ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 2578
Committed: Wed Feb 1 20:54:46 2006 UTC (18 years, 7 months ago) by chrisfen
File size: 44178 byte(s)
Log Message:
Changes to cutoff radius setting to a more logical procedure - still may change...

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 tim 2448 #include <map>
52 gezelter 1490
53 tim 1492 #include "brains/SimInfo.hpp"
54 gezelter 1930 #include "math/Vector3.hpp"
55     #include "primitives/Molecule.hpp"
56 gezelter 2285 #include "UseTheForce/fCutoffPolicy.h"
57 chrisfen 2305 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 chrisfen 2415 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 chrisfen 2425 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 gezelter 1930 #include "UseTheForce/doForces_interface.h"
61 chrisfen 2309 #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 chrisfen 2425 #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 gezelter 1930 #include "utils/MemoryUtils.hpp"
64 tim 1492 #include "utils/simError.h"
65 tim 2000 #include "selection/SelectionManager.hpp"
66 chuckv 2533 #include "io/ForceFieldOptions.hpp"
67     #include "UseTheForce/ForceField.hpp"
68 gezelter 1490
69 gezelter 1930 #ifdef IS_MPI
70     #include "UseTheForce/mpiComponentPlan.h"
71     #include "UseTheForce/DarkSide/simParallel_interface.h"
72     #endif
73 gezelter 1490
74 gezelter 1930 namespace oopse {
75 tim 2448 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76     std::map<int, std::set<int> >::iterator i = container.find(index);
77     std::set<int> result;
78     if (i != container.end()) {
79     result = i->second;
80     }
81 gezelter 1490
82 tim 2448 return result;
83     }
84    
85 tim 2469 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86     forceField_(ff), simParams_(simParams),
87 gezelter 2204 ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
91     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
92     sman_(NULL), fortranInitialized_(false) {
93 gezelter 1490
94 gezelter 2204 MoleculeStamp* molStamp;
95     int nMolWithSameStamp;
96     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 chrisfen 2344 int nGroups = 0; //total cutoff groups defined in meta-data file
98 gezelter 2204 CutoffGroupStamp* cgStamp;
99     RigidBodyStamp* rbStamp;
100     int nRigidAtoms = 0;
101 tim 2469 std::vector<Component*> components = simParams->getComponents();
102    
103     for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104     molStamp = (*i)->getMoleculeStamp();
105     nMolWithSameStamp = (*i)->getNMol();
106 gezelter 1930
107     addMoleculeStamp(molStamp, nMolWithSameStamp);
108 gezelter 1490
109 gezelter 1930 //calculate atoms in molecules
110     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
111 gezelter 1490
112 gezelter 1930 //calculate atoms in cutoff groups
113     int nAtomsInGroups = 0;
114     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115    
116     for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 tim 2469 cgStamp = molStamp->getCutoffGroupStamp(j);
118 gezelter 2204 nAtomsInGroups += cgStamp->getNMembers();
119 gezelter 1930 }
120 gezelter 1490
121 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 chrisfen 2344
123 gezelter 1930 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
124 gezelter 1490
125 gezelter 1930 //calculate atoms in rigid bodies
126     int nAtomsInRigidBodies = 0;
127 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 gezelter 1930
129     for (int j=0; j < nRigidBodiesInStamp; j++) {
130 tim 2469 rbStamp = molStamp->getRigidBodyStamp(j);
131 gezelter 2204 nAtomsInRigidBodies += rbStamp->getNMembers();
132 gezelter 1930 }
133 gezelter 1490
134 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
136    
137 gezelter 2204 }
138 chrisfen 1636
139 chrisfen 2344 //every free atom (atom does not belong to cutoff groups) is a cutoff
140     //group therefore the total number of cutoff groups in the system is
141     //equal to the total number of atoms minus number of atoms belong to
142     //cutoff group defined in meta-data file plus the number of cutoff
143     //groups defined in meta-data file
144 gezelter 2204 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145 gezelter 1490
146 chrisfen 2344 //every free atom (atom does not belong to rigid bodies) is an
147     //integrable object therefore the total number of integrable objects
148     //in the system is equal to the total number of atoms minus number of
149     //atoms belong to rigid body defined in meta-data file plus the number
150     //of rigid bodies defined in meta-data file
151     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
152     + nGlobalRigidBodies_;
153    
154 gezelter 2204 nGlobalMols_ = molStampIds_.size();
155 gezelter 1490
156 gezelter 1930 #ifdef IS_MPI
157 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
158 gezelter 1930 #endif
159 tim 1976
160 gezelter 2204 }
161 gezelter 1490
162 gezelter 2204 SimInfo::~SimInfo() {
163 tim 2082 std::map<int, Molecule*>::iterator i;
164     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 gezelter 2204 delete i->second;
166 tim 2082 }
167     molecules_.clear();
168 tim 2187
169 gezelter 1930 delete sman_;
170     delete simParams_;
171     delete forceField_;
172 gezelter 2204 }
173 gezelter 1490
174 gezelter 2204 int SimInfo::getNGlobalConstraints() {
175 gezelter 1930 int nGlobalConstraints;
176     #ifdef IS_MPI
177     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178     MPI_COMM_WORLD);
179     #else
180     nGlobalConstraints = nConstraints_;
181     #endif
182     return nGlobalConstraints;
183 gezelter 2204 }
184 gezelter 1490
185 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
186 gezelter 1930 MoleculeIterator i;
187 gezelter 1490
188 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
189     if (i == molecules_.end() ) {
190 gezelter 1490
191 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192 gezelter 1930
193 gezelter 2204 nAtoms_ += mol->getNAtoms();
194     nBonds_ += mol->getNBonds();
195     nBends_ += mol->getNBends();
196     nTorsions_ += mol->getNTorsions();
197     nRigidBodies_ += mol->getNRigidBodies();
198     nIntegrableObjects_ += mol->getNIntegrableObjects();
199     nCutoffGroups_ += mol->getNCutoffGroups();
200     nConstraints_ += mol->getNConstraintPairs();
201 gezelter 1490
202 gezelter 2204 addExcludePairs(mol);
203 gezelter 1930
204 gezelter 2204 return true;
205 gezelter 1930 } else {
206 gezelter 2204 return false;
207 gezelter 1930 }
208 gezelter 2204 }
209 gezelter 1490
210 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
211 gezelter 1930 MoleculeIterator i;
212     i = molecules_.find(mol->getGlobalIndex());
213 gezelter 1490
214 gezelter 1930 if (i != molecules_.end() ) {
215 gezelter 1490
216 gezelter 2204 assert(mol == i->second);
217 gezelter 1930
218 gezelter 2204 nAtoms_ -= mol->getNAtoms();
219     nBonds_ -= mol->getNBonds();
220     nBends_ -= mol->getNBends();
221     nTorsions_ -= mol->getNTorsions();
222     nRigidBodies_ -= mol->getNRigidBodies();
223     nIntegrableObjects_ -= mol->getNIntegrableObjects();
224     nCutoffGroups_ -= mol->getNCutoffGroups();
225     nConstraints_ -= mol->getNConstraintPairs();
226 gezelter 1490
227 gezelter 2204 removeExcludePairs(mol);
228     molecules_.erase(mol->getGlobalIndex());
229 gezelter 1490
230 gezelter 2204 delete mol;
231 gezelter 1930
232 gezelter 2204 return true;
233 gezelter 1930 } else {
234 gezelter 2204 return false;
235 gezelter 1930 }
236    
237    
238 gezelter 2204 }
239 gezelter 1930
240    
241 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242 gezelter 1930 i = molecules_.begin();
243     return i == molecules_.end() ? NULL : i->second;
244 gezelter 2204 }
245 gezelter 1930
246 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247 gezelter 1930 ++i;
248     return i == molecules_.end() ? NULL : i->second;
249 gezelter 2204 }
250 gezelter 1490
251    
252 gezelter 2204 void SimInfo::calcNdf() {
253 gezelter 1930 int ndf_local;
254     MoleculeIterator i;
255     std::vector<StuntDouble*>::iterator j;
256     Molecule* mol;
257     StuntDouble* integrableObject;
258 gezelter 1490
259 gezelter 1930 ndf_local = 0;
260    
261     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263     integrableObject = mol->nextIntegrableObject(j)) {
264 gezelter 1490
265 gezelter 2204 ndf_local += 3;
266 gezelter 1490
267 gezelter 2204 if (integrableObject->isDirectional()) {
268     if (integrableObject->isLinear()) {
269     ndf_local += 2;
270     } else {
271     ndf_local += 3;
272     }
273     }
274 gezelter 1930
275 tim 2469 }
276     }
277 gezelter 1930
278     // n_constraints is local, so subtract them on each processor
279     ndf_local -= nConstraints_;
280    
281     #ifdef IS_MPI
282     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
283     #else
284     ndf_ = ndf_local;
285     #endif
286    
287     // nZconstraints_ is global, as are the 3 COM translations for the
288     // entire system:
289     ndf_ = ndf_ - 3 - nZconstraint_;
290    
291 gezelter 2204 }
292 gezelter 1490
293 gezelter 2204 void SimInfo::calcNdfRaw() {
294 gezelter 1930 int ndfRaw_local;
295 gezelter 1490
296 gezelter 1930 MoleculeIterator i;
297     std::vector<StuntDouble*>::iterator j;
298     Molecule* mol;
299     StuntDouble* integrableObject;
300    
301     // Raw degrees of freedom that we have to set
302     ndfRaw_local = 0;
303    
304     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
305 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
306     integrableObject = mol->nextIntegrableObject(j)) {
307 gezelter 1930
308 gezelter 2204 ndfRaw_local += 3;
309 gezelter 1930
310 gezelter 2204 if (integrableObject->isDirectional()) {
311     if (integrableObject->isLinear()) {
312     ndfRaw_local += 2;
313     } else {
314     ndfRaw_local += 3;
315     }
316     }
317 gezelter 1930
318 gezelter 2204 }
319 gezelter 1930 }
320    
321     #ifdef IS_MPI
322     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
323     #else
324     ndfRaw_ = ndfRaw_local;
325     #endif
326 gezelter 2204 }
327 gezelter 1490
328 gezelter 2204 void SimInfo::calcNdfTrans() {
329 gezelter 1930 int ndfTrans_local;
330 gezelter 1490
331 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
332 gezelter 1490
333    
334 gezelter 1930 #ifdef IS_MPI
335     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336     #else
337     ndfTrans_ = ndfTrans_local;
338     #endif
339 gezelter 1490
340 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
341    
342 gezelter 2204 }
343 gezelter 1490
344 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
345 gezelter 1930 std::vector<Bond*>::iterator bondIter;
346     std::vector<Bend*>::iterator bendIter;
347     std::vector<Torsion*>::iterator torsionIter;
348     Bond* bond;
349     Bend* bend;
350     Torsion* torsion;
351     int a;
352     int b;
353     int c;
354     int d;
355 tim 2448
356     std::map<int, std::set<int> > atomGroups;
357    
358     Molecule::RigidBodyIterator rbIter;
359     RigidBody* rb;
360     Molecule::IntegrableObjectIterator ii;
361     StuntDouble* integrableObject;
362 gezelter 1930
363 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
364     integrableObject = mol->nextIntegrableObject(ii)) {
365    
366     if (integrableObject->isRigidBody()) {
367     rb = static_cast<RigidBody*>(integrableObject);
368     std::vector<Atom*> atoms = rb->getAtoms();
369     std::set<int> rigidAtoms;
370     for (int i = 0; i < atoms.size(); ++i) {
371     rigidAtoms.insert(atoms[i]->getGlobalIndex());
372     }
373     for (int i = 0; i < atoms.size(); ++i) {
374     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
375     }
376     } else {
377     std::set<int> oneAtomSet;
378     oneAtomSet.insert(integrableObject->getGlobalIndex());
379     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
380     }
381     }
382    
383    
384    
385 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
386 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
387     b = bond->getAtomB()->getGlobalIndex();
388     exclude_.addPair(a, b);
389 gezelter 1930 }
390 gezelter 1490
391 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
392 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
393     b = bend->getAtomB()->getGlobalIndex();
394     c = bend->getAtomC()->getGlobalIndex();
395 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
396     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
397     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
398 gezelter 1490
399 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
400     exclude_.addPairs(rigidSetA, rigidSetC);
401     exclude_.addPairs(rigidSetB, rigidSetC);
402    
403     //exclude_.addPair(a, b);
404     //exclude_.addPair(a, c);
405     //exclude_.addPair(b, c);
406 gezelter 1930 }
407 gezelter 1490
408 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
409 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
410     b = torsion->getAtomB()->getGlobalIndex();
411     c = torsion->getAtomC()->getGlobalIndex();
412     d = torsion->getAtomD()->getGlobalIndex();
413 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
414     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
415     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
416     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
417 gezelter 1490
418 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
419     exclude_.addPairs(rigidSetA, rigidSetC);
420     exclude_.addPairs(rigidSetA, rigidSetD);
421     exclude_.addPairs(rigidSetB, rigidSetC);
422     exclude_.addPairs(rigidSetB, rigidSetD);
423     exclude_.addPairs(rigidSetC, rigidSetD);
424    
425     /*
426     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
427     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
428     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
429     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
430     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
431     exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
432    
433    
434 gezelter 2204 exclude_.addPair(a, b);
435     exclude_.addPair(a, c);
436     exclude_.addPair(a, d);
437     exclude_.addPair(b, c);
438     exclude_.addPair(b, d);
439     exclude_.addPair(c, d);
440 tim 2448 */
441 gezelter 1490 }
442    
443 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
444 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
445     for (int i = 0; i < atoms.size() -1 ; ++i) {
446     for (int j = i + 1; j < atoms.size(); ++j) {
447     a = atoms[i]->getGlobalIndex();
448     b = atoms[j]->getGlobalIndex();
449     exclude_.addPair(a, b);
450     }
451     }
452 tim 2114 }
453    
454 gezelter 2204 }
455 gezelter 1930
456 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
457 gezelter 1930 std::vector<Bond*>::iterator bondIter;
458     std::vector<Bend*>::iterator bendIter;
459     std::vector<Torsion*>::iterator torsionIter;
460     Bond* bond;
461     Bend* bend;
462     Torsion* torsion;
463     int a;
464     int b;
465     int c;
466     int d;
467 tim 2448
468     std::map<int, std::set<int> > atomGroups;
469    
470     Molecule::RigidBodyIterator rbIter;
471     RigidBody* rb;
472     Molecule::IntegrableObjectIterator ii;
473     StuntDouble* integrableObject;
474 gezelter 1930
475 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
476     integrableObject = mol->nextIntegrableObject(ii)) {
477    
478     if (integrableObject->isRigidBody()) {
479     rb = static_cast<RigidBody*>(integrableObject);
480     std::vector<Atom*> atoms = rb->getAtoms();
481     std::set<int> rigidAtoms;
482     for (int i = 0; i < atoms.size(); ++i) {
483     rigidAtoms.insert(atoms[i]->getGlobalIndex());
484     }
485     for (int i = 0; i < atoms.size(); ++i) {
486     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
487     }
488     } else {
489     std::set<int> oneAtomSet;
490     oneAtomSet.insert(integrableObject->getGlobalIndex());
491     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
492     }
493     }
494    
495    
496 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
497 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
498     b = bond->getAtomB()->getGlobalIndex();
499     exclude_.removePair(a, b);
500 gezelter 1490 }
501 gezelter 1930
502     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
503 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
504     b = bend->getAtomB()->getGlobalIndex();
505     c = bend->getAtomC()->getGlobalIndex();
506 gezelter 1930
507 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
508     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
509     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
510    
511     exclude_.removePairs(rigidSetA, rigidSetB);
512     exclude_.removePairs(rigidSetA, rigidSetC);
513     exclude_.removePairs(rigidSetB, rigidSetC);
514    
515     //exclude_.removePair(a, b);
516     //exclude_.removePair(a, c);
517     //exclude_.removePair(b, c);
518 gezelter 1490 }
519 gezelter 1930
520     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
521 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
522     b = torsion->getAtomB()->getGlobalIndex();
523     c = torsion->getAtomC()->getGlobalIndex();
524     d = torsion->getAtomD()->getGlobalIndex();
525 gezelter 1930
526 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
527     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
528     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
529     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
530    
531     exclude_.removePairs(rigidSetA, rigidSetB);
532     exclude_.removePairs(rigidSetA, rigidSetC);
533     exclude_.removePairs(rigidSetA, rigidSetD);
534     exclude_.removePairs(rigidSetB, rigidSetC);
535     exclude_.removePairs(rigidSetB, rigidSetD);
536     exclude_.removePairs(rigidSetC, rigidSetD);
537    
538     /*
539     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
540     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
541     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
542     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
543     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
544     exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
545    
546    
547 gezelter 2204 exclude_.removePair(a, b);
548     exclude_.removePair(a, c);
549     exclude_.removePair(a, d);
550     exclude_.removePair(b, c);
551     exclude_.removePair(b, d);
552     exclude_.removePair(c, d);
553 tim 2448 */
554 gezelter 1930 }
555    
556 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
557 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
558     for (int i = 0; i < atoms.size() -1 ; ++i) {
559     for (int j = i + 1; j < atoms.size(); ++j) {
560     a = atoms[i]->getGlobalIndex();
561     b = atoms[j]->getGlobalIndex();
562     exclude_.removePair(a, b);
563     }
564     }
565 tim 2114 }
566    
567 gezelter 2204 }
568 gezelter 1490
569    
570 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
571 gezelter 1930 int curStampId;
572 gezelter 1490
573 gezelter 1930 //index from 0
574     curStampId = moleculeStamps_.size();
575 gezelter 1490
576 gezelter 1930 moleculeStamps_.push_back(molStamp);
577     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
578 gezelter 2204 }
579 gezelter 1490
580 gezelter 2204 void SimInfo::update() {
581 gezelter 1490
582 gezelter 1930 setupSimType();
583 gezelter 1490
584 gezelter 1930 #ifdef IS_MPI
585     setupFortranParallel();
586     #endif
587 gezelter 1490
588 gezelter 1930 setupFortranSim();
589 gezelter 1490
590 gezelter 1930 //setup fortran force field
591     /** @deprecate */
592     int isError = 0;
593 chrisfen 2297
594 chrisfen 2302 setupElectrostaticSummationMethod( isError );
595 chrisfen 2425 setupSwitchingFunction();
596 chrisfen 2297
597 gezelter 1930 if(isError){
598 gezelter 2204 sprintf( painCave.errMsg,
599     "ForceField error: There was an error initializing the forceField in fortran.\n" );
600     painCave.isFatal = 1;
601     simError();
602 gezelter 1930 }
603 gezelter 1490
604 gezelter 1930
605     setupCutoff();
606 gezelter 1490
607 gezelter 1930 calcNdf();
608     calcNdfRaw();
609     calcNdfTrans();
610    
611     fortranInitialized_ = true;
612 gezelter 2204 }
613 gezelter 1490
614 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
615 gezelter 1930 SimInfo::MoleculeIterator mi;
616     Molecule* mol;
617     Molecule::AtomIterator ai;
618     Atom* atom;
619     std::set<AtomType*> atomTypes;
620 gezelter 1490
621 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
622 gezelter 1490
623 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
624     atomTypes.insert(atom->getAtomType());
625     }
626 gezelter 1930
627     }
628 gezelter 1490
629 gezelter 1930 return atomTypes;
630 gezelter 2204 }
631 gezelter 1490
632 gezelter 2204 void SimInfo::setupSimType() {
633 gezelter 1930 std::set<AtomType*>::iterator i;
634     std::set<AtomType*> atomTypes;
635     atomTypes = getUniqueAtomTypes();
636 gezelter 1490
637 gezelter 1930 int useLennardJones = 0;
638     int useElectrostatic = 0;
639     int useEAM = 0;
640 chuckv 2433 int useSC = 0;
641 gezelter 1930 int useCharge = 0;
642     int useDirectional = 0;
643     int useDipole = 0;
644     int useGayBerne = 0;
645     int useSticky = 0;
646 chrisfen 2220 int useStickyPower = 0;
647 gezelter 1930 int useShape = 0;
648     int useFLARB = 0; //it is not in AtomType yet
649     int useDirectionalAtom = 0;
650     int useElectrostatics = 0;
651     //usePBC and useRF are from simParams
652 tim 2364 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
653 chrisfen 2310 int useRF;
654 chrisfen 2419 int useSF;
655 tim 2364 std::string myMethod;
656 gezelter 1490
657 chrisfen 2310 // set the useRF logical
658 tim 2364 useRF = 0;
659 chrisfen 2419 useSF = 0;
660 chrisfen 2390
661    
662 tim 2364 if (simParams_->haveElectrostaticSummationMethod()) {
663 chrisfen 2390 std::string myMethod = simParams_->getElectrostaticSummationMethod();
664     toUpper(myMethod);
665     if (myMethod == "REACTION_FIELD") {
666     useRF=1;
667 chrisfen 2404 } else {
668 chrisfen 2419 if (myMethod == "SHIFTED_FORCE") {
669     useSF = 1;
670 chrisfen 2404 }
671 chrisfen 2390 }
672 tim 2364 }
673 chrisfen 2310
674 gezelter 1930 //loop over all of the atom types
675     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
676 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
677     useElectrostatic |= (*i)->isElectrostatic();
678     useEAM |= (*i)->isEAM();
679 chuckv 2433 useSC |= (*i)->isSC();
680 gezelter 2204 useCharge |= (*i)->isCharge();
681     useDirectional |= (*i)->isDirectional();
682     useDipole |= (*i)->isDipole();
683     useGayBerne |= (*i)->isGayBerne();
684     useSticky |= (*i)->isSticky();
685 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
686 gezelter 2204 useShape |= (*i)->isShape();
687 gezelter 1930 }
688 gezelter 1490
689 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
690 gezelter 2204 useDirectionalAtom = 1;
691 gezelter 1930 }
692 gezelter 1490
693 gezelter 1930 if (useCharge || useDipole) {
694 gezelter 2204 useElectrostatics = 1;
695 gezelter 1930 }
696 gezelter 1490
697 gezelter 1930 #ifdef IS_MPI
698     int temp;
699 gezelter 1490
700 gezelter 1930 temp = usePBC;
701     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
702 gezelter 1490
703 gezelter 1930 temp = useDirectionalAtom;
704     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
705 gezelter 1490
706 gezelter 1930 temp = useLennardJones;
707     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
708 gezelter 1490
709 gezelter 1930 temp = useElectrostatics;
710     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
711 gezelter 1490
712 gezelter 1930 temp = useCharge;
713     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
714 gezelter 1490
715 gezelter 1930 temp = useDipole;
716     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
717 gezelter 1490
718 gezelter 1930 temp = useSticky;
719     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
720 gezelter 1490
721 chrisfen 2220 temp = useStickyPower;
722     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
723    
724 gezelter 1930 temp = useGayBerne;
725     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
726 gezelter 1490
727 gezelter 1930 temp = useEAM;
728     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
729 gezelter 1490
730 chuckv 2433 temp = useSC;
731     MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
732    
733 gezelter 1930 temp = useShape;
734     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
735    
736     temp = useFLARB;
737     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
738    
739 chrisfen 2310 temp = useRF;
740     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
741    
742 chrisfen 2419 temp = useSF;
743     MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
744 chrisfen 2404
745 gezelter 1490 #endif
746    
747 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
748     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
749     fInfo_.SIM_uses_LennardJones = useLennardJones;
750     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
751     fInfo_.SIM_uses_Charges = useCharge;
752     fInfo_.SIM_uses_Dipoles = useDipole;
753     fInfo_.SIM_uses_Sticky = useSticky;
754 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
755 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
756     fInfo_.SIM_uses_EAM = useEAM;
757 chuckv 2433 fInfo_.SIM_uses_SC = useSC;
758 gezelter 1930 fInfo_.SIM_uses_Shapes = useShape;
759     fInfo_.SIM_uses_FLARB = useFLARB;
760 chrisfen 2310 fInfo_.SIM_uses_RF = useRF;
761 chrisfen 2419 fInfo_.SIM_uses_SF = useSF;
762 gezelter 1490
763 chrisfen 2390 if( myMethod == "REACTION_FIELD") {
764    
765 gezelter 2204 if (simParams_->haveDielectric()) {
766     fInfo_.dielect = simParams_->getDielectric();
767     } else {
768     sprintf(painCave.errMsg,
769     "SimSetup Error: No Dielectric constant was set.\n"
770     "\tYou are trying to use Reaction Field without"
771     "\tsetting a dielectric constant!\n");
772     painCave.isFatal = 1;
773     simError();
774 chrisfen 2390 }
775 gezelter 1930 }
776 chrisfen 2404
777 gezelter 2204 }
778 gezelter 1490
779 gezelter 2204 void SimInfo::setupFortranSim() {
780 gezelter 1930 int isError;
781     int nExclude;
782     std::vector<int> fortranGlobalGroupMembership;
783    
784     nExclude = exclude_.getSize();
785     isError = 0;
786 gezelter 1490
787 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
788     for (int i = 0; i < nGlobalAtoms_; i++) {
789 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
790 gezelter 1930 }
791 gezelter 1490
792 gezelter 1930 //calculate mass ratio of cutoff group
793     std::vector<double> mfact;
794     SimInfo::MoleculeIterator mi;
795     Molecule* mol;
796     Molecule::CutoffGroupIterator ci;
797     CutoffGroup* cg;
798     Molecule::AtomIterator ai;
799     Atom* atom;
800     double totalMass;
801    
802     //to avoid memory reallocation, reserve enough space for mfact
803     mfact.reserve(getNCutoffGroups());
804 gezelter 1490
805 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
806 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
807 gezelter 1490
808 gezelter 2204 totalMass = cg->getMass();
809     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
810 chrisfen 2344 // Check for massless groups - set mfact to 1 if true
811     if (totalMass != 0)
812     mfact.push_back(atom->getMass()/totalMass);
813     else
814     mfact.push_back( 1.0 );
815 gezelter 2204 }
816 gezelter 1490
817 gezelter 2204 }
818 gezelter 1930 }
819 gezelter 1490
820 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
821     std::vector<int> identArray;
822 gezelter 1490
823 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
824     identArray.reserve(getNAtoms());
825    
826     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
827 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
828     identArray.push_back(atom->getIdent());
829     }
830 gezelter 1930 }
831 gezelter 1490
832 gezelter 1930 //fill molMembershipArray
833     //molMembershipArray is filled by SimCreator
834     std::vector<int> molMembershipArray(nGlobalAtoms_);
835     for (int i = 0; i < nGlobalAtoms_; i++) {
836 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
837 gezelter 1930 }
838    
839     //setup fortran simulation
840     int nGlobalExcludes = 0;
841     int* globalExcludes = NULL;
842     int* excludeList = exclude_.getExcludeList();
843     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
844 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
845     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
846 gezelter 1490
847 gezelter 1930 if( isError ){
848 gezelter 1490
849 gezelter 2204 sprintf( painCave.errMsg,
850     "There was an error setting the simulation information in fortran.\n" );
851     painCave.isFatal = 1;
852     painCave.severity = OOPSE_ERROR;
853     simError();
854 gezelter 1930 }
855    
856     #ifdef IS_MPI
857     sprintf( checkPointMsg,
858 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
859 gezelter 1930 MPIcheckPoint();
860     #endif // is_mpi
861 gezelter 2204 }
862 gezelter 1490
863    
864 gezelter 1930 #ifdef IS_MPI
865 gezelter 2204 void SimInfo::setupFortranParallel() {
866 gezelter 1930
867     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
868     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
869     std::vector<int> localToGlobalCutoffGroupIndex;
870     SimInfo::MoleculeIterator mi;
871     Molecule::AtomIterator ai;
872     Molecule::CutoffGroupIterator ci;
873     Molecule* mol;
874     Atom* atom;
875     CutoffGroup* cg;
876     mpiSimData parallelData;
877     int isError;
878 gezelter 1490
879 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
880 gezelter 1490
881 gezelter 2204 //local index(index in DataStorge) of atom is important
882     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
883     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
884     }
885 gezelter 1490
886 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
887     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
888     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
889     }
890 gezelter 1930
891     }
892 gezelter 1490
893 gezelter 1930 //fill up mpiSimData struct
894     parallelData.nMolGlobal = getNGlobalMolecules();
895     parallelData.nMolLocal = getNMolecules();
896     parallelData.nAtomsGlobal = getNGlobalAtoms();
897     parallelData.nAtomsLocal = getNAtoms();
898     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
899     parallelData.nGroupsLocal = getNCutoffGroups();
900     parallelData.myNode = worldRank;
901     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
902 gezelter 1490
903 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
904     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
905     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
906     &localToGlobalCutoffGroupIndex[0], &isError);
907 gezelter 1490
908 gezelter 1930 if (isError) {
909 gezelter 2204 sprintf(painCave.errMsg,
910     "mpiRefresh errror: fortran didn't like something we gave it.\n");
911     painCave.isFatal = 1;
912     simError();
913 gezelter 1930 }
914 gezelter 1490
915 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
916     MPIcheckPoint();
917 gezelter 1490
918    
919 gezelter 2204 }
920 chrisfen 1636
921 gezelter 1930 #endif
922 chrisfen 1636
923 gezelter 2463 void SimInfo::setupCutoff() {
924 gezelter 1490
925 chuckv 2533 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
926    
927 gezelter 2463 // Check the cutoff policy
928 chuckv 2533 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
929    
930     std::string myPolicy;
931     if (forceFieldOptions_.haveCutoffPolicy()){
932     myPolicy = forceFieldOptions_.getCutoffPolicy();
933     }else if (simParams_->haveCutoffPolicy()) {
934     myPolicy = simParams_->getCutoffPolicy();
935     }
936    
937     if (!myPolicy.empty()){
938 tim 2364 toUpper(myPolicy);
939 gezelter 2285 if (myPolicy == "MIX") {
940     cp = MIX_CUTOFF_POLICY;
941     } else {
942     if (myPolicy == "MAX") {
943     cp = MAX_CUTOFF_POLICY;
944     } else {
945     if (myPolicy == "TRADITIONAL") {
946     cp = TRADITIONAL_CUTOFF_POLICY;
947     } else {
948     // throw error
949     sprintf( painCave.errMsg,
950     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
951     painCave.isFatal = 1;
952     simError();
953     }
954     }
955     }
956 gezelter 2463 }
957     notifyFortranCutoffPolicy(&cp);
958 chuckv 2328
959 gezelter 2463 // Check the Skin Thickness for neighborlists
960     double skin;
961     if (simParams_->haveSkinThickness()) {
962     skin = simParams_->getSkinThickness();
963     notifyFortranSkinThickness(&skin);
964     }
965    
966     // Check if the cutoff was set explicitly:
967     if (simParams_->haveCutoffRadius()) {
968     rcut_ = simParams_->getCutoffRadius();
969     if (simParams_->haveSwitchingRadius()) {
970     rsw_ = simParams_->getSwitchingRadius();
971     } else {
972 chrisfen 2578 if (fInfo_.SIM_uses_Charges |
973     fInfo_.SIM_uses_Dipoles |
974     fInfo_.SIM_uses_RF) {
975    
976     rsw_ = 0.85 * rcut_;
977     sprintf(painCave.errMsg,
978     "SimCreator Warning: No value was set for the switchingRadius.\n"
979     "\tOOPSE will use a default value of 85\% of the cutoffRadius"
980     "\tswitchingRadius = %f. for this simulation\n", rsw_);
981     painCave.isFatal = 0;
982     simError();
983     } else {
984     rsw_ = rcut_;
985     sprintf(painCave.errMsg,
986     "SimCreator Warning: No value was set for the switchingRadius.\n"
987     "\tOOPSE will use the same value as the cutoffRadius.\n"
988     "\tswitchingRadius = %f. for this simulation\n", rsw_);
989     painCave.isFatal = 0;
990     simError();
991     }
992    
993 gezelter 2463 notifyFortranCutoffs(&rcut_, &rsw_);
994    
995     } else {
996    
997     // For electrostatic atoms, we'll assume a large safe value:
998     if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
999     sprintf(painCave.errMsg,
1000     "SimCreator Warning: No value was set for the cutoffRadius.\n"
1001     "\tOOPSE will use a default value of 15.0 angstroms"
1002     "\tfor the cutoffRadius.\n");
1003     painCave.isFatal = 0;
1004     simError();
1005     rcut_ = 15.0;
1006    
1007     if (simParams_->haveElectrostaticSummationMethod()) {
1008     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1009     toUpper(myMethod);
1010     if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1011     if (simParams_->haveSwitchingRadius()){
1012     sprintf(painCave.errMsg,
1013     "SimInfo Warning: A value was set for the switchingRadius\n"
1014     "\teven though the electrostaticSummationMethod was\n"
1015     "\tset to %s\n", myMethod.c_str());
1016     painCave.isFatal = 1;
1017     simError();
1018     }
1019     }
1020     }
1021    
1022     if (simParams_->haveSwitchingRadius()){
1023     rsw_ = simParams_->getSwitchingRadius();
1024     } else {
1025     sprintf(painCave.errMsg,
1026     "SimCreator Warning: No value was set for switchingRadius.\n"
1027     "\tOOPSE will use a default value of\n"
1028     "\t0.85 * cutoffRadius for the switchingRadius\n");
1029     painCave.isFatal = 0;
1030     simError();
1031     rsw_ = 0.85 * rcut_;
1032     }
1033     notifyFortranCutoffs(&rcut_, &rsw_);
1034     } else {
1035     // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1036     // We'll punt and let fortran figure out the cutoffs later.
1037    
1038     notifyFortranYouAreOnYourOwn();
1039 chuckv 2328
1040 gezelter 2463 }
1041 chuckv 2328 }
1042 gezelter 2204 }
1043 gezelter 1490
1044 chrisfen 2302 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1045 chrisfen 2297
1046     int errorOut;
1047 chrisfen 2302 int esm = NONE;
1048 chrisfen 2408 int sm = UNDAMPED;
1049 chrisfen 2297 double alphaVal;
1050 chrisfen 2309 double dielectric;
1051 chrisfen 2297
1052     errorOut = isError;
1053 chrisfen 2309 alphaVal = simParams_->getDampingAlpha();
1054     dielectric = simParams_->getDielectric();
1055 chrisfen 2297
1056 chrisfen 2302 if (simParams_->haveElectrostaticSummationMethod()) {
1057 chrisfen 2303 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1058 tim 2364 toUpper(myMethod);
1059 chrisfen 2302 if (myMethod == "NONE") {
1060     esm = NONE;
1061 chrisfen 2297 } else {
1062 chrisfen 2408 if (myMethod == "SWITCHING_FUNCTION") {
1063     esm = SWITCHING_FUNCTION;
1064 chrisfen 2297 } else {
1065 chrisfen 2408 if (myMethod == "SHIFTED_POTENTIAL") {
1066     esm = SHIFTED_POTENTIAL;
1067     } else {
1068     if (myMethod == "SHIFTED_FORCE") {
1069     esm = SHIFTED_FORCE;
1070 chrisfen 2297 } else {
1071 chrisfen 2408 if (myMethod == "REACTION_FIELD") {
1072     esm = REACTION_FIELD;
1073     } else {
1074     // throw error
1075     sprintf( painCave.errMsg,
1076 gezelter 2463 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1077     "\t(Input file specified %s .)\n"
1078     "\telectrostaticSummationMethod must be one of: \"none\",\n"
1079     "\t\"shifted_potential\", \"shifted_force\", or \n"
1080     "\t\"reaction_field\".\n", myMethod.c_str() );
1081 chrisfen 2408 painCave.isFatal = 1;
1082     simError();
1083     }
1084     }
1085     }
1086 chrisfen 2297 }
1087     }
1088     }
1089 chrisfen 2408
1090 chrisfen 2415 if (simParams_->haveElectrostaticScreeningMethod()) {
1091     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1092 chrisfen 2408 toUpper(myScreen);
1093     if (myScreen == "UNDAMPED") {
1094     sm = UNDAMPED;
1095     } else {
1096     if (myScreen == "DAMPED") {
1097     sm = DAMPED;
1098     if (!simParams_->haveDampingAlpha()) {
1099     //throw error
1100     sprintf( painCave.errMsg,
1101 gezelter 2463 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1102     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1103 chrisfen 2408 painCave.isFatal = 0;
1104     simError();
1105     }
1106 chrisfen 2415 } else {
1107     // throw error
1108     sprintf( painCave.errMsg,
1109 gezelter 2463 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1110     "\t(Input file specified %s .)\n"
1111     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1112     "or \"damped\".\n", myScreen.c_str() );
1113 chrisfen 2415 painCave.isFatal = 1;
1114     simError();
1115 chrisfen 2408 }
1116     }
1117     }
1118 chrisfen 2415
1119 chrisfen 2309 // let's pass some summation method variables to fortran
1120 chrisfen 2552 setElectrostaticSummationMethod( &esm );
1121 gezelter 2508 setFortranElectrostaticMethod( &esm );
1122 chrisfen 2408 setScreeningMethod( &sm );
1123     setDampingAlpha( &alphaVal );
1124 chrisfen 2309 setReactionFieldDielectric( &dielectric );
1125 gezelter 2463 initFortranFF( &errorOut );
1126 chrisfen 2297 }
1127    
1128 chrisfen 2425 void SimInfo::setupSwitchingFunction() {
1129     int ft = CUBIC;
1130    
1131     if (simParams_->haveSwitchingFunctionType()) {
1132     std::string funcType = simParams_->getSwitchingFunctionType();
1133     toUpper(funcType);
1134     if (funcType == "CUBIC") {
1135     ft = CUBIC;
1136     } else {
1137     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1138     ft = FIFTH_ORDER_POLY;
1139     } else {
1140     // throw error
1141     sprintf( painCave.errMsg,
1142     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1143     painCave.isFatal = 1;
1144     simError();
1145     }
1146     }
1147     }
1148    
1149     // send switching function notification to switcheroo
1150     setFunctionType(&ft);
1151    
1152     }
1153    
1154 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
1155 gezelter 1930 properties_.addProperty(genData);
1156 gezelter 2204 }
1157 gezelter 1490
1158 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
1159 gezelter 1930 properties_.removeProperty(propName);
1160 gezelter 2204 }
1161 gezelter 1490
1162 gezelter 2204 void SimInfo::clearProperties() {
1163 gezelter 1930 properties_.clearProperties();
1164 gezelter 2204 }
1165 gezelter 1490
1166 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
1167 gezelter 1930 return properties_.getPropertyNames();
1168 gezelter 2204 }
1169 gezelter 1930
1170 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
1171 gezelter 1930 return properties_.getProperties();
1172 gezelter 2204 }
1173 gezelter 1490
1174 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1175 gezelter 1930 return properties_.getPropertyByName(propName);
1176 gezelter 2204 }
1177 gezelter 1490
1178 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1179 tim 2116 if (sman_ == sman) {
1180 gezelter 2204 return;
1181 tim 2116 }
1182     delete sman_;
1183 gezelter 1930 sman_ = sman;
1184 gezelter 1490
1185 gezelter 1930 Molecule* mol;
1186     RigidBody* rb;
1187     Atom* atom;
1188     SimInfo::MoleculeIterator mi;
1189     Molecule::RigidBodyIterator rbIter;
1190     Molecule::AtomIterator atomIter;;
1191    
1192     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1193    
1194 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1195     atom->setSnapshotManager(sman_);
1196     }
1197 gezelter 1930
1198 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1199     rb->setSnapshotManager(sman_);
1200     }
1201 gezelter 1930 }
1202 gezelter 1490
1203 gezelter 2204 }
1204 gezelter 1490
1205 gezelter 2204 Vector3d SimInfo::getComVel(){
1206 gezelter 1930 SimInfo::MoleculeIterator i;
1207     Molecule* mol;
1208 gezelter 1490
1209 gezelter 1930 Vector3d comVel(0.0);
1210     double totalMass = 0.0;
1211 gezelter 1490
1212 gezelter 1930
1213     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1214 gezelter 2204 double mass = mol->getMass();
1215     totalMass += mass;
1216     comVel += mass * mol->getComVel();
1217 gezelter 1930 }
1218 gezelter 1490
1219 gezelter 1930 #ifdef IS_MPI
1220     double tmpMass = totalMass;
1221     Vector3d tmpComVel(comVel);
1222     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1223     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1224     #endif
1225    
1226     comVel /= totalMass;
1227    
1228     return comVel;
1229 gezelter 2204 }
1230 gezelter 1490
1231 gezelter 2204 Vector3d SimInfo::getCom(){
1232 gezelter 1930 SimInfo::MoleculeIterator i;
1233     Molecule* mol;
1234 gezelter 1490
1235 gezelter 1930 Vector3d com(0.0);
1236     double totalMass = 0.0;
1237    
1238     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1239 gezelter 2204 double mass = mol->getMass();
1240     totalMass += mass;
1241     com += mass * mol->getCom();
1242 gezelter 1930 }
1243 gezelter 1490
1244     #ifdef IS_MPI
1245 gezelter 1930 double tmpMass = totalMass;
1246     Vector3d tmpCom(com);
1247     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1248     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1249 gezelter 1490 #endif
1250    
1251 gezelter 1930 com /= totalMass;
1252 gezelter 1490
1253 gezelter 1930 return com;
1254 gezelter 1490
1255 gezelter 2204 }
1256 gezelter 1930
1257 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1258 gezelter 1930
1259     return o;
1260 gezelter 2204 }
1261 chuckv 2252
1262    
1263     /*
1264     Returns center of mass and center of mass velocity in one function call.
1265     */
1266    
1267     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1268     SimInfo::MoleculeIterator i;
1269     Molecule* mol;
1270    
1271    
1272     double totalMass = 0.0;
1273    
1274 gezelter 1930
1275 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1276     double mass = mol->getMass();
1277     totalMass += mass;
1278     com += mass * mol->getCom();
1279     comVel += mass * mol->getComVel();
1280     }
1281    
1282     #ifdef IS_MPI
1283     double tmpMass = totalMass;
1284     Vector3d tmpCom(com);
1285     Vector3d tmpComVel(comVel);
1286     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1287     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1288     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1289     #endif
1290    
1291     com /= totalMass;
1292     comVel /= totalMass;
1293     }
1294    
1295     /*
1296     Return intertia tensor for entire system and angular momentum Vector.
1297 chuckv 2256
1298    
1299     [ Ixx -Ixy -Ixz ]
1300     J =| -Iyx Iyy -Iyz |
1301     [ -Izx -Iyz Izz ]
1302 chuckv 2252 */
1303    
1304     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1305    
1306    
1307     double xx = 0.0;
1308     double yy = 0.0;
1309     double zz = 0.0;
1310     double xy = 0.0;
1311     double xz = 0.0;
1312     double yz = 0.0;
1313     Vector3d com(0.0);
1314     Vector3d comVel(0.0);
1315    
1316     getComAll(com, comVel);
1317    
1318     SimInfo::MoleculeIterator i;
1319     Molecule* mol;
1320    
1321     Vector3d thisq(0.0);
1322     Vector3d thisv(0.0);
1323    
1324     double thisMass = 0.0;
1325    
1326    
1327    
1328    
1329     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1330    
1331     thisq = mol->getCom()-com;
1332     thisv = mol->getComVel()-comVel;
1333     thisMass = mol->getMass();
1334     // Compute moment of intertia coefficients.
1335     xx += thisq[0]*thisq[0]*thisMass;
1336     yy += thisq[1]*thisq[1]*thisMass;
1337     zz += thisq[2]*thisq[2]*thisMass;
1338    
1339     // compute products of intertia
1340     xy += thisq[0]*thisq[1]*thisMass;
1341     xz += thisq[0]*thisq[2]*thisMass;
1342     yz += thisq[1]*thisq[2]*thisMass;
1343    
1344     angularMomentum += cross( thisq, thisv ) * thisMass;
1345    
1346     }
1347    
1348    
1349     inertiaTensor(0,0) = yy + zz;
1350     inertiaTensor(0,1) = -xy;
1351     inertiaTensor(0,2) = -xz;
1352     inertiaTensor(1,0) = -xy;
1353 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1354 chuckv 2252 inertiaTensor(1,2) = -yz;
1355     inertiaTensor(2,0) = -xz;
1356     inertiaTensor(2,1) = -yz;
1357     inertiaTensor(2,2) = xx + yy;
1358    
1359     #ifdef IS_MPI
1360     Mat3x3d tmpI(inertiaTensor);
1361     Vector3d tmpAngMom;
1362     MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1363     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1364     #endif
1365    
1366     return;
1367     }
1368    
1369     //Returns the angular momentum of the system
1370     Vector3d SimInfo::getAngularMomentum(){
1371    
1372     Vector3d com(0.0);
1373     Vector3d comVel(0.0);
1374     Vector3d angularMomentum(0.0);
1375    
1376     getComAll(com,comVel);
1377    
1378     SimInfo::MoleculeIterator i;
1379     Molecule* mol;
1380    
1381 chuckv 2256 Vector3d thisr(0.0);
1382     Vector3d thisp(0.0);
1383 chuckv 2252
1384 chuckv 2256 double thisMass;
1385 chuckv 2252
1386     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1387 chuckv 2256 thisMass = mol->getMass();
1388     thisr = mol->getCom()-com;
1389     thisp = (mol->getComVel()-comVel)*thisMass;
1390 chuckv 2252
1391 chuckv 2256 angularMomentum += cross( thisr, thisp );
1392    
1393 chuckv 2252 }
1394    
1395     #ifdef IS_MPI
1396     Vector3d tmpAngMom;
1397     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1398     #endif
1399    
1400     return angularMomentum;
1401     }
1402    
1403    
1404 gezelter 1930 }//end namespace oopse
1405