBinsX_/2); i< nBinsX_; i++) {
330 for(j=0; j< (nBinsY_/2); j++) {
331 index = i*nBinsY_ + j;
332 new_i = i - (nBinsX_/2);
333 new_j = j + (nBinsY_/2);
334 new_index = new_i*nBinsY_ + new_j;
335 newmag[new_index] = mag[index];
336 }
337 }
338
339 for (i=0; i< (nBinsX_/2); i++) {
340 for(j=(nBinsY_/2); j< nBinsY_; j++) {
341 index = i*nBinsY_ + j;
342 new_i = i + (nBinsX_/2);
343 new_j = j - (nBinsY_/2);
344 new_index = new_i*nBinsY_ + new_j;
345 newmag[new_index] = mag[index];
346 }
347 }
348
349 for (i=(nBinsX_/2); i< nBinsX_; i++) {
350 for(j=(nBinsY_/2); j< nBinsY_; j++) {
351 index = i*nBinsY_ + j;
352 new_i = i - (nBinsX_/2);
353 new_j = j - (nBinsY_/2);
354 new_index = new_i*nBinsY_ + new_j;
355 newmag[new_index] = mag[index];
356 }
357 }
358
359 maxfreqx = 1.0 / gridX_;
360 maxfreqy = 1.0 / gridY_;
361
362 // printf("%lf\t%lf\t%lf\t%lf\n", dx, dy, maxfreqx, maxfreqy);
363
364 maxfreq = sqrt(maxfreqx*maxfreqx + maxfreqy*maxfreqy);
365 dfreq = maxfreq/(RealType)(nbins_-1);
366
367 //printf("%lf\n", dfreq);
368
369 zero_freq_x = nBinsX_/2;
370 zero_freq_y = nBinsY_/2;
371
372 for (i=0; i< nBinsX_; i++) {
373 for(j=0; j< nBinsY_; j++) {
374
375 freq_x = (RealType)(i - zero_freq_x)*maxfreqx*2 / nBinsX_;
376 freq_y = (RealType)(j - zero_freq_y)*maxfreqy*2 / nBinsY_;
377
378 freq = sqrt(freq_x*freq_x + freq_y*freq_y);
379
380 whichbin = (int) (freq / dfreq);
381 newindex = i*nBinsY_ + j;
382 // printf("%d %d %lf %lf\n", whichbin, newindex, freq, dfreq);
383 bin[whichbin][istep] += newmag[newindex];
384 samples[whichbin][istep]++;
385 }
386 }
387
388 for ( i = 0; i < nbins_; i++) {
389 if ( samples[i][istep] > 0) {
390 bin[i][istep] = 4.0 * sqrt(bin[i][istep] / (RealType)samples[i][istep]) / (RealType)nMolecules;
391 }
392 }
393 }
394
395 for (int i = 0; i < nbins_; i++) {
396 for (int j = 0; j < nFrames; j++) {
397 sum_bin[i] += bin[i][j];
398 sum_bin_sq[i] += bin[i][j] * bin[i][j];
399 }
400 avg_bin[i] = sum_bin[i] / (RealType)nFrames;
401 avg_bin_sq[i] = sum_bin_sq[i] / (RealType)nFrames;
402 for (int j = 0; j < nFrames; j++) {
403 errbin_sum[i] += pow((bin[i][j] - avg_bin[i]), 2);
404 errbin_sum_sq[i] += pow((bin[i][j] * bin[i][j] - avg_bin_sq[i]), 2);
405 }
406 errbin[i] = sqrt( errbin_sum[i] / (RealType)nFrames );
407 errbin_sq[i] = sqrt( errbin_sum_sq[i] / (RealType)nFrames );
408 }
409
410 printSpectrum();
411
412 #else
413 sprintf(painCave.errMsg, "Hxy: FFTW support was not compiled in!\n");
414 painCave.isFatal = 1;
415 simError();
416
417 #endif
418 }
419
420 void Hxy::printSpectrum() {
421 std::ofstream rdfStream(outputFilename_.c_str());
422 if (rdfStream.is_open()) {
423
424 for (int i = 0; i < nbins_; ++i) {
425 if ( avg_bin[i] > 0 ){
426 rdfStream << (RealType)i * dfreq << "\t"
427 <<pow(avg_bin[i], 2)<<"\t"
428 <<errbin_sq[i]<<"\t"
429 <<avg_bin[i]<<"\t"
430 <<errbin[i]<<"\n";
431 }
432 }
433 } else {
434
435 sprintf(painCave.errMsg, "Hxy: unable to open %s\n", outputFilename_.c_str());
436 painCave.isFatal = 1;
437 simError();
438 }
439
440 rdfStream.close();
441
442 }
443
444 }