ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 2733
Committed: Tue Apr 25 02:09:01 2006 UTC (18 years, 4 months ago) by gezelter
File size: 44384 byte(s)
Log Message:
Adding spherical boundary conditions to LD integrator

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 tim 2448 #include <map>
52 gezelter 1490
53 tim 1492 #include "brains/SimInfo.hpp"
54 gezelter 1930 #include "math/Vector3.hpp"
55     #include "primitives/Molecule.hpp"
56 gezelter 2285 #include "UseTheForce/fCutoffPolicy.h"
57 chrisfen 2305 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 chrisfen 2415 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 chrisfen 2425 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 gezelter 1930 #include "UseTheForce/doForces_interface.h"
61 chrisfen 2309 #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 chrisfen 2425 #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 gezelter 1930 #include "utils/MemoryUtils.hpp"
64 tim 1492 #include "utils/simError.h"
65 tim 2000 #include "selection/SelectionManager.hpp"
66 chuckv 2533 #include "io/ForceFieldOptions.hpp"
67     #include "UseTheForce/ForceField.hpp"
68 gezelter 1490
69 gezelter 1930 #ifdef IS_MPI
70     #include "UseTheForce/mpiComponentPlan.h"
71     #include "UseTheForce/DarkSide/simParallel_interface.h"
72     #endif
73 gezelter 1490
74 gezelter 1930 namespace oopse {
75 tim 2448 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76     std::map<int, std::set<int> >::iterator i = container.find(index);
77     std::set<int> result;
78     if (i != container.end()) {
79     result = i->second;
80     }
81 gezelter 1490
82 tim 2448 return result;
83     }
84    
85 tim 2469 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86     forceField_(ff), simParams_(simParams),
87 gezelter 2733 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 gezelter 2204 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
91     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
92     sman_(NULL), fortranInitialized_(false) {
93 gezelter 1490
94 gezelter 2204 MoleculeStamp* molStamp;
95     int nMolWithSameStamp;
96     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 chrisfen 2344 int nGroups = 0; //total cutoff groups defined in meta-data file
98 gezelter 2204 CutoffGroupStamp* cgStamp;
99     RigidBodyStamp* rbStamp;
100     int nRigidAtoms = 0;
101 tim 2469 std::vector<Component*> components = simParams->getComponents();
102    
103     for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104     molStamp = (*i)->getMoleculeStamp();
105     nMolWithSameStamp = (*i)->getNMol();
106 gezelter 1930
107     addMoleculeStamp(molStamp, nMolWithSameStamp);
108 gezelter 1490
109 gezelter 1930 //calculate atoms in molecules
110     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
111 gezelter 1490
112 gezelter 1930 //calculate atoms in cutoff groups
113     int nAtomsInGroups = 0;
114     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115    
116     for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 tim 2469 cgStamp = molStamp->getCutoffGroupStamp(j);
118 gezelter 2204 nAtomsInGroups += cgStamp->getNMembers();
119 gezelter 1930 }
120 gezelter 1490
121 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 chrisfen 2344
123 gezelter 1930 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
124 gezelter 1490
125 gezelter 1930 //calculate atoms in rigid bodies
126     int nAtomsInRigidBodies = 0;
127 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 gezelter 1930
129     for (int j=0; j < nRigidBodiesInStamp; j++) {
130 tim 2469 rbStamp = molStamp->getRigidBodyStamp(j);
131 gezelter 2204 nAtomsInRigidBodies += rbStamp->getNMembers();
132 gezelter 1930 }
133 gezelter 1490
134 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
136    
137 gezelter 2204 }
138 chrisfen 1636
139 chrisfen 2344 //every free atom (atom does not belong to cutoff groups) is a cutoff
140     //group therefore the total number of cutoff groups in the system is
141     //equal to the total number of atoms minus number of atoms belong to
142     //cutoff group defined in meta-data file plus the number of cutoff
143     //groups defined in meta-data file
144 gezelter 2204 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145 gezelter 1490
146 chrisfen 2344 //every free atom (atom does not belong to rigid bodies) is an
147     //integrable object therefore the total number of integrable objects
148     //in the system is equal to the total number of atoms minus number of
149     //atoms belong to rigid body defined in meta-data file plus the number
150     //of rigid bodies defined in meta-data file
151     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
152     + nGlobalRigidBodies_;
153    
154 gezelter 2204 nGlobalMols_ = molStampIds_.size();
155 gezelter 1490
156 gezelter 1930 #ifdef IS_MPI
157 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
158 gezelter 1930 #endif
159 tim 1976
160 gezelter 2204 }
161 gezelter 1490
162 gezelter 2204 SimInfo::~SimInfo() {
163 tim 2082 std::map<int, Molecule*>::iterator i;
164     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 gezelter 2204 delete i->second;
166 tim 2082 }
167     molecules_.clear();
168 tim 2187
169 gezelter 1930 delete sman_;
170     delete simParams_;
171     delete forceField_;
172 gezelter 2204 }
173 gezelter 1490
174 gezelter 2204 int SimInfo::getNGlobalConstraints() {
175 gezelter 1930 int nGlobalConstraints;
176     #ifdef IS_MPI
177     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178     MPI_COMM_WORLD);
179     #else
180     nGlobalConstraints = nConstraints_;
181     #endif
182     return nGlobalConstraints;
183 gezelter 2204 }
184 gezelter 1490
185 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
186 gezelter 1930 MoleculeIterator i;
187 gezelter 1490
188 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
189     if (i == molecules_.end() ) {
190 gezelter 1490
191 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192 gezelter 1930
193 gezelter 2204 nAtoms_ += mol->getNAtoms();
194     nBonds_ += mol->getNBonds();
195     nBends_ += mol->getNBends();
196     nTorsions_ += mol->getNTorsions();
197     nRigidBodies_ += mol->getNRigidBodies();
198     nIntegrableObjects_ += mol->getNIntegrableObjects();
199     nCutoffGroups_ += mol->getNCutoffGroups();
200     nConstraints_ += mol->getNConstraintPairs();
201 gezelter 1490
202 gezelter 2204 addExcludePairs(mol);
203 gezelter 1930
204 gezelter 2204 return true;
205 gezelter 1930 } else {
206 gezelter 2204 return false;
207 gezelter 1930 }
208 gezelter 2204 }
209 gezelter 1490
210 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
211 gezelter 1930 MoleculeIterator i;
212     i = molecules_.find(mol->getGlobalIndex());
213 gezelter 1490
214 gezelter 1930 if (i != molecules_.end() ) {
215 gezelter 1490
216 gezelter 2204 assert(mol == i->second);
217 gezelter 1930
218 gezelter 2204 nAtoms_ -= mol->getNAtoms();
219     nBonds_ -= mol->getNBonds();
220     nBends_ -= mol->getNBends();
221     nTorsions_ -= mol->getNTorsions();
222     nRigidBodies_ -= mol->getNRigidBodies();
223     nIntegrableObjects_ -= mol->getNIntegrableObjects();
224     nCutoffGroups_ -= mol->getNCutoffGroups();
225     nConstraints_ -= mol->getNConstraintPairs();
226 gezelter 1490
227 gezelter 2204 removeExcludePairs(mol);
228     molecules_.erase(mol->getGlobalIndex());
229 gezelter 1490
230 gezelter 2204 delete mol;
231 gezelter 1930
232 gezelter 2204 return true;
233 gezelter 1930 } else {
234 gezelter 2204 return false;
235 gezelter 1930 }
236    
237    
238 gezelter 2204 }
239 gezelter 1930
240    
241 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242 gezelter 1930 i = molecules_.begin();
243     return i == molecules_.end() ? NULL : i->second;
244 gezelter 2204 }
245 gezelter 1930
246 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247 gezelter 1930 ++i;
248     return i == molecules_.end() ? NULL : i->second;
249 gezelter 2204 }
250 gezelter 1490
251    
252 gezelter 2204 void SimInfo::calcNdf() {
253 gezelter 1930 int ndf_local;
254     MoleculeIterator i;
255     std::vector<StuntDouble*>::iterator j;
256     Molecule* mol;
257     StuntDouble* integrableObject;
258 gezelter 1490
259 gezelter 1930 ndf_local = 0;
260    
261     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263     integrableObject = mol->nextIntegrableObject(j)) {
264 gezelter 1490
265 gezelter 2204 ndf_local += 3;
266 gezelter 1490
267 gezelter 2204 if (integrableObject->isDirectional()) {
268     if (integrableObject->isLinear()) {
269     ndf_local += 2;
270     } else {
271     ndf_local += 3;
272     }
273     }
274 gezelter 1930
275 tim 2469 }
276     }
277 gezelter 1930
278     // n_constraints is local, so subtract them on each processor
279     ndf_local -= nConstraints_;
280    
281     #ifdef IS_MPI
282     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
283     #else
284     ndf_ = ndf_local;
285     #endif
286    
287     // nZconstraints_ is global, as are the 3 COM translations for the
288     // entire system:
289     ndf_ = ndf_ - 3 - nZconstraint_;
290    
291 gezelter 2204 }
292 gezelter 1490
293 gezelter 2733 int SimInfo::getFdf() {
294     #ifdef IS_MPI
295     MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
296     #else
297     fdf_ = fdf_local;
298     #endif
299     return fdf_;
300     }
301    
302 gezelter 2204 void SimInfo::calcNdfRaw() {
303 gezelter 1930 int ndfRaw_local;
304 gezelter 1490
305 gezelter 1930 MoleculeIterator i;
306     std::vector<StuntDouble*>::iterator j;
307     Molecule* mol;
308     StuntDouble* integrableObject;
309    
310     // Raw degrees of freedom that we have to set
311     ndfRaw_local = 0;
312    
313     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315     integrableObject = mol->nextIntegrableObject(j)) {
316 gezelter 1930
317 gezelter 2204 ndfRaw_local += 3;
318 gezelter 1930
319 gezelter 2204 if (integrableObject->isDirectional()) {
320     if (integrableObject->isLinear()) {
321     ndfRaw_local += 2;
322     } else {
323     ndfRaw_local += 3;
324     }
325     }
326 gezelter 1930
327 gezelter 2204 }
328 gezelter 1930 }
329    
330     #ifdef IS_MPI
331     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
332     #else
333     ndfRaw_ = ndfRaw_local;
334     #endif
335 gezelter 2204 }
336 gezelter 1490
337 gezelter 2204 void SimInfo::calcNdfTrans() {
338 gezelter 1930 int ndfTrans_local;
339 gezelter 1490
340 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
341 gezelter 1490
342    
343 gezelter 1930 #ifdef IS_MPI
344     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
345     #else
346     ndfTrans_ = ndfTrans_local;
347     #endif
348 gezelter 1490
349 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
350    
351 gezelter 2204 }
352 gezelter 1490
353 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
354 gezelter 1930 std::vector<Bond*>::iterator bondIter;
355     std::vector<Bend*>::iterator bendIter;
356     std::vector<Torsion*>::iterator torsionIter;
357     Bond* bond;
358     Bend* bend;
359     Torsion* torsion;
360     int a;
361     int b;
362     int c;
363     int d;
364 tim 2448
365     std::map<int, std::set<int> > atomGroups;
366    
367     Molecule::RigidBodyIterator rbIter;
368     RigidBody* rb;
369     Molecule::IntegrableObjectIterator ii;
370     StuntDouble* integrableObject;
371 gezelter 1930
372 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
373     integrableObject = mol->nextIntegrableObject(ii)) {
374    
375     if (integrableObject->isRigidBody()) {
376     rb = static_cast<RigidBody*>(integrableObject);
377     std::vector<Atom*> atoms = rb->getAtoms();
378     std::set<int> rigidAtoms;
379     for (int i = 0; i < atoms.size(); ++i) {
380     rigidAtoms.insert(atoms[i]->getGlobalIndex());
381     }
382     for (int i = 0; i < atoms.size(); ++i) {
383     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384     }
385     } else {
386     std::set<int> oneAtomSet;
387     oneAtomSet.insert(integrableObject->getGlobalIndex());
388     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
389     }
390     }
391    
392    
393    
394 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
395 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
396     b = bond->getAtomB()->getGlobalIndex();
397     exclude_.addPair(a, b);
398 gezelter 1930 }
399 gezelter 1490
400 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
401 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
402     b = bend->getAtomB()->getGlobalIndex();
403     c = bend->getAtomC()->getGlobalIndex();
404 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407 gezelter 1490
408 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
409     exclude_.addPairs(rigidSetA, rigidSetC);
410     exclude_.addPairs(rigidSetB, rigidSetC);
411    
412     //exclude_.addPair(a, b);
413     //exclude_.addPair(a, c);
414     //exclude_.addPair(b, c);
415 gezelter 1930 }
416 gezelter 1490
417 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
418 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
419     b = torsion->getAtomB()->getGlobalIndex();
420     c = torsion->getAtomC()->getGlobalIndex();
421     d = torsion->getAtomD()->getGlobalIndex();
422 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
426 gezelter 1490
427 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
428     exclude_.addPairs(rigidSetA, rigidSetC);
429     exclude_.addPairs(rigidSetA, rigidSetD);
430     exclude_.addPairs(rigidSetB, rigidSetC);
431     exclude_.addPairs(rigidSetB, rigidSetD);
432     exclude_.addPairs(rigidSetC, rigidSetD);
433    
434     /*
435     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
436     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
437     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
438     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
439     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
440     exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
441    
442    
443 gezelter 2204 exclude_.addPair(a, b);
444     exclude_.addPair(a, c);
445     exclude_.addPair(a, d);
446     exclude_.addPair(b, c);
447     exclude_.addPair(b, d);
448     exclude_.addPair(c, d);
449 tim 2448 */
450 gezelter 1490 }
451    
452 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
454     for (int i = 0; i < atoms.size() -1 ; ++i) {
455     for (int j = i + 1; j < atoms.size(); ++j) {
456     a = atoms[i]->getGlobalIndex();
457     b = atoms[j]->getGlobalIndex();
458     exclude_.addPair(a, b);
459     }
460     }
461 tim 2114 }
462    
463 gezelter 2204 }
464 gezelter 1930
465 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
466 gezelter 1930 std::vector<Bond*>::iterator bondIter;
467     std::vector<Bend*>::iterator bendIter;
468     std::vector<Torsion*>::iterator torsionIter;
469     Bond* bond;
470     Bend* bend;
471     Torsion* torsion;
472     int a;
473     int b;
474     int c;
475     int d;
476 tim 2448
477     std::map<int, std::set<int> > atomGroups;
478    
479     Molecule::RigidBodyIterator rbIter;
480     RigidBody* rb;
481     Molecule::IntegrableObjectIterator ii;
482     StuntDouble* integrableObject;
483 gezelter 1930
484 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
485     integrableObject = mol->nextIntegrableObject(ii)) {
486    
487     if (integrableObject->isRigidBody()) {
488     rb = static_cast<RigidBody*>(integrableObject);
489     std::vector<Atom*> atoms = rb->getAtoms();
490     std::set<int> rigidAtoms;
491     for (int i = 0; i < atoms.size(); ++i) {
492     rigidAtoms.insert(atoms[i]->getGlobalIndex());
493     }
494     for (int i = 0; i < atoms.size(); ++i) {
495     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
496     }
497     } else {
498     std::set<int> oneAtomSet;
499     oneAtomSet.insert(integrableObject->getGlobalIndex());
500     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
501     }
502     }
503    
504    
505 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
506 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
507     b = bond->getAtomB()->getGlobalIndex();
508     exclude_.removePair(a, b);
509 gezelter 1490 }
510 gezelter 1930
511     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
512 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
513     b = bend->getAtomB()->getGlobalIndex();
514     c = bend->getAtomC()->getGlobalIndex();
515 gezelter 1930
516 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519    
520     exclude_.removePairs(rigidSetA, rigidSetB);
521     exclude_.removePairs(rigidSetA, rigidSetC);
522     exclude_.removePairs(rigidSetB, rigidSetC);
523    
524     //exclude_.removePair(a, b);
525     //exclude_.removePair(a, c);
526     //exclude_.removePair(b, c);
527 gezelter 1490 }
528 gezelter 1930
529     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
530 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
531     b = torsion->getAtomB()->getGlobalIndex();
532     c = torsion->getAtomC()->getGlobalIndex();
533     d = torsion->getAtomD()->getGlobalIndex();
534 gezelter 1930
535 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
536     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
537     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
538     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
539    
540     exclude_.removePairs(rigidSetA, rigidSetB);
541     exclude_.removePairs(rigidSetA, rigidSetC);
542     exclude_.removePairs(rigidSetA, rigidSetD);
543     exclude_.removePairs(rigidSetB, rigidSetC);
544     exclude_.removePairs(rigidSetB, rigidSetD);
545     exclude_.removePairs(rigidSetC, rigidSetD);
546    
547     /*
548     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553     exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
554    
555    
556 gezelter 2204 exclude_.removePair(a, b);
557     exclude_.removePair(a, c);
558     exclude_.removePair(a, d);
559     exclude_.removePair(b, c);
560     exclude_.removePair(b, d);
561     exclude_.removePair(c, d);
562 tim 2448 */
563 gezelter 1930 }
564    
565 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
566 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
567     for (int i = 0; i < atoms.size() -1 ; ++i) {
568     for (int j = i + 1; j < atoms.size(); ++j) {
569     a = atoms[i]->getGlobalIndex();
570     b = atoms[j]->getGlobalIndex();
571     exclude_.removePair(a, b);
572     }
573     }
574 tim 2114 }
575    
576 gezelter 2204 }
577 gezelter 1490
578    
579 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
580 gezelter 1930 int curStampId;
581 gezelter 1490
582 gezelter 1930 //index from 0
583     curStampId = moleculeStamps_.size();
584 gezelter 1490
585 gezelter 1930 moleculeStamps_.push_back(molStamp);
586     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
587 gezelter 2204 }
588 gezelter 1490
589 gezelter 2204 void SimInfo::update() {
590 gezelter 1490
591 gezelter 1930 setupSimType();
592 gezelter 1490
593 gezelter 1930 #ifdef IS_MPI
594     setupFortranParallel();
595     #endif
596 gezelter 1490
597 gezelter 1930 setupFortranSim();
598 gezelter 1490
599 gezelter 1930 //setup fortran force field
600     /** @deprecate */
601     int isError = 0;
602 chrisfen 2297
603 chrisfen 2302 setupElectrostaticSummationMethod( isError );
604 chrisfen 2425 setupSwitchingFunction();
605 chrisfen 2297
606 gezelter 1930 if(isError){
607 gezelter 2204 sprintf( painCave.errMsg,
608     "ForceField error: There was an error initializing the forceField in fortran.\n" );
609     painCave.isFatal = 1;
610     simError();
611 gezelter 1930 }
612 gezelter 1490
613 gezelter 1930
614     setupCutoff();
615 gezelter 1490
616 gezelter 1930 calcNdf();
617     calcNdfRaw();
618     calcNdfTrans();
619    
620     fortranInitialized_ = true;
621 gezelter 2204 }
622 gezelter 1490
623 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
624 gezelter 1930 SimInfo::MoleculeIterator mi;
625     Molecule* mol;
626     Molecule::AtomIterator ai;
627     Atom* atom;
628     std::set<AtomType*> atomTypes;
629 gezelter 1490
630 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
631 gezelter 1490
632 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
633     atomTypes.insert(atom->getAtomType());
634     }
635 gezelter 1930
636     }
637 gezelter 1490
638 gezelter 1930 return atomTypes;
639 gezelter 2204 }
640 gezelter 1490
641 gezelter 2204 void SimInfo::setupSimType() {
642 gezelter 1930 std::set<AtomType*>::iterator i;
643     std::set<AtomType*> atomTypes;
644     atomTypes = getUniqueAtomTypes();
645 gezelter 1490
646 gezelter 1930 int useLennardJones = 0;
647     int useElectrostatic = 0;
648     int useEAM = 0;
649 chuckv 2433 int useSC = 0;
650 gezelter 1930 int useCharge = 0;
651     int useDirectional = 0;
652     int useDipole = 0;
653     int useGayBerne = 0;
654     int useSticky = 0;
655 chrisfen 2220 int useStickyPower = 0;
656 gezelter 1930 int useShape = 0;
657     int useFLARB = 0; //it is not in AtomType yet
658     int useDirectionalAtom = 0;
659     int useElectrostatics = 0;
660     //usePBC and useRF are from simParams
661 tim 2364 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
662 chrisfen 2310 int useRF;
663 chrisfen 2419 int useSF;
664 tim 2364 std::string myMethod;
665 gezelter 1490
666 chrisfen 2310 // set the useRF logical
667 tim 2364 useRF = 0;
668 chrisfen 2419 useSF = 0;
669 chrisfen 2390
670    
671 tim 2364 if (simParams_->haveElectrostaticSummationMethod()) {
672 chrisfen 2390 std::string myMethod = simParams_->getElectrostaticSummationMethod();
673     toUpper(myMethod);
674     if (myMethod == "REACTION_FIELD") {
675     useRF=1;
676 chrisfen 2404 } else {
677 chrisfen 2419 if (myMethod == "SHIFTED_FORCE") {
678     useSF = 1;
679 chrisfen 2404 }
680 chrisfen 2390 }
681 tim 2364 }
682 chrisfen 2310
683 gezelter 1930 //loop over all of the atom types
684     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
685 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
686     useElectrostatic |= (*i)->isElectrostatic();
687     useEAM |= (*i)->isEAM();
688 chuckv 2433 useSC |= (*i)->isSC();
689 gezelter 2204 useCharge |= (*i)->isCharge();
690     useDirectional |= (*i)->isDirectional();
691     useDipole |= (*i)->isDipole();
692     useGayBerne |= (*i)->isGayBerne();
693     useSticky |= (*i)->isSticky();
694 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
695 gezelter 2204 useShape |= (*i)->isShape();
696 gezelter 1930 }
697 gezelter 1490
698 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
699 gezelter 2204 useDirectionalAtom = 1;
700 gezelter 1930 }
701 gezelter 1490
702 gezelter 1930 if (useCharge || useDipole) {
703 gezelter 2204 useElectrostatics = 1;
704 gezelter 1930 }
705 gezelter 1490
706 gezelter 1930 #ifdef IS_MPI
707     int temp;
708 gezelter 1490
709 gezelter 1930 temp = usePBC;
710     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
711 gezelter 1490
712 gezelter 1930 temp = useDirectionalAtom;
713     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
714 gezelter 1490
715 gezelter 1930 temp = useLennardJones;
716     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
717 gezelter 1490
718 gezelter 1930 temp = useElectrostatics;
719     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
720 gezelter 1490
721 gezelter 1930 temp = useCharge;
722     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
723 gezelter 1490
724 gezelter 1930 temp = useDipole;
725     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
726 gezelter 1490
727 gezelter 1930 temp = useSticky;
728     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
729 gezelter 1490
730 chrisfen 2220 temp = useStickyPower;
731     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
732    
733 gezelter 1930 temp = useGayBerne;
734     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
735 gezelter 1490
736 gezelter 1930 temp = useEAM;
737     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
738 gezelter 1490
739 chuckv 2433 temp = useSC;
740     MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
741    
742 gezelter 1930 temp = useShape;
743     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
744    
745     temp = useFLARB;
746     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
747    
748 chrisfen 2310 temp = useRF;
749     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
750    
751 chrisfen 2419 temp = useSF;
752     MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
753 chrisfen 2404
754 gezelter 1490 #endif
755    
756 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
757     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
758     fInfo_.SIM_uses_LennardJones = useLennardJones;
759     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
760     fInfo_.SIM_uses_Charges = useCharge;
761     fInfo_.SIM_uses_Dipoles = useDipole;
762     fInfo_.SIM_uses_Sticky = useSticky;
763 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
764 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
765     fInfo_.SIM_uses_EAM = useEAM;
766 chuckv 2433 fInfo_.SIM_uses_SC = useSC;
767 gezelter 1930 fInfo_.SIM_uses_Shapes = useShape;
768     fInfo_.SIM_uses_FLARB = useFLARB;
769 chrisfen 2310 fInfo_.SIM_uses_RF = useRF;
770 chrisfen 2419 fInfo_.SIM_uses_SF = useSF;
771 gezelter 1490
772 chrisfen 2390 if( myMethod == "REACTION_FIELD") {
773    
774 gezelter 2204 if (simParams_->haveDielectric()) {
775     fInfo_.dielect = simParams_->getDielectric();
776     } else {
777     sprintf(painCave.errMsg,
778     "SimSetup Error: No Dielectric constant was set.\n"
779     "\tYou are trying to use Reaction Field without"
780     "\tsetting a dielectric constant!\n");
781     painCave.isFatal = 1;
782     simError();
783 chrisfen 2390 }
784 gezelter 1930 }
785 chrisfen 2404
786 gezelter 2204 }
787 gezelter 1490
788 gezelter 2204 void SimInfo::setupFortranSim() {
789 gezelter 1930 int isError;
790     int nExclude;
791     std::vector<int> fortranGlobalGroupMembership;
792    
793     nExclude = exclude_.getSize();
794     isError = 0;
795 gezelter 1490
796 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
797     for (int i = 0; i < nGlobalAtoms_; i++) {
798 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
799 gezelter 1930 }
800 gezelter 1490
801 gezelter 1930 //calculate mass ratio of cutoff group
802     std::vector<double> mfact;
803     SimInfo::MoleculeIterator mi;
804     Molecule* mol;
805     Molecule::CutoffGroupIterator ci;
806     CutoffGroup* cg;
807     Molecule::AtomIterator ai;
808     Atom* atom;
809     double totalMass;
810    
811     //to avoid memory reallocation, reserve enough space for mfact
812     mfact.reserve(getNCutoffGroups());
813 gezelter 1490
814 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
815 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
816 gezelter 1490
817 gezelter 2204 totalMass = cg->getMass();
818     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
819 chrisfen 2344 // Check for massless groups - set mfact to 1 if true
820     if (totalMass != 0)
821     mfact.push_back(atom->getMass()/totalMass);
822     else
823     mfact.push_back( 1.0 );
824 gezelter 2204 }
825 gezelter 1490
826 gezelter 2204 }
827 gezelter 1930 }
828 gezelter 1490
829 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
830     std::vector<int> identArray;
831 gezelter 1490
832 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
833     identArray.reserve(getNAtoms());
834    
835     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
836 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
837     identArray.push_back(atom->getIdent());
838     }
839 gezelter 1930 }
840 gezelter 1490
841 gezelter 1930 //fill molMembershipArray
842     //molMembershipArray is filled by SimCreator
843     std::vector<int> molMembershipArray(nGlobalAtoms_);
844     for (int i = 0; i < nGlobalAtoms_; i++) {
845 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
846 gezelter 1930 }
847    
848     //setup fortran simulation
849     int nGlobalExcludes = 0;
850     int* globalExcludes = NULL;
851     int* excludeList = exclude_.getExcludeList();
852     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
853 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
854     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
855 gezelter 1490
856 gezelter 1930 if( isError ){
857 gezelter 1490
858 gezelter 2204 sprintf( painCave.errMsg,
859     "There was an error setting the simulation information in fortran.\n" );
860     painCave.isFatal = 1;
861     painCave.severity = OOPSE_ERROR;
862     simError();
863 gezelter 1930 }
864    
865     #ifdef IS_MPI
866     sprintf( checkPointMsg,
867 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
868 gezelter 1930 MPIcheckPoint();
869     #endif // is_mpi
870 gezelter 2204 }
871 gezelter 1490
872    
873 gezelter 1930 #ifdef IS_MPI
874 gezelter 2204 void SimInfo::setupFortranParallel() {
875 gezelter 1930
876     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
877     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
878     std::vector<int> localToGlobalCutoffGroupIndex;
879     SimInfo::MoleculeIterator mi;
880     Molecule::AtomIterator ai;
881     Molecule::CutoffGroupIterator ci;
882     Molecule* mol;
883     Atom* atom;
884     CutoffGroup* cg;
885     mpiSimData parallelData;
886     int isError;
887 gezelter 1490
888 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
889 gezelter 1490
890 gezelter 2204 //local index(index in DataStorge) of atom is important
891     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
892     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
893     }
894 gezelter 1490
895 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
896     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
898     }
899 gezelter 1930
900     }
901 gezelter 1490
902 gezelter 1930 //fill up mpiSimData struct
903     parallelData.nMolGlobal = getNGlobalMolecules();
904     parallelData.nMolLocal = getNMolecules();
905     parallelData.nAtomsGlobal = getNGlobalAtoms();
906     parallelData.nAtomsLocal = getNAtoms();
907     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
908     parallelData.nGroupsLocal = getNCutoffGroups();
909     parallelData.myNode = worldRank;
910     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
911 gezelter 1490
912 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
913     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
914     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
915     &localToGlobalCutoffGroupIndex[0], &isError);
916 gezelter 1490
917 gezelter 1930 if (isError) {
918 gezelter 2204 sprintf(painCave.errMsg,
919     "mpiRefresh errror: fortran didn't like something we gave it.\n");
920     painCave.isFatal = 1;
921     simError();
922 gezelter 1930 }
923 gezelter 1490
924 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
925     MPIcheckPoint();
926 gezelter 1490
927    
928 gezelter 2204 }
929 chrisfen 1636
930 gezelter 1930 #endif
931 chrisfen 1636
932 gezelter 2463 void SimInfo::setupCutoff() {
933 gezelter 1490
934 chuckv 2533 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
935    
936 gezelter 2463 // Check the cutoff policy
937 chuckv 2533 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
938    
939     std::string myPolicy;
940     if (forceFieldOptions_.haveCutoffPolicy()){
941     myPolicy = forceFieldOptions_.getCutoffPolicy();
942     }else if (simParams_->haveCutoffPolicy()) {
943     myPolicy = simParams_->getCutoffPolicy();
944     }
945    
946     if (!myPolicy.empty()){
947 tim 2364 toUpper(myPolicy);
948 gezelter 2285 if (myPolicy == "MIX") {
949     cp = MIX_CUTOFF_POLICY;
950     } else {
951     if (myPolicy == "MAX") {
952     cp = MAX_CUTOFF_POLICY;
953     } else {
954     if (myPolicy == "TRADITIONAL") {
955     cp = TRADITIONAL_CUTOFF_POLICY;
956     } else {
957     // throw error
958     sprintf( painCave.errMsg,
959     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
960     painCave.isFatal = 1;
961     simError();
962     }
963     }
964     }
965 gezelter 2463 }
966     notifyFortranCutoffPolicy(&cp);
967 chuckv 2328
968 gezelter 2463 // Check the Skin Thickness for neighborlists
969     double skin;
970     if (simParams_->haveSkinThickness()) {
971     skin = simParams_->getSkinThickness();
972     notifyFortranSkinThickness(&skin);
973     }
974    
975     // Check if the cutoff was set explicitly:
976     if (simParams_->haveCutoffRadius()) {
977     rcut_ = simParams_->getCutoffRadius();
978     if (simParams_->haveSwitchingRadius()) {
979     rsw_ = simParams_->getSwitchingRadius();
980     } else {
981 chrisfen 2578 if (fInfo_.SIM_uses_Charges |
982     fInfo_.SIM_uses_Dipoles |
983     fInfo_.SIM_uses_RF) {
984    
985     rsw_ = 0.85 * rcut_;
986     sprintf(painCave.errMsg,
987     "SimCreator Warning: No value was set for the switchingRadius.\n"
988 chrisfen 2579 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
989 chrisfen 2578 "\tswitchingRadius = %f. for this simulation\n", rsw_);
990     painCave.isFatal = 0;
991     simError();
992     } else {
993     rsw_ = rcut_;
994     sprintf(painCave.errMsg,
995     "SimCreator Warning: No value was set for the switchingRadius.\n"
996     "\tOOPSE will use the same value as the cutoffRadius.\n"
997     "\tswitchingRadius = %f. for this simulation\n", rsw_);
998     painCave.isFatal = 0;
999     simError();
1000     }
1001 chrisfen 2579 }
1002    
1003 gezelter 2463 notifyFortranCutoffs(&rcut_, &rsw_);
1004    
1005     } else {
1006    
1007     // For electrostatic atoms, we'll assume a large safe value:
1008     if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1009     sprintf(painCave.errMsg,
1010     "SimCreator Warning: No value was set for the cutoffRadius.\n"
1011     "\tOOPSE will use a default value of 15.0 angstroms"
1012     "\tfor the cutoffRadius.\n");
1013     painCave.isFatal = 0;
1014     simError();
1015     rcut_ = 15.0;
1016    
1017     if (simParams_->haveElectrostaticSummationMethod()) {
1018     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1019     toUpper(myMethod);
1020     if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1021     if (simParams_->haveSwitchingRadius()){
1022     sprintf(painCave.errMsg,
1023     "SimInfo Warning: A value was set for the switchingRadius\n"
1024     "\teven though the electrostaticSummationMethod was\n"
1025     "\tset to %s\n", myMethod.c_str());
1026     painCave.isFatal = 1;
1027     simError();
1028     }
1029     }
1030     }
1031    
1032     if (simParams_->haveSwitchingRadius()){
1033     rsw_ = simParams_->getSwitchingRadius();
1034     } else {
1035     sprintf(painCave.errMsg,
1036     "SimCreator Warning: No value was set for switchingRadius.\n"
1037     "\tOOPSE will use a default value of\n"
1038     "\t0.85 * cutoffRadius for the switchingRadius\n");
1039     painCave.isFatal = 0;
1040     simError();
1041     rsw_ = 0.85 * rcut_;
1042     }
1043     notifyFortranCutoffs(&rcut_, &rsw_);
1044     } else {
1045     // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1046     // We'll punt and let fortran figure out the cutoffs later.
1047    
1048     notifyFortranYouAreOnYourOwn();
1049 chuckv 2328
1050 gezelter 2463 }
1051 chuckv 2328 }
1052 gezelter 2204 }
1053 gezelter 1490
1054 chrisfen 2302 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1055 chrisfen 2297
1056     int errorOut;
1057 chrisfen 2302 int esm = NONE;
1058 chrisfen 2408 int sm = UNDAMPED;
1059 chrisfen 2297 double alphaVal;
1060 chrisfen 2309 double dielectric;
1061 chrisfen 2297
1062     errorOut = isError;
1063 chrisfen 2309 alphaVal = simParams_->getDampingAlpha();
1064     dielectric = simParams_->getDielectric();
1065 chrisfen 2297
1066 chrisfen 2302 if (simParams_->haveElectrostaticSummationMethod()) {
1067 chrisfen 2303 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1068 tim 2364 toUpper(myMethod);
1069 chrisfen 2302 if (myMethod == "NONE") {
1070     esm = NONE;
1071 chrisfen 2297 } else {
1072 chrisfen 2408 if (myMethod == "SWITCHING_FUNCTION") {
1073     esm = SWITCHING_FUNCTION;
1074 chrisfen 2297 } else {
1075 chrisfen 2408 if (myMethod == "SHIFTED_POTENTIAL") {
1076     esm = SHIFTED_POTENTIAL;
1077     } else {
1078     if (myMethod == "SHIFTED_FORCE") {
1079     esm = SHIFTED_FORCE;
1080 chrisfen 2297 } else {
1081 chrisfen 2408 if (myMethod == "REACTION_FIELD") {
1082     esm = REACTION_FIELD;
1083     } else {
1084     // throw error
1085     sprintf( painCave.errMsg,
1086 gezelter 2463 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1087     "\t(Input file specified %s .)\n"
1088     "\telectrostaticSummationMethod must be one of: \"none\",\n"
1089     "\t\"shifted_potential\", \"shifted_force\", or \n"
1090     "\t\"reaction_field\".\n", myMethod.c_str() );
1091 chrisfen 2408 painCave.isFatal = 1;
1092     simError();
1093     }
1094     }
1095     }
1096 chrisfen 2297 }
1097     }
1098     }
1099 chrisfen 2408
1100 chrisfen 2415 if (simParams_->haveElectrostaticScreeningMethod()) {
1101     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1102 chrisfen 2408 toUpper(myScreen);
1103     if (myScreen == "UNDAMPED") {
1104     sm = UNDAMPED;
1105     } else {
1106     if (myScreen == "DAMPED") {
1107     sm = DAMPED;
1108     if (!simParams_->haveDampingAlpha()) {
1109     //throw error
1110     sprintf( painCave.errMsg,
1111 gezelter 2463 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1112     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1113 chrisfen 2408 painCave.isFatal = 0;
1114     simError();
1115     }
1116 chrisfen 2415 } else {
1117     // throw error
1118     sprintf( painCave.errMsg,
1119 gezelter 2463 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1120     "\t(Input file specified %s .)\n"
1121     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1122     "or \"damped\".\n", myScreen.c_str() );
1123 chrisfen 2415 painCave.isFatal = 1;
1124     simError();
1125 chrisfen 2408 }
1126     }
1127     }
1128 chrisfen 2415
1129 chrisfen 2309 // let's pass some summation method variables to fortran
1130 chrisfen 2552 setElectrostaticSummationMethod( &esm );
1131 gezelter 2508 setFortranElectrostaticMethod( &esm );
1132 chrisfen 2408 setScreeningMethod( &sm );
1133     setDampingAlpha( &alphaVal );
1134 chrisfen 2309 setReactionFieldDielectric( &dielectric );
1135 gezelter 2463 initFortranFF( &errorOut );
1136 chrisfen 2297 }
1137    
1138 chrisfen 2425 void SimInfo::setupSwitchingFunction() {
1139     int ft = CUBIC;
1140    
1141     if (simParams_->haveSwitchingFunctionType()) {
1142     std::string funcType = simParams_->getSwitchingFunctionType();
1143     toUpper(funcType);
1144     if (funcType == "CUBIC") {
1145     ft = CUBIC;
1146     } else {
1147     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1148     ft = FIFTH_ORDER_POLY;
1149     } else {
1150     // throw error
1151     sprintf( painCave.errMsg,
1152     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1153     painCave.isFatal = 1;
1154     simError();
1155     }
1156     }
1157     }
1158    
1159     // send switching function notification to switcheroo
1160     setFunctionType(&ft);
1161    
1162     }
1163    
1164 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
1165 gezelter 1930 properties_.addProperty(genData);
1166 gezelter 2204 }
1167 gezelter 1490
1168 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
1169 gezelter 1930 properties_.removeProperty(propName);
1170 gezelter 2204 }
1171 gezelter 1490
1172 gezelter 2204 void SimInfo::clearProperties() {
1173 gezelter 1930 properties_.clearProperties();
1174 gezelter 2204 }
1175 gezelter 1490
1176 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
1177 gezelter 1930 return properties_.getPropertyNames();
1178 gezelter 2204 }
1179 gezelter 1930
1180 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
1181 gezelter 1930 return properties_.getProperties();
1182 gezelter 2204 }
1183 gezelter 1490
1184 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1185 gezelter 1930 return properties_.getPropertyByName(propName);
1186 gezelter 2204 }
1187 gezelter 1490
1188 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1189 tim 2116 if (sman_ == sman) {
1190 gezelter 2204 return;
1191 tim 2116 }
1192     delete sman_;
1193 gezelter 1930 sman_ = sman;
1194 gezelter 1490
1195 gezelter 1930 Molecule* mol;
1196     RigidBody* rb;
1197     Atom* atom;
1198     SimInfo::MoleculeIterator mi;
1199     Molecule::RigidBodyIterator rbIter;
1200     Molecule::AtomIterator atomIter;;
1201    
1202     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1203    
1204 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1205     atom->setSnapshotManager(sman_);
1206     }
1207 gezelter 1930
1208 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1209     rb->setSnapshotManager(sman_);
1210     }
1211 gezelter 1930 }
1212 gezelter 1490
1213 gezelter 2204 }
1214 gezelter 1490
1215 gezelter 2204 Vector3d SimInfo::getComVel(){
1216 gezelter 1930 SimInfo::MoleculeIterator i;
1217     Molecule* mol;
1218 gezelter 1490
1219 gezelter 1930 Vector3d comVel(0.0);
1220     double totalMass = 0.0;
1221 gezelter 1490
1222 gezelter 1930
1223     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1224 gezelter 2204 double mass = mol->getMass();
1225     totalMass += mass;
1226     comVel += mass * mol->getComVel();
1227 gezelter 1930 }
1228 gezelter 1490
1229 gezelter 1930 #ifdef IS_MPI
1230     double tmpMass = totalMass;
1231     Vector3d tmpComVel(comVel);
1232     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1233     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1234     #endif
1235    
1236     comVel /= totalMass;
1237    
1238     return comVel;
1239 gezelter 2204 }
1240 gezelter 1490
1241 gezelter 2204 Vector3d SimInfo::getCom(){
1242 gezelter 1930 SimInfo::MoleculeIterator i;
1243     Molecule* mol;
1244 gezelter 1490
1245 gezelter 1930 Vector3d com(0.0);
1246     double totalMass = 0.0;
1247    
1248     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1249 gezelter 2204 double mass = mol->getMass();
1250     totalMass += mass;
1251     com += mass * mol->getCom();
1252 gezelter 1930 }
1253 gezelter 1490
1254     #ifdef IS_MPI
1255 gezelter 1930 double tmpMass = totalMass;
1256     Vector3d tmpCom(com);
1257     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1258     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1259 gezelter 1490 #endif
1260    
1261 gezelter 1930 com /= totalMass;
1262 gezelter 1490
1263 gezelter 1930 return com;
1264 gezelter 1490
1265 gezelter 2204 }
1266 gezelter 1930
1267 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1268 gezelter 1930
1269     return o;
1270 gezelter 2204 }
1271 chuckv 2252
1272    
1273     /*
1274     Returns center of mass and center of mass velocity in one function call.
1275     */
1276    
1277     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1278     SimInfo::MoleculeIterator i;
1279     Molecule* mol;
1280    
1281    
1282     double totalMass = 0.0;
1283    
1284 gezelter 1930
1285 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1286     double mass = mol->getMass();
1287     totalMass += mass;
1288     com += mass * mol->getCom();
1289     comVel += mass * mol->getComVel();
1290     }
1291    
1292     #ifdef IS_MPI
1293     double tmpMass = totalMass;
1294     Vector3d tmpCom(com);
1295     Vector3d tmpComVel(comVel);
1296     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1297     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1298     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1299     #endif
1300    
1301     com /= totalMass;
1302     comVel /= totalMass;
1303     }
1304    
1305     /*
1306     Return intertia tensor for entire system and angular momentum Vector.
1307 chuckv 2256
1308    
1309     [ Ixx -Ixy -Ixz ]
1310     J =| -Iyx Iyy -Iyz |
1311     [ -Izx -Iyz Izz ]
1312 chuckv 2252 */
1313    
1314     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1315    
1316    
1317     double xx = 0.0;
1318     double yy = 0.0;
1319     double zz = 0.0;
1320     double xy = 0.0;
1321     double xz = 0.0;
1322     double yz = 0.0;
1323     Vector3d com(0.0);
1324     Vector3d comVel(0.0);
1325    
1326     getComAll(com, comVel);
1327    
1328     SimInfo::MoleculeIterator i;
1329     Molecule* mol;
1330    
1331     Vector3d thisq(0.0);
1332     Vector3d thisv(0.0);
1333    
1334     double thisMass = 0.0;
1335    
1336    
1337    
1338    
1339     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1340    
1341     thisq = mol->getCom()-com;
1342     thisv = mol->getComVel()-comVel;
1343     thisMass = mol->getMass();
1344     // Compute moment of intertia coefficients.
1345     xx += thisq[0]*thisq[0]*thisMass;
1346     yy += thisq[1]*thisq[1]*thisMass;
1347     zz += thisq[2]*thisq[2]*thisMass;
1348    
1349     // compute products of intertia
1350     xy += thisq[0]*thisq[1]*thisMass;
1351     xz += thisq[0]*thisq[2]*thisMass;
1352     yz += thisq[1]*thisq[2]*thisMass;
1353    
1354     angularMomentum += cross( thisq, thisv ) * thisMass;
1355    
1356     }
1357    
1358    
1359     inertiaTensor(0,0) = yy + zz;
1360     inertiaTensor(0,1) = -xy;
1361     inertiaTensor(0,2) = -xz;
1362     inertiaTensor(1,0) = -xy;
1363 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1364 chuckv 2252 inertiaTensor(1,2) = -yz;
1365     inertiaTensor(2,0) = -xz;
1366     inertiaTensor(2,1) = -yz;
1367     inertiaTensor(2,2) = xx + yy;
1368    
1369     #ifdef IS_MPI
1370     Mat3x3d tmpI(inertiaTensor);
1371     Vector3d tmpAngMom;
1372     MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1373     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1374     #endif
1375    
1376     return;
1377     }
1378    
1379     //Returns the angular momentum of the system
1380     Vector3d SimInfo::getAngularMomentum(){
1381    
1382     Vector3d com(0.0);
1383     Vector3d comVel(0.0);
1384     Vector3d angularMomentum(0.0);
1385    
1386     getComAll(com,comVel);
1387    
1388     SimInfo::MoleculeIterator i;
1389     Molecule* mol;
1390    
1391 chuckv 2256 Vector3d thisr(0.0);
1392     Vector3d thisp(0.0);
1393 chuckv 2252
1394 chuckv 2256 double thisMass;
1395 chuckv 2252
1396     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1397 chuckv 2256 thisMass = mol->getMass();
1398     thisr = mol->getCom()-com;
1399     thisp = (mol->getComVel()-comVel)*thisMass;
1400 chuckv 2252
1401 chuckv 2256 angularMomentum += cross( thisr, thisp );
1402    
1403 chuckv 2252 }
1404    
1405     #ifdef IS_MPI
1406     Vector3d tmpAngMom;
1407     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1408     #endif
1409    
1410     return angularMomentum;
1411     }
1412    
1413    
1414 gezelter 1930 }//end namespace oopse
1415