ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 2012
Committed: Sun Feb 13 20:36:24 2005 UTC (19 years, 4 months ago) by tim
File size: 28496 byte(s)
Log Message:
fixed a bug in SimInfo::getCutoff()

File Contents

# User Rev Content
1 gezelter 1930 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 gezelter 1490
52 tim 1492 #include "brains/SimInfo.hpp"
53 gezelter 1930 #include "math/Vector3.hpp"
54     #include "primitives/Molecule.hpp"
55     #include "UseTheForce/doForces_interface.h"
56     #include "UseTheForce/notifyCutoffs_interface.h"
57     #include "utils/MemoryUtils.hpp"
58 tim 1492 #include "utils/simError.h"
59 tim 2000 #include "selection/SelectionManager.hpp"
60 gezelter 1490
61 gezelter 1930 #ifdef IS_MPI
62     #include "UseTheForce/mpiComponentPlan.h"
63     #include "UseTheForce/DarkSide/simParallel_interface.h"
64     #endif
65 gezelter 1490
66 gezelter 1930 namespace oopse {
67 gezelter 1490
68 gezelter 1930 SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69     ForceField* ff, Globals* simParams) :
70     forceField_(ff), simParams_(simParams),
71     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
75     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
76 tim 1976 sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
77 gezelter 1490
78 gezelter 1930
79     std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80     MoleculeStamp* molStamp;
81     int nMolWithSameStamp;
82     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83     int nGroups = 0; //total cutoff groups defined in meta-data file
84     CutoffGroupStamp* cgStamp;
85     RigidBodyStamp* rbStamp;
86     int nRigidAtoms = 0;
87    
88     for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89     molStamp = i->first;
90     nMolWithSameStamp = i->second;
91    
92     addMoleculeStamp(molStamp, nMolWithSameStamp);
93 gezelter 1490
94 gezelter 1930 //calculate atoms in molecules
95     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
96 gezelter 1490
97    
98 gezelter 1930 //calculate atoms in cutoff groups
99     int nAtomsInGroups = 0;
100     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101    
102     for (int j=0; j < nCutoffGroupsInStamp; j++) {
103     cgStamp = molStamp->getCutoffGroup(j);
104     nAtomsInGroups += cgStamp->getNMembers();
105     }
106 gezelter 1490
107 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108     nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
109 gezelter 1490
110 gezelter 1930 //calculate atoms in rigid bodies
111     int nAtomsInRigidBodies = 0;
112 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113 gezelter 1930
114     for (int j=0; j < nRigidBodiesInStamp; j++) {
115     rbStamp = molStamp->getRigidBody(j);
116     nAtomsInRigidBodies += rbStamp->getNMembers();
117     }
118 gezelter 1490
119 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
121    
122     }
123 chrisfen 1636
124 gezelter 1930 //every free atom (atom does not belong to cutoff groups) is a cutoff group
125     //therefore the total number of cutoff groups in the system is equal to
126     //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127     //file plus the number of cutoff groups defined in meta-data file
128     nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129 gezelter 1490
130 gezelter 1930 //every free atom (atom does not belong to rigid bodies) is an integrable object
131     //therefore the total number of integrable objects in the system is equal to
132     //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
133     //file plus the number of rigid bodies defined in meta-data file
134     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135 gezelter 1490
136 gezelter 1930 nGlobalMols_ = molStampIds_.size();
137 gezelter 1490
138 gezelter 1930 #ifdef IS_MPI
139     molToProcMap_.resize(nGlobalMols_);
140     #endif
141 tim 1976
142 tim 2000 selectMan_ = new SelectionManager(this);
143 tim 1976 selectMan_->selectAll();
144 gezelter 1930 }
145 gezelter 1490
146 gezelter 1930 SimInfo::~SimInfo() {
147     //MemoryUtils::deleteVectorOfPointer(molecules_);
148 gezelter 1490
149 gezelter 1930 MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150    
151     delete sman_;
152     delete simParams_;
153     delete forceField_;
154 tim 1976 delete selectMan_;
155 gezelter 1490 }
156    
157 gezelter 1930 int SimInfo::getNGlobalConstraints() {
158     int nGlobalConstraints;
159     #ifdef IS_MPI
160     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161     MPI_COMM_WORLD);
162     #else
163     nGlobalConstraints = nConstraints_;
164     #endif
165     return nGlobalConstraints;
166     }
167 gezelter 1490
168 gezelter 1930 bool SimInfo::addMolecule(Molecule* mol) {
169     MoleculeIterator i;
170 gezelter 1490
171 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
172     if (i == molecules_.end() ) {
173 gezelter 1490
174 gezelter 1930 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175    
176     nAtoms_ += mol->getNAtoms();
177     nBonds_ += mol->getNBonds();
178     nBends_ += mol->getNBends();
179     nTorsions_ += mol->getNTorsions();
180     nRigidBodies_ += mol->getNRigidBodies();
181     nIntegrableObjects_ += mol->getNIntegrableObjects();
182     nCutoffGroups_ += mol->getNCutoffGroups();
183     nConstraints_ += mol->getNConstraintPairs();
184 gezelter 1490
185 gezelter 1930 addExcludePairs(mol);
186    
187     return true;
188     } else {
189     return false;
190     }
191 gezelter 1490 }
192    
193 gezelter 1930 bool SimInfo::removeMolecule(Molecule* mol) {
194     MoleculeIterator i;
195     i = molecules_.find(mol->getGlobalIndex());
196 gezelter 1490
197 gezelter 1930 if (i != molecules_.end() ) {
198 gezelter 1490
199 gezelter 1930 assert(mol == i->second);
200    
201     nAtoms_ -= mol->getNAtoms();
202     nBonds_ -= mol->getNBonds();
203     nBends_ -= mol->getNBends();
204     nTorsions_ -= mol->getNTorsions();
205     nRigidBodies_ -= mol->getNRigidBodies();
206     nIntegrableObjects_ -= mol->getNIntegrableObjects();
207     nCutoffGroups_ -= mol->getNCutoffGroups();
208     nConstraints_ -= mol->getNConstraintPairs();
209 gezelter 1490
210 gezelter 1930 removeExcludePairs(mol);
211     molecules_.erase(mol->getGlobalIndex());
212 gezelter 1490
213 gezelter 1930 delete mol;
214    
215     return true;
216     } else {
217     return false;
218     }
219    
220    
221     }
222    
223    
224     Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225     i = molecules_.begin();
226     return i == molecules_.end() ? NULL : i->second;
227     }
228    
229     Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230     ++i;
231     return i == molecules_.end() ? NULL : i->second;
232 gezelter 1490 }
233    
234    
235 gezelter 1930 void SimInfo::calcNdf() {
236     int ndf_local;
237     MoleculeIterator i;
238     std::vector<StuntDouble*>::iterator j;
239     Molecule* mol;
240     StuntDouble* integrableObject;
241 gezelter 1490
242 gezelter 1930 ndf_local = 0;
243    
244     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246     integrableObject = mol->nextIntegrableObject(j)) {
247 gezelter 1490
248 gezelter 1930 ndf_local += 3;
249 gezelter 1490
250 gezelter 1930 if (integrableObject->isDirectional()) {
251     if (integrableObject->isLinear()) {
252     ndf_local += 2;
253     } else {
254     ndf_local += 3;
255     }
256     }
257    
258     }//end for (integrableObject)
259     }// end for (mol)
260    
261     // n_constraints is local, so subtract them on each processor
262     ndf_local -= nConstraints_;
263    
264     #ifdef IS_MPI
265     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
266     #else
267     ndf_ = ndf_local;
268     #endif
269    
270     // nZconstraints_ is global, as are the 3 COM translations for the
271     // entire system:
272     ndf_ = ndf_ - 3 - nZconstraint_;
273    
274 gezelter 1490 }
275    
276 gezelter 1930 void SimInfo::calcNdfRaw() {
277     int ndfRaw_local;
278 gezelter 1490
279 gezelter 1930 MoleculeIterator i;
280     std::vector<StuntDouble*>::iterator j;
281     Molecule* mol;
282     StuntDouble* integrableObject;
283    
284     // Raw degrees of freedom that we have to set
285     ndfRaw_local = 0;
286    
287     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
288     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
289     integrableObject = mol->nextIntegrableObject(j)) {
290    
291     ndfRaw_local += 3;
292    
293     if (integrableObject->isDirectional()) {
294     if (integrableObject->isLinear()) {
295     ndfRaw_local += 2;
296     } else {
297     ndfRaw_local += 3;
298     }
299     }
300    
301     }
302     }
303    
304     #ifdef IS_MPI
305     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
306     #else
307     ndfRaw_ = ndfRaw_local;
308     #endif
309 gezelter 1490 }
310    
311 gezelter 1930 void SimInfo::calcNdfTrans() {
312     int ndfTrans_local;
313 gezelter 1490
314 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
315 gezelter 1490
316    
317 gezelter 1930 #ifdef IS_MPI
318     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
319     #else
320     ndfTrans_ = ndfTrans_local;
321     #endif
322 gezelter 1490
323 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
324    
325 gezelter 1490 }
326    
327 gezelter 1930 void SimInfo::addExcludePairs(Molecule* mol) {
328     std::vector<Bond*>::iterator bondIter;
329     std::vector<Bend*>::iterator bendIter;
330     std::vector<Torsion*>::iterator torsionIter;
331     Bond* bond;
332     Bend* bend;
333     Torsion* torsion;
334     int a;
335     int b;
336     int c;
337     int d;
338    
339     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340     a = bond->getAtomA()->getGlobalIndex();
341     b = bond->getAtomB()->getGlobalIndex();
342     exclude_.addPair(a, b);
343     }
344 gezelter 1490
345 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
346     a = bend->getAtomA()->getGlobalIndex();
347     b = bend->getAtomB()->getGlobalIndex();
348     c = bend->getAtomC()->getGlobalIndex();
349 gezelter 1490
350 gezelter 1930 exclude_.addPair(a, b);
351     exclude_.addPair(a, c);
352     exclude_.addPair(b, c);
353     }
354 gezelter 1490
355 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
356     a = torsion->getAtomA()->getGlobalIndex();
357     b = torsion->getAtomB()->getGlobalIndex();
358     c = torsion->getAtomC()->getGlobalIndex();
359     d = torsion->getAtomD()->getGlobalIndex();
360 gezelter 1490
361 gezelter 1930 exclude_.addPair(a, b);
362     exclude_.addPair(a, c);
363     exclude_.addPair(a, d);
364     exclude_.addPair(b, c);
365     exclude_.addPair(b, d);
366     exclude_.addPair(c, d);
367 gezelter 1490 }
368    
369    
370 gezelter 1930 }
371    
372     void SimInfo::removeExcludePairs(Molecule* mol) {
373     std::vector<Bond*>::iterator bondIter;
374     std::vector<Bend*>::iterator bendIter;
375     std::vector<Torsion*>::iterator torsionIter;
376     Bond* bond;
377     Bend* bend;
378     Torsion* torsion;
379     int a;
380     int b;
381     int c;
382     int d;
383    
384     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
385     a = bond->getAtomA()->getGlobalIndex();
386     b = bond->getAtomB()->getGlobalIndex();
387     exclude_.removePair(a, b);
388 gezelter 1490 }
389 gezelter 1930
390     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
391     a = bend->getAtomA()->getGlobalIndex();
392     b = bend->getAtomB()->getGlobalIndex();
393     c = bend->getAtomC()->getGlobalIndex();
394    
395     exclude_.removePair(a, b);
396     exclude_.removePair(a, c);
397     exclude_.removePair(b, c);
398 gezelter 1490 }
399 gezelter 1930
400     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
401     a = torsion->getAtomA()->getGlobalIndex();
402     b = torsion->getAtomB()->getGlobalIndex();
403     c = torsion->getAtomC()->getGlobalIndex();
404     d = torsion->getAtomD()->getGlobalIndex();
405    
406     exclude_.removePair(a, b);
407     exclude_.removePair(a, c);
408     exclude_.removePair(a, d);
409     exclude_.removePair(b, c);
410     exclude_.removePair(b, d);
411     exclude_.removePair(c, d);
412     }
413    
414 gezelter 1490 }
415    
416    
417 gezelter 1930 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
418     int curStampId;
419 gezelter 1490
420 gezelter 1930 //index from 0
421     curStampId = moleculeStamps_.size();
422 gezelter 1490
423 gezelter 1930 moleculeStamps_.push_back(molStamp);
424     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
425     }
426 gezelter 1490
427 gezelter 1930 void SimInfo::update() {
428 gezelter 1490
429 gezelter 1930 setupSimType();
430 gezelter 1490
431 gezelter 1930 #ifdef IS_MPI
432     setupFortranParallel();
433     #endif
434 gezelter 1490
435 gezelter 1930 setupFortranSim();
436 gezelter 1490
437 gezelter 1930 //setup fortran force field
438     /** @deprecate */
439     int isError = 0;
440     initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441     if(isError){
442     sprintf( painCave.errMsg,
443     "ForceField error: There was an error initializing the forceField in fortran.\n" );
444     painCave.isFatal = 1;
445     simError();
446     }
447 gezelter 1490
448 gezelter 1930
449     setupCutoff();
450 gezelter 1490
451 gezelter 1930 calcNdf();
452     calcNdfRaw();
453     calcNdfTrans();
454    
455     fortranInitialized_ = true;
456 gezelter 1490 }
457    
458 gezelter 1930 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
459     SimInfo::MoleculeIterator mi;
460     Molecule* mol;
461     Molecule::AtomIterator ai;
462     Atom* atom;
463     std::set<AtomType*> atomTypes;
464 gezelter 1490
465 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
466 gezelter 1490
467 gezelter 1930 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
468     atomTypes.insert(atom->getAtomType());
469     }
470    
471     }
472 gezelter 1490
473 gezelter 1930 return atomTypes;
474     }
475 gezelter 1490
476 gezelter 1930 void SimInfo::setupSimType() {
477     std::set<AtomType*>::iterator i;
478     std::set<AtomType*> atomTypes;
479     atomTypes = getUniqueAtomTypes();
480 gezelter 1490
481 gezelter 1930 int useLennardJones = 0;
482     int useElectrostatic = 0;
483     int useEAM = 0;
484     int useCharge = 0;
485     int useDirectional = 0;
486     int useDipole = 0;
487     int useGayBerne = 0;
488     int useSticky = 0;
489     int useShape = 0;
490     int useFLARB = 0; //it is not in AtomType yet
491     int useDirectionalAtom = 0;
492     int useElectrostatics = 0;
493     //usePBC and useRF are from simParams
494     int usePBC = simParams_->getPBC();
495     int useRF = simParams_->getUseRF();
496 gezelter 1490
497 gezelter 1930 //loop over all of the atom types
498     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
499     useLennardJones |= (*i)->isLennardJones();
500     useElectrostatic |= (*i)->isElectrostatic();
501     useEAM |= (*i)->isEAM();
502     useCharge |= (*i)->isCharge();
503     useDirectional |= (*i)->isDirectional();
504     useDipole |= (*i)->isDipole();
505     useGayBerne |= (*i)->isGayBerne();
506     useSticky |= (*i)->isSticky();
507     useShape |= (*i)->isShape();
508     }
509 gezelter 1490
510 gezelter 1930 if (useSticky || useDipole || useGayBerne || useShape) {
511     useDirectionalAtom = 1;
512     }
513 gezelter 1490
514 gezelter 1930 if (useCharge || useDipole) {
515     useElectrostatics = 1;
516     }
517 gezelter 1490
518 gezelter 1930 #ifdef IS_MPI
519     int temp;
520 gezelter 1490
521 gezelter 1930 temp = usePBC;
522     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
523 gezelter 1490
524 gezelter 1930 temp = useDirectionalAtom;
525     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
526 gezelter 1490
527 gezelter 1930 temp = useLennardJones;
528     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
529 gezelter 1490
530 gezelter 1930 temp = useElectrostatics;
531     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
532 gezelter 1490
533 gezelter 1930 temp = useCharge;
534     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
535 gezelter 1490
536 gezelter 1930 temp = useDipole;
537     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
538 gezelter 1490
539 gezelter 1930 temp = useSticky;
540     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
541 gezelter 1490
542 gezelter 1930 temp = useGayBerne;
543     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
544 gezelter 1490
545 gezelter 1930 temp = useEAM;
546     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
547 gezelter 1490
548 gezelter 1930 temp = useShape;
549     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
550    
551     temp = useFLARB;
552     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
553    
554     temp = useRF;
555     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
556    
557 gezelter 1490 #endif
558    
559 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
560     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
561     fInfo_.SIM_uses_LennardJones = useLennardJones;
562     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
563     fInfo_.SIM_uses_Charges = useCharge;
564     fInfo_.SIM_uses_Dipoles = useDipole;
565     fInfo_.SIM_uses_Sticky = useSticky;
566     fInfo_.SIM_uses_GayBerne = useGayBerne;
567     fInfo_.SIM_uses_EAM = useEAM;
568     fInfo_.SIM_uses_Shapes = useShape;
569     fInfo_.SIM_uses_FLARB = useFLARB;
570     fInfo_.SIM_uses_RF = useRF;
571 gezelter 1490
572 gezelter 1930 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
573 gezelter 1490
574 gezelter 1930 if (simParams_->haveDielectric()) {
575     fInfo_.dielect = simParams_->getDielectric();
576     } else {
577     sprintf(painCave.errMsg,
578     "SimSetup Error: No Dielectric constant was set.\n"
579     "\tYou are trying to use Reaction Field without"
580     "\tsetting a dielectric constant!\n");
581     painCave.isFatal = 1;
582     simError();
583     }
584    
585     } else {
586     fInfo_.dielect = 0.0;
587     }
588    
589 gezelter 1490 }
590    
591 gezelter 1930 void SimInfo::setupFortranSim() {
592     int isError;
593     int nExclude;
594     std::vector<int> fortranGlobalGroupMembership;
595    
596     nExclude = exclude_.getSize();
597     isError = 0;
598 gezelter 1490
599 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
600     for (int i = 0; i < nGlobalAtoms_; i++) {
601     fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
602     }
603 gezelter 1490
604 gezelter 1930 //calculate mass ratio of cutoff group
605     std::vector<double> mfact;
606     SimInfo::MoleculeIterator mi;
607     Molecule* mol;
608     Molecule::CutoffGroupIterator ci;
609     CutoffGroup* cg;
610     Molecule::AtomIterator ai;
611     Atom* atom;
612     double totalMass;
613    
614     //to avoid memory reallocation, reserve enough space for mfact
615     mfact.reserve(getNCutoffGroups());
616 gezelter 1490
617 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
618     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
619 gezelter 1490
620 gezelter 1930 totalMass = cg->getMass();
621     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
622     mfact.push_back(atom->getMass()/totalMass);
623     }
624 gezelter 1490
625 gezelter 1930 }
626     }
627 gezelter 1490
628 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
629     std::vector<int> identArray;
630 gezelter 1490
631 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
632     identArray.reserve(getNAtoms());
633    
634     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
635     for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
636     identArray.push_back(atom->getIdent());
637     }
638     }
639 gezelter 1490
640 gezelter 1930 //fill molMembershipArray
641     //molMembershipArray is filled by SimCreator
642     std::vector<int> molMembershipArray(nGlobalAtoms_);
643     for (int i = 0; i < nGlobalAtoms_; i++) {
644     molMembershipArray[i] = globalMolMembership_[i] + 1;
645     }
646    
647     //setup fortran simulation
648     //gloalExcludes and molMembershipArray should go away (They are never used)
649     //why the hell fortran need to know molecule?
650     //OOPSE = Object-Obfuscated Parallel Simulation Engine
651     int nGlobalExcludes = 0;
652     int* globalExcludes = NULL;
653     int* excludeList = exclude_.getExcludeList();
654     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655     &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
657 gezelter 1490
658 gezelter 1930 if( isError ){
659 gezelter 1490
660 gezelter 1930 sprintf( painCave.errMsg,
661     "There was an error setting the simulation information in fortran.\n" );
662     painCave.isFatal = 1;
663     painCave.severity = OOPSE_ERROR;
664     simError();
665     }
666    
667     #ifdef IS_MPI
668     sprintf( checkPointMsg,
669     "succesfully sent the simulation information to fortran.\n");
670     MPIcheckPoint();
671     #endif // is_mpi
672 gezelter 1490 }
673    
674    
675 gezelter 1930 #ifdef IS_MPI
676     void SimInfo::setupFortranParallel() {
677    
678     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
679     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
680     std::vector<int> localToGlobalCutoffGroupIndex;
681     SimInfo::MoleculeIterator mi;
682     Molecule::AtomIterator ai;
683     Molecule::CutoffGroupIterator ci;
684     Molecule* mol;
685     Atom* atom;
686     CutoffGroup* cg;
687     mpiSimData parallelData;
688     int isError;
689 gezelter 1490
690 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
691 gezelter 1490
692 gezelter 1930 //local index(index in DataStorge) of atom is important
693     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
694     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
695     }
696 gezelter 1490
697 gezelter 1930 //local index of cutoff group is trivial, it only depends on the order of travesing
698     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
699     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
700     }
701    
702     }
703 gezelter 1490
704 gezelter 1930 //fill up mpiSimData struct
705     parallelData.nMolGlobal = getNGlobalMolecules();
706     parallelData.nMolLocal = getNMolecules();
707     parallelData.nAtomsGlobal = getNGlobalAtoms();
708     parallelData.nAtomsLocal = getNAtoms();
709     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
710     parallelData.nGroupsLocal = getNCutoffGroups();
711     parallelData.myNode = worldRank;
712     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
713 gezelter 1490
714 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
715     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
716     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
717     &localToGlobalCutoffGroupIndex[0], &isError);
718 gezelter 1490
719 gezelter 1930 if (isError) {
720     sprintf(painCave.errMsg,
721     "mpiRefresh errror: fortran didn't like something we gave it.\n");
722     painCave.isFatal = 1;
723     simError();
724     }
725 gezelter 1490
726 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
727     MPIcheckPoint();
728 gezelter 1490
729    
730 gezelter 1930 }
731 chrisfen 1636
732 gezelter 1930 #endif
733 chrisfen 1636
734 gezelter 1930 double SimInfo::calcMaxCutoffRadius() {
735 chrisfen 1636
736    
737 gezelter 1930 std::set<AtomType*> atomTypes;
738     std::set<AtomType*>::iterator i;
739     std::vector<double> cutoffRadius;
740 gezelter 1490
741 gezelter 1930 //get the unique atom types
742     atomTypes = getUniqueAtomTypes();
743    
744     //query the max cutoff radius among these atom types
745     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746     cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
747     }
748    
749     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
750 gezelter 1490 #ifdef IS_MPI
751 gezelter 1930 //pick the max cutoff radius among the processors
752 gezelter 1490 #endif
753    
754 gezelter 1930 return maxCutoffRadius;
755     }
756    
757 tim 2010 void SimInfo::getCutoff(double& rcut, double& rsw) {
758 gezelter 1490
759 gezelter 1930 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
760    
761     if (!simParams_->haveRcut()){
762     sprintf(painCave.errMsg,
763     "SimCreator Warning: No value was set for the cutoffRadius.\n"
764     "\tOOPSE will use a default value of 15.0 angstroms"
765     "\tfor the cutoffRadius.\n");
766     painCave.isFatal = 0;
767     simError();
768 tim 2012 rcut = 15.0;
769 gezelter 1930 } else{
770 tim 2012 rcut = simParams_->getRcut();
771 gezelter 1930 }
772    
773     if (!simParams_->haveRsw()){
774     sprintf(painCave.errMsg,
775     "SimCreator Warning: No value was set for switchingRadius.\n"
776     "\tOOPSE will use a default value of\n"
777     "\t0.95 * cutoffRadius for the switchingRadius\n");
778     painCave.isFatal = 0;
779     simError();
780 tim 2012 rsw = 0.95 * rcut;
781 gezelter 1930 } else{
782 tim 2012 rsw = simParams_->getRsw();
783 gezelter 1930 }
784    
785     } else {
786     // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
787     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
788    
789     if (simParams_->haveRcut()) {
790 tim 2012 rcut = simParams_->getRcut();
791 gezelter 1930 } else {
792     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 tim 2012 rcut = calcMaxCutoffRadius();
794 gezelter 1930 }
795    
796     if (simParams_->haveRsw()) {
797 tim 2012 rsw = simParams_->getRsw();
798 gezelter 1930 } else {
799 tim 2012 rsw = rcut;
800 gezelter 1930 }
801    
802     }
803 tim 2010 }
804    
805     void SimInfo::setupCutoff() {
806     getCutoff(rcut_, rsw_);
807 gezelter 1930 double rnblist = rcut_ + 1; // skin of neighbor list
808    
809     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
810     notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
811 gezelter 1490 }
812    
813 gezelter 1930 void SimInfo::addProperty(GenericData* genData) {
814     properties_.addProperty(genData);
815 gezelter 1490 }
816    
817 gezelter 1930 void SimInfo::removeProperty(const std::string& propName) {
818     properties_.removeProperty(propName);
819     }
820 gezelter 1490
821 gezelter 1930 void SimInfo::clearProperties() {
822     properties_.clearProperties();
823 gezelter 1490 }
824    
825 gezelter 1930 std::vector<std::string> SimInfo::getPropertyNames() {
826     return properties_.getPropertyNames();
827     }
828    
829     std::vector<GenericData*> SimInfo::getProperties() {
830     return properties_.getProperties();
831     }
832 gezelter 1490
833 gezelter 1930 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
834     return properties_.getPropertyByName(propName);
835 gezelter 1490 }
836    
837 gezelter 1930 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
838     sman_ = sman;
839 gezelter 1490
840 gezelter 1930 Molecule* mol;
841     RigidBody* rb;
842     Atom* atom;
843     SimInfo::MoleculeIterator mi;
844     Molecule::RigidBodyIterator rbIter;
845     Molecule::AtomIterator atomIter;;
846    
847     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
848    
849     for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
850     atom->setSnapshotManager(sman_);
851     }
852    
853     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
854     rb->setSnapshotManager(sman_);
855     }
856     }
857 gezelter 1490
858 gezelter 1930 }
859 gezelter 1490
860 gezelter 1930 Vector3d SimInfo::getComVel(){
861     SimInfo::MoleculeIterator i;
862     Molecule* mol;
863 gezelter 1490
864 gezelter 1930 Vector3d comVel(0.0);
865     double totalMass = 0.0;
866 gezelter 1490
867 gezelter 1930
868     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
869     double mass = mol->getMass();
870     totalMass += mass;
871     comVel += mass * mol->getComVel();
872     }
873 gezelter 1490
874 gezelter 1930 #ifdef IS_MPI
875     double tmpMass = totalMass;
876     Vector3d tmpComVel(comVel);
877     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
878     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
879     #endif
880    
881     comVel /= totalMass;
882    
883     return comVel;
884 gezelter 1490 }
885    
886 gezelter 1930 Vector3d SimInfo::getCom(){
887     SimInfo::MoleculeIterator i;
888     Molecule* mol;
889 gezelter 1490
890 gezelter 1930 Vector3d com(0.0);
891     double totalMass = 0.0;
892    
893     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
894     double mass = mol->getMass();
895     totalMass += mass;
896     com += mass * mol->getCom();
897     }
898 gezelter 1490
899     #ifdef IS_MPI
900 gezelter 1930 double tmpMass = totalMass;
901     Vector3d tmpCom(com);
902     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
903     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
904 gezelter 1490 #endif
905    
906 gezelter 1930 com /= totalMass;
907 gezelter 1490
908 gezelter 1930 return com;
909 gezelter 1490
910 gezelter 1930 }
911    
912     std::ostream& operator <<(std::ostream& o, SimInfo& info) {
913    
914     return o;
915 gezelter 1490 }
916 gezelter 1930
917     }//end namespace oopse
918