ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 2220
Committed: Thu May 5 14:47:35 2005 UTC (19 years, 1 month ago) by chrisfen
File size: 28450 byte(s)
Log Message:
OOPSE setup for TAP water.  It's not parametrized, but OOPSE will now let me run it...

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 gezelter 1490
52 tim 1492 #include "brains/SimInfo.hpp"
53 gezelter 1930 #include "math/Vector3.hpp"
54     #include "primitives/Molecule.hpp"
55     #include "UseTheForce/doForces_interface.h"
56     #include "UseTheForce/notifyCutoffs_interface.h"
57     #include "utils/MemoryUtils.hpp"
58 tim 1492 #include "utils/simError.h"
59 tim 2000 #include "selection/SelectionManager.hpp"
60 gezelter 1490
61 gezelter 1930 #ifdef IS_MPI
62     #include "UseTheForce/mpiComponentPlan.h"
63     #include "UseTheForce/DarkSide/simParallel_interface.h"
64     #endif
65 gezelter 1490
66 gezelter 1930 namespace oopse {
67 gezelter 1490
68 gezelter 2204 SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69     ForceField* ff, Globals* simParams) :
70     stamps_(stamps), forceField_(ff), simParams_(simParams),
71     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
75     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
76     sman_(NULL), fortranInitialized_(false) {
77 gezelter 1490
78 gezelter 1930
79 gezelter 2204 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80     MoleculeStamp* molStamp;
81     int nMolWithSameStamp;
82     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83     int nGroups = 0; //total cutoff groups defined in meta-data file
84     CutoffGroupStamp* cgStamp;
85     RigidBodyStamp* rbStamp;
86     int nRigidAtoms = 0;
87 gezelter 1930
88 gezelter 2204 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 gezelter 1930 molStamp = i->first;
90     nMolWithSameStamp = i->second;
91    
92     addMoleculeStamp(molStamp, nMolWithSameStamp);
93 gezelter 1490
94 gezelter 1930 //calculate atoms in molecules
95     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
96 gezelter 1490
97    
98 gezelter 1930 //calculate atoms in cutoff groups
99     int nAtomsInGroups = 0;
100     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101    
102     for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 gezelter 2204 cgStamp = molStamp->getCutoffGroup(j);
104     nAtomsInGroups += cgStamp->getNMembers();
105 gezelter 1930 }
106 gezelter 1490
107 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108     nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
109 gezelter 1490
110 gezelter 1930 //calculate atoms in rigid bodies
111     int nAtomsInRigidBodies = 0;
112 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113 gezelter 1930
114     for (int j=0; j < nRigidBodiesInStamp; j++) {
115 gezelter 2204 rbStamp = molStamp->getRigidBody(j);
116     nAtomsInRigidBodies += rbStamp->getNMembers();
117 gezelter 1930 }
118 gezelter 1490
119 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
121    
122 gezelter 2204 }
123 chrisfen 1636
124 gezelter 2204 //every free atom (atom does not belong to cutoff groups) is a cutoff group
125     //therefore the total number of cutoff groups in the system is equal to
126     //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127     //file plus the number of cutoff groups defined in meta-data file
128     nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129 gezelter 1490
130 gezelter 2204 //every free atom (atom does not belong to rigid bodies) is an integrable object
131     //therefore the total number of integrable objects in the system is equal to
132     //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
133     //file plus the number of rigid bodies defined in meta-data file
134     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135 gezelter 1490
136 gezelter 2204 nGlobalMols_ = molStampIds_.size();
137 gezelter 1490
138 gezelter 1930 #ifdef IS_MPI
139 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
140 gezelter 1930 #endif
141 tim 1976
142 gezelter 2204 }
143 gezelter 1490
144 gezelter 2204 SimInfo::~SimInfo() {
145 tim 2082 std::map<int, Molecule*>::iterator i;
146     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
147 gezelter 2204 delete i->second;
148 tim 2082 }
149     molecules_.clear();
150 tim 2187
151     delete stamps_;
152 gezelter 1930 delete sman_;
153     delete simParams_;
154     delete forceField_;
155 gezelter 2204 }
156 gezelter 1490
157 gezelter 2204 int SimInfo::getNGlobalConstraints() {
158 gezelter 1930 int nGlobalConstraints;
159     #ifdef IS_MPI
160     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161     MPI_COMM_WORLD);
162     #else
163     nGlobalConstraints = nConstraints_;
164     #endif
165     return nGlobalConstraints;
166 gezelter 2204 }
167 gezelter 1490
168 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
169 gezelter 1930 MoleculeIterator i;
170 gezelter 1490
171 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
172     if (i == molecules_.end() ) {
173 gezelter 1490
174 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 gezelter 1930
176 gezelter 2204 nAtoms_ += mol->getNAtoms();
177     nBonds_ += mol->getNBonds();
178     nBends_ += mol->getNBends();
179     nTorsions_ += mol->getNTorsions();
180     nRigidBodies_ += mol->getNRigidBodies();
181     nIntegrableObjects_ += mol->getNIntegrableObjects();
182     nCutoffGroups_ += mol->getNCutoffGroups();
183     nConstraints_ += mol->getNConstraintPairs();
184 gezelter 1490
185 gezelter 2204 addExcludePairs(mol);
186 gezelter 1930
187 gezelter 2204 return true;
188 gezelter 1930 } else {
189 gezelter 2204 return false;
190 gezelter 1930 }
191 gezelter 2204 }
192 gezelter 1490
193 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
194 gezelter 1930 MoleculeIterator i;
195     i = molecules_.find(mol->getGlobalIndex());
196 gezelter 1490
197 gezelter 1930 if (i != molecules_.end() ) {
198 gezelter 1490
199 gezelter 2204 assert(mol == i->second);
200 gezelter 1930
201 gezelter 2204 nAtoms_ -= mol->getNAtoms();
202     nBonds_ -= mol->getNBonds();
203     nBends_ -= mol->getNBends();
204     nTorsions_ -= mol->getNTorsions();
205     nRigidBodies_ -= mol->getNRigidBodies();
206     nIntegrableObjects_ -= mol->getNIntegrableObjects();
207     nCutoffGroups_ -= mol->getNCutoffGroups();
208     nConstraints_ -= mol->getNConstraintPairs();
209 gezelter 1490
210 gezelter 2204 removeExcludePairs(mol);
211     molecules_.erase(mol->getGlobalIndex());
212 gezelter 1490
213 gezelter 2204 delete mol;
214 gezelter 1930
215 gezelter 2204 return true;
216 gezelter 1930 } else {
217 gezelter 2204 return false;
218 gezelter 1930 }
219    
220    
221 gezelter 2204 }
222 gezelter 1930
223    
224 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 gezelter 1930 i = molecules_.begin();
226     return i == molecules_.end() ? NULL : i->second;
227 gezelter 2204 }
228 gezelter 1930
229 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 gezelter 1930 ++i;
231     return i == molecules_.end() ? NULL : i->second;
232 gezelter 2204 }
233 gezelter 1490
234    
235 gezelter 2204 void SimInfo::calcNdf() {
236 gezelter 1930 int ndf_local;
237     MoleculeIterator i;
238     std::vector<StuntDouble*>::iterator j;
239     Molecule* mol;
240     StuntDouble* integrableObject;
241 gezelter 1490
242 gezelter 1930 ndf_local = 0;
243    
244     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246     integrableObject = mol->nextIntegrableObject(j)) {
247 gezelter 1490
248 gezelter 2204 ndf_local += 3;
249 gezelter 1490
250 gezelter 2204 if (integrableObject->isDirectional()) {
251     if (integrableObject->isLinear()) {
252     ndf_local += 2;
253     } else {
254     ndf_local += 3;
255     }
256     }
257 gezelter 1930
258 gezelter 2204 }//end for (integrableObject)
259 gezelter 1930 }// end for (mol)
260    
261     // n_constraints is local, so subtract them on each processor
262     ndf_local -= nConstraints_;
263    
264     #ifdef IS_MPI
265     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
266     #else
267     ndf_ = ndf_local;
268     #endif
269    
270     // nZconstraints_ is global, as are the 3 COM translations for the
271     // entire system:
272     ndf_ = ndf_ - 3 - nZconstraint_;
273    
274 gezelter 2204 }
275 gezelter 1490
276 gezelter 2204 void SimInfo::calcNdfRaw() {
277 gezelter 1930 int ndfRaw_local;
278 gezelter 1490
279 gezelter 1930 MoleculeIterator i;
280     std::vector<StuntDouble*>::iterator j;
281     Molecule* mol;
282     StuntDouble* integrableObject;
283    
284     // Raw degrees of freedom that we have to set
285     ndfRaw_local = 0;
286    
287     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
288 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
289     integrableObject = mol->nextIntegrableObject(j)) {
290 gezelter 1930
291 gezelter 2204 ndfRaw_local += 3;
292 gezelter 1930
293 gezelter 2204 if (integrableObject->isDirectional()) {
294     if (integrableObject->isLinear()) {
295     ndfRaw_local += 2;
296     } else {
297     ndfRaw_local += 3;
298     }
299     }
300 gezelter 1930
301 gezelter 2204 }
302 gezelter 1930 }
303    
304     #ifdef IS_MPI
305     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
306     #else
307     ndfRaw_ = ndfRaw_local;
308     #endif
309 gezelter 2204 }
310 gezelter 1490
311 gezelter 2204 void SimInfo::calcNdfTrans() {
312 gezelter 1930 int ndfTrans_local;
313 gezelter 1490
314 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
315 gezelter 1490
316    
317 gezelter 1930 #ifdef IS_MPI
318     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
319     #else
320     ndfTrans_ = ndfTrans_local;
321     #endif
322 gezelter 1490
323 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
324    
325 gezelter 2204 }
326 gezelter 1490
327 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
328 gezelter 1930 std::vector<Bond*>::iterator bondIter;
329     std::vector<Bend*>::iterator bendIter;
330     std::vector<Torsion*>::iterator torsionIter;
331     Bond* bond;
332     Bend* bend;
333     Torsion* torsion;
334     int a;
335     int b;
336     int c;
337     int d;
338    
339     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
341     b = bond->getAtomB()->getGlobalIndex();
342     exclude_.addPair(a, b);
343 gezelter 1930 }
344 gezelter 1490
345 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
346 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
347     b = bend->getAtomB()->getGlobalIndex();
348     c = bend->getAtomC()->getGlobalIndex();
349 gezelter 1490
350 gezelter 2204 exclude_.addPair(a, b);
351     exclude_.addPair(a, c);
352     exclude_.addPair(b, c);
353 gezelter 1930 }
354 gezelter 1490
355 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
356 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
357     b = torsion->getAtomB()->getGlobalIndex();
358     c = torsion->getAtomC()->getGlobalIndex();
359     d = torsion->getAtomD()->getGlobalIndex();
360 gezelter 1490
361 gezelter 2204 exclude_.addPair(a, b);
362     exclude_.addPair(a, c);
363     exclude_.addPair(a, d);
364     exclude_.addPair(b, c);
365     exclude_.addPair(b, d);
366     exclude_.addPair(c, d);
367 gezelter 1490 }
368    
369 tim 2114 Molecule::RigidBodyIterator rbIter;
370     RigidBody* rb;
371     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
372 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
373     for (int i = 0; i < atoms.size() -1 ; ++i) {
374     for (int j = i + 1; j < atoms.size(); ++j) {
375     a = atoms[i]->getGlobalIndex();
376     b = atoms[j]->getGlobalIndex();
377     exclude_.addPair(a, b);
378     }
379     }
380 tim 2114 }
381    
382 gezelter 2204 }
383 gezelter 1930
384 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
385 gezelter 1930 std::vector<Bond*>::iterator bondIter;
386     std::vector<Bend*>::iterator bendIter;
387     std::vector<Torsion*>::iterator torsionIter;
388     Bond* bond;
389     Bend* bend;
390     Torsion* torsion;
391     int a;
392     int b;
393     int c;
394     int d;
395    
396     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
397 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
398     b = bond->getAtomB()->getGlobalIndex();
399     exclude_.removePair(a, b);
400 gezelter 1490 }
401 gezelter 1930
402     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
403 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
404     b = bend->getAtomB()->getGlobalIndex();
405     c = bend->getAtomC()->getGlobalIndex();
406 gezelter 1930
407 gezelter 2204 exclude_.removePair(a, b);
408     exclude_.removePair(a, c);
409     exclude_.removePair(b, c);
410 gezelter 1490 }
411 gezelter 1930
412     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
413 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
414     b = torsion->getAtomB()->getGlobalIndex();
415     c = torsion->getAtomC()->getGlobalIndex();
416     d = torsion->getAtomD()->getGlobalIndex();
417 gezelter 1930
418 gezelter 2204 exclude_.removePair(a, b);
419     exclude_.removePair(a, c);
420     exclude_.removePair(a, d);
421     exclude_.removePair(b, c);
422     exclude_.removePair(b, d);
423     exclude_.removePair(c, d);
424 gezelter 1930 }
425    
426 tim 2114 Molecule::RigidBodyIterator rbIter;
427     RigidBody* rb;
428     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
429 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
430     for (int i = 0; i < atoms.size() -1 ; ++i) {
431     for (int j = i + 1; j < atoms.size(); ++j) {
432     a = atoms[i]->getGlobalIndex();
433     b = atoms[j]->getGlobalIndex();
434     exclude_.removePair(a, b);
435     }
436     }
437 tim 2114 }
438    
439 gezelter 2204 }
440 gezelter 1490
441    
442 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
443 gezelter 1930 int curStampId;
444 gezelter 1490
445 gezelter 1930 //index from 0
446     curStampId = moleculeStamps_.size();
447 gezelter 1490
448 gezelter 1930 moleculeStamps_.push_back(molStamp);
449     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
450 gezelter 2204 }
451 gezelter 1490
452 gezelter 2204 void SimInfo::update() {
453 gezelter 1490
454 gezelter 1930 setupSimType();
455 gezelter 1490
456 gezelter 1930 #ifdef IS_MPI
457     setupFortranParallel();
458     #endif
459 gezelter 1490
460 gezelter 1930 setupFortranSim();
461 gezelter 1490
462 gezelter 1930 //setup fortran force field
463     /** @deprecate */
464     int isError = 0;
465     initFortranFF( &fInfo_.SIM_uses_RF , &isError );
466     if(isError){
467 gezelter 2204 sprintf( painCave.errMsg,
468     "ForceField error: There was an error initializing the forceField in fortran.\n" );
469     painCave.isFatal = 1;
470     simError();
471 gezelter 1930 }
472 gezelter 1490
473 gezelter 1930
474     setupCutoff();
475 gezelter 1490
476 gezelter 1930 calcNdf();
477     calcNdfRaw();
478     calcNdfTrans();
479    
480     fortranInitialized_ = true;
481 gezelter 2204 }
482 gezelter 1490
483 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
484 gezelter 1930 SimInfo::MoleculeIterator mi;
485     Molecule* mol;
486     Molecule::AtomIterator ai;
487     Atom* atom;
488     std::set<AtomType*> atomTypes;
489 gezelter 1490
490 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
491 gezelter 1490
492 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
493     atomTypes.insert(atom->getAtomType());
494     }
495 gezelter 1930
496     }
497 gezelter 1490
498 gezelter 1930 return atomTypes;
499 gezelter 2204 }
500 gezelter 1490
501 gezelter 2204 void SimInfo::setupSimType() {
502 gezelter 1930 std::set<AtomType*>::iterator i;
503     std::set<AtomType*> atomTypes;
504     atomTypes = getUniqueAtomTypes();
505 gezelter 1490
506 gezelter 1930 int useLennardJones = 0;
507     int useElectrostatic = 0;
508     int useEAM = 0;
509     int useCharge = 0;
510     int useDirectional = 0;
511     int useDipole = 0;
512     int useGayBerne = 0;
513     int useSticky = 0;
514 chrisfen 2220 int useStickyPower = 0;
515 gezelter 1930 int useShape = 0;
516     int useFLARB = 0; //it is not in AtomType yet
517     int useDirectionalAtom = 0;
518     int useElectrostatics = 0;
519     //usePBC and useRF are from simParams
520     int usePBC = simParams_->getPBC();
521     int useRF = simParams_->getUseRF();
522 gezelter 1490
523 gezelter 1930 //loop over all of the atom types
524     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
525 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
526     useElectrostatic |= (*i)->isElectrostatic();
527     useEAM |= (*i)->isEAM();
528     useCharge |= (*i)->isCharge();
529     useDirectional |= (*i)->isDirectional();
530     useDipole |= (*i)->isDipole();
531     useGayBerne |= (*i)->isGayBerne();
532     useSticky |= (*i)->isSticky();
533 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
534 gezelter 2204 useShape |= (*i)->isShape();
535 gezelter 1930 }
536 gezelter 1490
537 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
538 gezelter 2204 useDirectionalAtom = 1;
539 gezelter 1930 }
540 gezelter 1490
541 gezelter 1930 if (useCharge || useDipole) {
542 gezelter 2204 useElectrostatics = 1;
543 gezelter 1930 }
544 gezelter 1490
545 gezelter 1930 #ifdef IS_MPI
546     int temp;
547 gezelter 1490
548 gezelter 1930 temp = usePBC;
549     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
550 gezelter 1490
551 gezelter 1930 temp = useDirectionalAtom;
552     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
553 gezelter 1490
554 gezelter 1930 temp = useLennardJones;
555     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
556 gezelter 1490
557 gezelter 1930 temp = useElectrostatics;
558     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
559 gezelter 1490
560 gezelter 1930 temp = useCharge;
561     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
562 gezelter 1490
563 gezelter 1930 temp = useDipole;
564     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
565 gezelter 1490
566 gezelter 1930 temp = useSticky;
567     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
568 gezelter 1490
569 chrisfen 2220 temp = useStickyPower;
570     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
571    
572 gezelter 1930 temp = useGayBerne;
573     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
574 gezelter 1490
575 gezelter 1930 temp = useEAM;
576     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
577 gezelter 1490
578 gezelter 1930 temp = useShape;
579     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
580    
581     temp = useFLARB;
582     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
583    
584     temp = useRF;
585     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
586    
587 gezelter 1490 #endif
588    
589 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
590     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
591     fInfo_.SIM_uses_LennardJones = useLennardJones;
592     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
593     fInfo_.SIM_uses_Charges = useCharge;
594     fInfo_.SIM_uses_Dipoles = useDipole;
595     fInfo_.SIM_uses_Sticky = useSticky;
596 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
597 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
598     fInfo_.SIM_uses_EAM = useEAM;
599     fInfo_.SIM_uses_Shapes = useShape;
600     fInfo_.SIM_uses_FLARB = useFLARB;
601     fInfo_.SIM_uses_RF = useRF;
602 gezelter 1490
603 gezelter 1930 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
604 gezelter 1490
605 gezelter 2204 if (simParams_->haveDielectric()) {
606     fInfo_.dielect = simParams_->getDielectric();
607     } else {
608     sprintf(painCave.errMsg,
609     "SimSetup Error: No Dielectric constant was set.\n"
610     "\tYou are trying to use Reaction Field without"
611     "\tsetting a dielectric constant!\n");
612     painCave.isFatal = 1;
613     simError();
614     }
615 gezelter 1930
616     } else {
617 gezelter 2204 fInfo_.dielect = 0.0;
618 gezelter 1930 }
619    
620 gezelter 2204 }
621 gezelter 1490
622 gezelter 2204 void SimInfo::setupFortranSim() {
623 gezelter 1930 int isError;
624     int nExclude;
625     std::vector<int> fortranGlobalGroupMembership;
626    
627     nExclude = exclude_.getSize();
628     isError = 0;
629 gezelter 1490
630 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
631     for (int i = 0; i < nGlobalAtoms_; i++) {
632 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
633 gezelter 1930 }
634 gezelter 1490
635 gezelter 1930 //calculate mass ratio of cutoff group
636     std::vector<double> mfact;
637     SimInfo::MoleculeIterator mi;
638     Molecule* mol;
639     Molecule::CutoffGroupIterator ci;
640     CutoffGroup* cg;
641     Molecule::AtomIterator ai;
642     Atom* atom;
643     double totalMass;
644    
645     //to avoid memory reallocation, reserve enough space for mfact
646     mfact.reserve(getNCutoffGroups());
647 gezelter 1490
648 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
649 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
650 gezelter 1490
651 gezelter 2204 totalMass = cg->getMass();
652     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
653     mfact.push_back(atom->getMass()/totalMass);
654     }
655 gezelter 1490
656 gezelter 2204 }
657 gezelter 1930 }
658 gezelter 1490
659 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
660     std::vector<int> identArray;
661 gezelter 1490
662 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
663     identArray.reserve(getNAtoms());
664    
665     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
666 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
667     identArray.push_back(atom->getIdent());
668     }
669 gezelter 1930 }
670 gezelter 1490
671 gezelter 1930 //fill molMembershipArray
672     //molMembershipArray is filled by SimCreator
673     std::vector<int> molMembershipArray(nGlobalAtoms_);
674     for (int i = 0; i < nGlobalAtoms_; i++) {
675 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
676 gezelter 1930 }
677    
678     //setup fortran simulation
679     int nGlobalExcludes = 0;
680     int* globalExcludes = NULL;
681     int* excludeList = exclude_.getExcludeList();
682     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
683 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
684     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
685 gezelter 1490
686 gezelter 1930 if( isError ){
687 gezelter 1490
688 gezelter 2204 sprintf( painCave.errMsg,
689     "There was an error setting the simulation information in fortran.\n" );
690     painCave.isFatal = 1;
691     painCave.severity = OOPSE_ERROR;
692     simError();
693 gezelter 1930 }
694    
695     #ifdef IS_MPI
696     sprintf( checkPointMsg,
697 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
698 gezelter 1930 MPIcheckPoint();
699     #endif // is_mpi
700 gezelter 2204 }
701 gezelter 1490
702    
703 gezelter 1930 #ifdef IS_MPI
704 gezelter 2204 void SimInfo::setupFortranParallel() {
705 gezelter 1930
706     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
707     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
708     std::vector<int> localToGlobalCutoffGroupIndex;
709     SimInfo::MoleculeIterator mi;
710     Molecule::AtomIterator ai;
711     Molecule::CutoffGroupIterator ci;
712     Molecule* mol;
713     Atom* atom;
714     CutoffGroup* cg;
715     mpiSimData parallelData;
716     int isError;
717 gezelter 1490
718 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
719 gezelter 1490
720 gezelter 2204 //local index(index in DataStorge) of atom is important
721     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
722     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
723     }
724 gezelter 1490
725 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
726     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
727     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
728     }
729 gezelter 1930
730     }
731 gezelter 1490
732 gezelter 1930 //fill up mpiSimData struct
733     parallelData.nMolGlobal = getNGlobalMolecules();
734     parallelData.nMolLocal = getNMolecules();
735     parallelData.nAtomsGlobal = getNGlobalAtoms();
736     parallelData.nAtomsLocal = getNAtoms();
737     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
738     parallelData.nGroupsLocal = getNCutoffGroups();
739     parallelData.myNode = worldRank;
740     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
741 gezelter 1490
742 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
743     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
744     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
745     &localToGlobalCutoffGroupIndex[0], &isError);
746 gezelter 1490
747 gezelter 1930 if (isError) {
748 gezelter 2204 sprintf(painCave.errMsg,
749     "mpiRefresh errror: fortran didn't like something we gave it.\n");
750     painCave.isFatal = 1;
751     simError();
752 gezelter 1930 }
753 gezelter 1490
754 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
755     MPIcheckPoint();
756 gezelter 1490
757    
758 gezelter 2204 }
759 chrisfen 1636
760 gezelter 1930 #endif
761 chrisfen 1636
762 gezelter 2204 double SimInfo::calcMaxCutoffRadius() {
763 chrisfen 1636
764    
765 gezelter 1930 std::set<AtomType*> atomTypes;
766     std::set<AtomType*>::iterator i;
767     std::vector<double> cutoffRadius;
768 gezelter 1490
769 gezelter 1930 //get the unique atom types
770     atomTypes = getUniqueAtomTypes();
771    
772     //query the max cutoff radius among these atom types
773     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
774 gezelter 2204 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
775 gezelter 1930 }
776    
777     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
778 gezelter 1490 #ifdef IS_MPI
779 gezelter 1930 //pick the max cutoff radius among the processors
780 gezelter 1490 #endif
781    
782 gezelter 1930 return maxCutoffRadius;
783 gezelter 2204 }
784 gezelter 1930
785 gezelter 2204 void SimInfo::getCutoff(double& rcut, double& rsw) {
786 gezelter 1490
787 gezelter 1930 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
788    
789 gezelter 2204 if (!simParams_->haveRcut()){
790     sprintf(painCave.errMsg,
791 gezelter 1930 "SimCreator Warning: No value was set for the cutoffRadius.\n"
792     "\tOOPSE will use a default value of 15.0 angstroms"
793     "\tfor the cutoffRadius.\n");
794 gezelter 2204 painCave.isFatal = 0;
795     simError();
796     rcut = 15.0;
797     } else{
798     rcut = simParams_->getRcut();
799     }
800 gezelter 1930
801 gezelter 2204 if (!simParams_->haveRsw()){
802     sprintf(painCave.errMsg,
803 gezelter 1930 "SimCreator Warning: No value was set for switchingRadius.\n"
804     "\tOOPSE will use a default value of\n"
805     "\t0.95 * cutoffRadius for the switchingRadius\n");
806 gezelter 2204 painCave.isFatal = 0;
807     simError();
808     rsw = 0.95 * rcut;
809     } else{
810     rsw = simParams_->getRsw();
811     }
812 gezelter 1930
813     } else {
814 gezelter 2204 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
815     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
816 gezelter 1930
817 gezelter 2204 if (simParams_->haveRcut()) {
818     rcut = simParams_->getRcut();
819     } else {
820     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
821     rcut = calcMaxCutoffRadius();
822     }
823 gezelter 1930
824 gezelter 2204 if (simParams_->haveRsw()) {
825     rsw = simParams_->getRsw();
826     } else {
827     rsw = rcut;
828     }
829 gezelter 1930
830     }
831 gezelter 2204 }
832 tim 2010
833 gezelter 2204 void SimInfo::setupCutoff() {
834 tim 2010 getCutoff(rcut_, rsw_);
835 gezelter 1930 double rnblist = rcut_ + 1; // skin of neighbor list
836    
837     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
838     notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
839 gezelter 2204 }
840 gezelter 1490
841 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
842 gezelter 1930 properties_.addProperty(genData);
843 gezelter 2204 }
844 gezelter 1490
845 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
846 gezelter 1930 properties_.removeProperty(propName);
847 gezelter 2204 }
848 gezelter 1490
849 gezelter 2204 void SimInfo::clearProperties() {
850 gezelter 1930 properties_.clearProperties();
851 gezelter 2204 }
852 gezelter 1490
853 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
854 gezelter 1930 return properties_.getPropertyNames();
855 gezelter 2204 }
856 gezelter 1930
857 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
858 gezelter 1930 return properties_.getProperties();
859 gezelter 2204 }
860 gezelter 1490
861 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
862 gezelter 1930 return properties_.getPropertyByName(propName);
863 gezelter 2204 }
864 gezelter 1490
865 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
866 tim 2116 if (sman_ == sman) {
867 gezelter 2204 return;
868 tim 2116 }
869     delete sman_;
870 gezelter 1930 sman_ = sman;
871 gezelter 1490
872 gezelter 1930 Molecule* mol;
873     RigidBody* rb;
874     Atom* atom;
875     SimInfo::MoleculeIterator mi;
876     Molecule::RigidBodyIterator rbIter;
877     Molecule::AtomIterator atomIter;;
878    
879     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
880    
881 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
882     atom->setSnapshotManager(sman_);
883     }
884 gezelter 1930
885 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
886     rb->setSnapshotManager(sman_);
887     }
888 gezelter 1930 }
889 gezelter 1490
890 gezelter 2204 }
891 gezelter 1490
892 gezelter 2204 Vector3d SimInfo::getComVel(){
893 gezelter 1930 SimInfo::MoleculeIterator i;
894     Molecule* mol;
895 gezelter 1490
896 gezelter 1930 Vector3d comVel(0.0);
897     double totalMass = 0.0;
898 gezelter 1490
899 gezelter 1930
900     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
901 gezelter 2204 double mass = mol->getMass();
902     totalMass += mass;
903     comVel += mass * mol->getComVel();
904 gezelter 1930 }
905 gezelter 1490
906 gezelter 1930 #ifdef IS_MPI
907     double tmpMass = totalMass;
908     Vector3d tmpComVel(comVel);
909     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
910     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
911     #endif
912    
913     comVel /= totalMass;
914    
915     return comVel;
916 gezelter 2204 }
917 gezelter 1490
918 gezelter 2204 Vector3d SimInfo::getCom(){
919 gezelter 1930 SimInfo::MoleculeIterator i;
920     Molecule* mol;
921 gezelter 1490
922 gezelter 1930 Vector3d com(0.0);
923     double totalMass = 0.0;
924    
925     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
926 gezelter 2204 double mass = mol->getMass();
927     totalMass += mass;
928     com += mass * mol->getCom();
929 gezelter 1930 }
930 gezelter 1490
931     #ifdef IS_MPI
932 gezelter 1930 double tmpMass = totalMass;
933     Vector3d tmpCom(com);
934     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
935     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
936 gezelter 1490 #endif
937    
938 gezelter 1930 com /= totalMass;
939 gezelter 1490
940 gezelter 1930 return com;
941 gezelter 1490
942 gezelter 2204 }
943 gezelter 1930
944 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
945 gezelter 1930
946     return o;
947 gezelter 2204 }
948 gezelter 1930
949     }//end namespace oopse
950