ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/applications/staticProps/Hxy.cpp
Revision: 2759
Committed: Wed May 17 21:51:42 2006 UTC (18 years, 3 months ago) by tim
File size: 11957 byte(s)
Log Message:
Adding single precision capabilities to c++ side

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 *
41 *
42 * Hxy.cpp
43 * OOPSE-2.0
44 *
45 * Created by Xiuquan Sun on 05/09/06.
46 * @author Xiuquan Sun
47 * @version $Id: Hxy.cpp,v 1.4 2006-05-17 21:51:42 tim Exp $
48 *
49 */
50
51 /* Calculates the undulation spectrum of the lipid membrance. */
52
53 #include <algorithm>
54 #include <fstream>
55 #include "applications/staticProps/Hxy.hpp"
56 #include "utils/simError.h"
57 #include "io/DumpReader.hpp"
58 #include "primitives/Molecule.hpp"
59 #include<stdio.h>
60 #include<string.h>
61 #include<stdlib.h>
62 #include<math.h>
63
64 namespace oopse {
65
66 Hxy::Hxy(SimInfo* info, const std::string& filename, const std::string& sele, int nbins_x, int nbins_y, int nrbins)
67 : StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan_(info), nBinsX_(nbins_x), nBinsY_(nbins_y), nbins_(nrbins){
68
69 evaluator_.loadScriptString(sele);
70 if (!evaluator_.isDynamic()) {
71 seleMan_.setSelectionSet(evaluator_.evaluate());
72 }
73
74 gridsample_.resize(nBinsX_*nBinsY_);
75 gridZ_.resize(nBinsX_*nBinsY_);
76
77 sum_bin.resize(nbins_);
78 avg_bin.resize(nbins_);
79 errbin_sum.resize(nbins_);
80 errbin.resize(nbins_);
81 sum_bin_sq.resize(nbins_);
82 avg_bin_sq.resize(nbins_);
83 errbin_sum_sq.resize(nbins_);
84 errbin_sq.resize(nbins_);
85
86 setOutputName(getPrefix(filename) + ".Hxy");
87 }
88
89 void Hxy::process() {
90 #if defined(HAVE_FFTW_H) || defined(HAVE_DFFTW_H) || defined(HAVE_FFTW3_H)
91 DumpReader reader(info_, dumpFilename_);
92 int nFrames = reader.getNFrames();
93 nProcessed_ = nFrames/step_;
94
95 std::vector<RealType> mag, newmag;
96 RealType lenX_, lenY_;
97 RealType gridX_, gridY_;
98 RealType halfBoxX_, halfBoxY_;
99 int binNoX, binNoY;
100 RealType interpsum, value;
101 int ninterp, px, py, newp;
102 int newx, newy, newindex, index;
103 int new_i, new_j, new_index;
104 RealType freq_x, freq_y, zero_freq_x, zero_freq_y, freq;
105 RealType maxfreqx, maxfreqy, maxfreq, dfreq;
106 int whichbin;
107 int nMolecules;
108
109 for (int istep = 0; istep < nFrames; istep += step_) {
110
111 reader.readFrame(istep);
112 currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot();
113 nMolecules = info_->getNGlobalMolecules();
114
115 Mat3x3d hmat = currentSnapshot_->getHmat();
116
117 #ifdef HAVE_FFTW3_H
118 fftw_plan p;
119 #else
120 fftwnd_plan p;
121 #endif
122 fftw_complex *in, *out;
123
124
125 in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * (nBinsX_*nBinsY_));
126 out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) *(nBinsX_*nBinsY_));
127
128 #ifdef HAVE_FFTW3_H
129 p = fftw_plan_dft_2d(nBinsX_, nBinsY_, in, out,
130 FFTW_FORWARD, FFTW_ESTIMATE);
131 #else
132 p = fftw2d_create_plan(nBinsX_, nBinsY_, FFTW_FORWARD, FFTW_ESTIMATE);
133 #endif
134
135 int i, j;
136
137 gridsample_.clear();
138 gridZ_.clear();
139 sum_bin.clear();
140 avg_bin.clear();
141 errbin_sum.clear();
142 errbin.clear();
143 sum_bin_sq.clear();
144 avg_bin_sq.clear();
145 errbin_sum_sq.clear();
146 errbin_sq.clear();
147
148 mag.resize(nBinsX_*nBinsY_);
149 newmag.resize(nBinsX_*nBinsY_);
150 mag.clear();
151 newmag.clear();
152
153 StuntDouble* sd;
154
155 lenX_ = hmat(0,0);
156 lenY_ = hmat(1,1);
157
158 gridX_ = lenX_ /(nBinsX_);
159 gridY_ = lenY_ /(nBinsY_);
160
161 RealType halfBoxX_ = lenX_ / 2.0;
162 RealType halfBoxY_ = lenY_ / 2.0;
163
164 if (evaluator_.isDynamic()) {
165 seleMan_.setSelectionSet(evaluator_.evaluate());
166 }
167
168 //wrap the stuntdoubles into a cell
169 for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) {
170 Vector3d pos = sd->getPos();
171 currentSnapshot_->wrapVector(pos);
172 sd->setPos(pos);
173 }
174
175 //determine which atom belongs to which grid
176 for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) {
177 Vector3d pos = sd->getPos();
178 //int binNo = (pos.z() /deltaR_) - 1;
179 int binNoX = (pos.x() + halfBoxX_) /gridX_;
180 int binNoY = (pos.y() + halfBoxY_) /gridY_;
181 //std::cout << "pos.z = " << pos.z() << " halfBoxZ_ = " << halfBoxZ_ << " deltaR_ = " << deltaR_ << " binNo = " << binNo << "\n";
182 gridZ_[binNoX*nBinsY_+binNoY] += pos.z();
183 gridsample_[binNoX*nBinsY_+binNoY]++;
184 }
185
186 // FFT stuff depends on nx and ny, so delay allocation until we have
187 // that information
188
189 for (i=0; i< nBinsX_; i++) {
190 for(j=0; j< nBinsY_; j++) {
191 newindex = i*nBinsY_ + j;
192 mag[newindex] = 0.0;
193 newmag[newindex] = 0.0;
194 }
195 }
196
197 for(i = 0; i < nBinsX_; i++){
198 for(j = 0; j < nBinsY_; j++){
199 newindex = i * nBinsY_ + j;
200 if(gridsample_[newindex] > 0){
201 gridZ_[newindex] = gridZ_[newindex] / (RealType)gridsample_[newindex];
202 }
203 }
204 }
205
206 for (i=0; i< nBinsX_; i++) {
207 for(j=0; j< nBinsY_; j++) {
208 newindex = i*nBinsY_ + j;
209 if (gridsample_[newindex] == 0) {
210 // interpolate from surrounding points:
211
212 interpsum = 0.0;
213 ninterp = 0;
214
215 //point1 = bottom;
216
217 px = i;
218 py = j - 1;
219 newp = px*nBinsY_ + py;
220 if ((py >= 0) && (gridsample_[newp] > 0)) {
221 interpsum += gridZ_[newp];
222 ninterp++;
223 }
224
225 //point2 = top;
226
227 px = i;
228 py = j + 1;
229 newp = px*nBinsY_ + py;
230 if ((py < nBinsY_) && (gridsample_[newp] > 0)) {
231 interpsum += gridZ_[newp];
232 ninterp++;
233 }
234
235 //point3 = left;
236
237 px = i - 1;
238 py = j;
239 newp = px*nBinsY_ + py;
240 if ((px >= 0) && (gridsample_[newp] > 0)) {
241 interpsum += gridZ_[newp];
242 ninterp++;
243 }
244
245 //point4 = right;
246
247 px = i + 1;
248 py = j;
249 newp = px*nBinsY_ + py;
250 if ( (px < nBinsX_ ) && ( gridsample_[newp] > 0 )) {
251 interpsum += gridZ_[newp];
252 ninterp++;
253 }
254
255 value = interpsum / (RealType)ninterp;
256
257 gridZ_[newindex] = value;
258 }
259 }
260 }
261
262 for (i=0; i < nBinsX_; i++) {
263 for (j=0; j < nBinsY_; j++) {
264 newindex = i*nBinsY_ + j;
265
266 c_re(in[newindex]) = gridZ_[newindex];
267 c_im(in[newindex]) = 0.0;
268 }
269 }
270 #ifdef HAVE_FFTW3_H
271 fftw_execute(p);
272 #else
273 fftwnd_one(p, in, out);
274 #endif
275
276 for (i=0; i< nBinsX_; i++) {
277 for(j=0; j< nBinsY_; j++) {
278 newindex = i*nBinsY_ + j;
279 mag[newindex] = pow(c_re(out[newindex]),2) + pow(c_im(out[newindex]),2);
280 }
281 }
282 #ifdef HAVE_FFTW3_H
283 fftw_destroy_plan(p);
284 #else
285 fftwnd_destroy_plan(p);
286 #endif
287 fftw_free(out);
288 fftw_free(in);
289
290 for (i=0; i< (nBinsX_/2); i++) {
291 for(j=0; j< (nBinsY_/2); j++) {
292 index = i*nBinsY_ + j;
293 new_i = i + (nBinsX_/2);
294 new_j = j + (nBinsY_/2);
295 new_index = new_i*nBinsY_ + new_j;
296 newmag[new_index] = mag[index];
297 }
298 }
299
300 for (i=(nBinsX_/2); i< nBinsX_; i++) {
301 for(j=0; j< (nBinsY_/2); j++) {
302 index = i*nBinsY_ + j;
303 new_i = i - (nBinsX_/2);
304 new_j = j + (nBinsY_/2);
305 new_index = new_i*nBinsY_ + new_j;
306 newmag[new_index] = mag[index];
307 }
308 }
309
310 for (i=0; i< (nBinsX_/2); i++) {
311 for(j=(nBinsY_/2); j< nBinsY_; j++) {
312 index = i*nBinsY_ + j;
313 new_i = i + (nBinsX_/2);
314 new_j = j - (nBinsY_/2);
315 new_index = new_i*nBinsY_ + new_j;
316 newmag[new_index] = mag[index];
317 }
318 }
319
320 for (i=(nBinsX_/2); i< nBinsX_; i++) {
321 for(j=(nBinsY_/2); j< nBinsY_; j++) {
322 index = i*nBinsY_ + j;
323 new_i = i - (nBinsX_/2);
324 new_j = j - (nBinsY_/2);
325 new_index = new_i*nBinsY_ + new_j;
326 newmag[new_index] = mag[index];
327 }
328 }
329
330 maxfreqx = 1.0 / gridX_;
331 maxfreqy = 1.0 / gridY_;
332
333 // printf("%lf\t%lf\t%lf\t%lf\n", dx, dy, maxfreqx, maxfreqy);
334
335 maxfreq = sqrt(maxfreqx*maxfreqx + maxfreqy*maxfreqy);
336 dfreq = maxfreq/(RealType)(nbins_-1);
337
338 //printf("%lf\n", dfreq);
339
340 zero_freq_x = nBinsX_/2;
341 zero_freq_y = nBinsY_/2;
342
343 for (i=0; i< nBinsX_; i++) {
344 for(j=0; j< nBinsY_; j++) {
345
346 freq_x = (RealType)(i - zero_freq_x)*maxfreqx*2 / nBinsX_;
347 freq_y = (RealType)(j - zero_freq_y)*maxfreqy*2 / nBinsY_;
348
349 freq = sqrt(freq_x*freq_x + freq_y*freq_y);
350
351 whichbin = (int) (freq / dfreq);
352 newindex = i*nBinsY_ + j;
353 // printf("%d %d %lf %lf\n", whichbin, newindex, freq, dfreq);
354 bin[whichbin][istep] += newmag[newindex];
355 samples[whichbin][istep]++;
356 }
357 }
358
359 for ( i = 0; i < nbins_; i++) {
360 if ( samples[i][istep] > 0) {
361 bin[i][istep] = 4.0 * sqrt(bin[i][istep] / (RealType)samples[i][istep]) / (RealType)nMolecules;
362 }
363 }
364
365 }
366
367 for (int i = 0; i < nbins_; i++) {
368 for (int j = 0; j < nFrames; j++) {
369 sum_bin[i] += bin[i][j];
370 sum_bin_sq[i] += bin[i][j] * bin[i][j];
371 }
372 avg_bin[i] = sum_bin[i] / (RealType)nFrames;
373 avg_bin_sq[i] = sum_bin_sq[i] / (RealType)nFrames;
374 for (int j = 0; j < nFrames; j++) {
375 errbin_sum[i] += pow((bin[i][j] - avg_bin[i]), 2);
376 errbin_sum_sq[i] += pow((bin[i][j] * bin[i][j] - avg_bin_sq[i]), 2);
377 }
378 errbin[i] = sqrt( errbin_sum[i] / (RealType)nFrames );
379 errbin_sq[i] = sqrt( errbin_sum_sq[i] / (RealType)nFrames );
380 }
381
382 printSpectrum();
383 #else
384 sprintf(painCave.errMsg, "Hxy: FFTW support was not compiled in!\n");
385 painCave.isFatal = 1;
386 simError();
387
388 #endif
389
390 }
391
392 void Hxy::printSpectrum() {
393 std::ofstream rdfStream(outputFilename_.c_str());
394 if (rdfStream.is_open()) {
395
396 for (int i = 0; i < nbins_; i++) {
397 if ( avg_bin[i] > 0 ){
398 rdfStream << i*dfreq << "\t"
399 <<pow(avg_bin[i], 2)<<"\t"
400 <<errbin_sq[i]<<"\t"
401 <<avg_bin[i]<<"\t"
402 <<errbin[i]<<"\n";
403 }
404 }
405 } else {
406
407 sprintf(painCave.errMsg, "Hxy: unable to open %s\n", outputFilename_.c_str());
408 painCave.isFatal = 1;
409 simError();
410 }
411
412 rdfStream.close();
413 }
414
415 }