ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 3054
Committed: Wed Oct 18 21:58:48 2006 UTC (17 years, 11 months ago) by gezelter
File size: 46109 byte(s)
Log Message:
fixing a wrapVector problem in staticProps, also making Shifted force
and electrostatic damping the default behavior

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 tim 2448 #include <map>
52 gezelter 1490
53 tim 1492 #include "brains/SimInfo.hpp"
54 gezelter 1930 #include "math/Vector3.hpp"
55     #include "primitives/Molecule.hpp"
56 tim 2982 #include "primitives/StuntDouble.hpp"
57 gezelter 2285 #include "UseTheForce/fCutoffPolicy.h"
58 chrisfen 2305 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 chrisfen 2415 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 chrisfen 2425 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 gezelter 1930 #include "UseTheForce/doForces_interface.h"
62 chrisfen 2309 #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 chrisfen 2425 #include "UseTheForce/DarkSide/switcheroo_interface.h"
64 gezelter 1930 #include "utils/MemoryUtils.hpp"
65 tim 1492 #include "utils/simError.h"
66 tim 2000 #include "selection/SelectionManager.hpp"
67 chuckv 2533 #include "io/ForceFieldOptions.hpp"
68     #include "UseTheForce/ForceField.hpp"
69 gezelter 1490
70 gezelter 1930 #ifdef IS_MPI
71     #include "UseTheForce/mpiComponentPlan.h"
72     #include "UseTheForce/DarkSide/simParallel_interface.h"
73     #endif
74 gezelter 1490
75 gezelter 1930 namespace oopse {
76 tim 2448 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77     std::map<int, std::set<int> >::iterator i = container.find(index);
78     std::set<int> result;
79     if (i != container.end()) {
80     result = i->second;
81     }
82 gezelter 1490
83 tim 2448 return result;
84     }
85    
86 tim 2469 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
87     forceField_(ff), simParams_(simParams),
88 gezelter 2733 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89 gezelter 2204 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
92     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
93 chrisfen 2917 sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
94 gezelter 1490
95 gezelter 2204 MoleculeStamp* molStamp;
96     int nMolWithSameStamp;
97     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 chrisfen 2344 int nGroups = 0; //total cutoff groups defined in meta-data file
99 gezelter 2204 CutoffGroupStamp* cgStamp;
100     RigidBodyStamp* rbStamp;
101     int nRigidAtoms = 0;
102 tim 2469 std::vector<Component*> components = simParams->getComponents();
103    
104     for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
105     molStamp = (*i)->getMoleculeStamp();
106     nMolWithSameStamp = (*i)->getNMol();
107 gezelter 1930
108     addMoleculeStamp(molStamp, nMolWithSameStamp);
109 gezelter 1490
110 gezelter 1930 //calculate atoms in molecules
111     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
112 gezelter 1490
113 gezelter 1930 //calculate atoms in cutoff groups
114     int nAtomsInGroups = 0;
115     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116    
117     for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 tim 2469 cgStamp = molStamp->getCutoffGroupStamp(j);
119 gezelter 2204 nAtomsInGroups += cgStamp->getNMembers();
120 gezelter 1930 }
121 gezelter 1490
122 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123 chrisfen 2344
124 gezelter 1930 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
125 gezelter 1490
126 gezelter 1930 //calculate atoms in rigid bodies
127     int nAtomsInRigidBodies = 0;
128 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129 gezelter 1930
130     for (int j=0; j < nRigidBodiesInStamp; j++) {
131 tim 2469 rbStamp = molStamp->getRigidBodyStamp(j);
132 gezelter 2204 nAtomsInRigidBodies += rbStamp->getNMembers();
133 gezelter 1930 }
134 gezelter 1490
135 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
137    
138 gezelter 2204 }
139 chrisfen 1636
140 chrisfen 2344 //every free atom (atom does not belong to cutoff groups) is a cutoff
141     //group therefore the total number of cutoff groups in the system is
142     //equal to the total number of atoms minus number of atoms belong to
143     //cutoff group defined in meta-data file plus the number of cutoff
144     //groups defined in meta-data file
145 gezelter 2204 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
146 gezelter 1490
147 chrisfen 2344 //every free atom (atom does not belong to rigid bodies) is an
148     //integrable object therefore the total number of integrable objects
149     //in the system is equal to the total number of atoms minus number of
150     //atoms belong to rigid body defined in meta-data file plus the number
151     //of rigid bodies defined in meta-data file
152     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
153     + nGlobalRigidBodies_;
154    
155 gezelter 2204 nGlobalMols_ = molStampIds_.size();
156 gezelter 1490
157 gezelter 1930 #ifdef IS_MPI
158 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
159 gezelter 1930 #endif
160 tim 1976
161 gezelter 2204 }
162 gezelter 1490
163 gezelter 2204 SimInfo::~SimInfo() {
164 tim 2082 std::map<int, Molecule*>::iterator i;
165     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166 gezelter 2204 delete i->second;
167 tim 2082 }
168     molecules_.clear();
169 tim 2187
170 gezelter 1930 delete sman_;
171     delete simParams_;
172     delete forceField_;
173 gezelter 2204 }
174 gezelter 1490
175 gezelter 2204 int SimInfo::getNGlobalConstraints() {
176 gezelter 1930 int nGlobalConstraints;
177     #ifdef IS_MPI
178     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
179     MPI_COMM_WORLD);
180     #else
181     nGlobalConstraints = nConstraints_;
182     #endif
183     return nGlobalConstraints;
184 gezelter 2204 }
185 gezelter 1490
186 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
187 gezelter 1930 MoleculeIterator i;
188 gezelter 1490
189 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
190     if (i == molecules_.end() ) {
191 gezelter 1490
192 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
193 gezelter 1930
194 gezelter 2204 nAtoms_ += mol->getNAtoms();
195     nBonds_ += mol->getNBonds();
196     nBends_ += mol->getNBends();
197     nTorsions_ += mol->getNTorsions();
198     nRigidBodies_ += mol->getNRigidBodies();
199     nIntegrableObjects_ += mol->getNIntegrableObjects();
200     nCutoffGroups_ += mol->getNCutoffGroups();
201     nConstraints_ += mol->getNConstraintPairs();
202 gezelter 1490
203 gezelter 2204 addExcludePairs(mol);
204 gezelter 1930
205 gezelter 2204 return true;
206 gezelter 1930 } else {
207 gezelter 2204 return false;
208 gezelter 1930 }
209 gezelter 2204 }
210 gezelter 1490
211 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
212 gezelter 1930 MoleculeIterator i;
213     i = molecules_.find(mol->getGlobalIndex());
214 gezelter 1490
215 gezelter 1930 if (i != molecules_.end() ) {
216 gezelter 1490
217 gezelter 2204 assert(mol == i->second);
218 gezelter 1930
219 gezelter 2204 nAtoms_ -= mol->getNAtoms();
220     nBonds_ -= mol->getNBonds();
221     nBends_ -= mol->getNBends();
222     nTorsions_ -= mol->getNTorsions();
223     nRigidBodies_ -= mol->getNRigidBodies();
224     nIntegrableObjects_ -= mol->getNIntegrableObjects();
225     nCutoffGroups_ -= mol->getNCutoffGroups();
226     nConstraints_ -= mol->getNConstraintPairs();
227 gezelter 1490
228 gezelter 2204 removeExcludePairs(mol);
229     molecules_.erase(mol->getGlobalIndex());
230 gezelter 1490
231 gezelter 2204 delete mol;
232 gezelter 1930
233 gezelter 2204 return true;
234 gezelter 1930 } else {
235 gezelter 2204 return false;
236 gezelter 1930 }
237    
238    
239 gezelter 2204 }
240 gezelter 1930
241    
242 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
243 gezelter 1930 i = molecules_.begin();
244     return i == molecules_.end() ? NULL : i->second;
245 gezelter 2204 }
246 gezelter 1930
247 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
248 gezelter 1930 ++i;
249     return i == molecules_.end() ? NULL : i->second;
250 gezelter 2204 }
251 gezelter 1490
252    
253 gezelter 2204 void SimInfo::calcNdf() {
254 gezelter 1930 int ndf_local;
255     MoleculeIterator i;
256     std::vector<StuntDouble*>::iterator j;
257     Molecule* mol;
258     StuntDouble* integrableObject;
259 gezelter 1490
260 gezelter 1930 ndf_local = 0;
261    
262     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
263 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264     integrableObject = mol->nextIntegrableObject(j)) {
265 gezelter 1490
266 gezelter 2204 ndf_local += 3;
267 gezelter 1490
268 gezelter 2204 if (integrableObject->isDirectional()) {
269     if (integrableObject->isLinear()) {
270     ndf_local += 2;
271     } else {
272     ndf_local += 3;
273     }
274     }
275 gezelter 1930
276 tim 2469 }
277     }
278 gezelter 1930
279     // n_constraints is local, so subtract them on each processor
280     ndf_local -= nConstraints_;
281    
282     #ifdef IS_MPI
283     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284     #else
285     ndf_ = ndf_local;
286     #endif
287    
288     // nZconstraints_ is global, as are the 3 COM translations for the
289     // entire system:
290     ndf_ = ndf_ - 3 - nZconstraint_;
291    
292 gezelter 2204 }
293 gezelter 1490
294 gezelter 2733 int SimInfo::getFdf() {
295     #ifdef IS_MPI
296     MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
297     #else
298     fdf_ = fdf_local;
299     #endif
300     return fdf_;
301     }
302    
303 gezelter 2204 void SimInfo::calcNdfRaw() {
304 gezelter 1930 int ndfRaw_local;
305 gezelter 1490
306 gezelter 1930 MoleculeIterator i;
307     std::vector<StuntDouble*>::iterator j;
308     Molecule* mol;
309     StuntDouble* integrableObject;
310    
311     // Raw degrees of freedom that we have to set
312     ndfRaw_local = 0;
313    
314     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
315 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316     integrableObject = mol->nextIntegrableObject(j)) {
317 gezelter 1930
318 gezelter 2204 ndfRaw_local += 3;
319 gezelter 1930
320 gezelter 2204 if (integrableObject->isDirectional()) {
321     if (integrableObject->isLinear()) {
322     ndfRaw_local += 2;
323     } else {
324     ndfRaw_local += 3;
325     }
326     }
327 gezelter 1930
328 gezelter 2204 }
329 gezelter 1930 }
330    
331     #ifdef IS_MPI
332     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
333     #else
334     ndfRaw_ = ndfRaw_local;
335     #endif
336 gezelter 2204 }
337 gezelter 1490
338 gezelter 2204 void SimInfo::calcNdfTrans() {
339 gezelter 1930 int ndfTrans_local;
340 gezelter 1490
341 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
342 gezelter 1490
343    
344 gezelter 1930 #ifdef IS_MPI
345     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
346     #else
347     ndfTrans_ = ndfTrans_local;
348     #endif
349 gezelter 1490
350 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
351    
352 gezelter 2204 }
353 gezelter 1490
354 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
355 gezelter 1930 std::vector<Bond*>::iterator bondIter;
356     std::vector<Bend*>::iterator bendIter;
357     std::vector<Torsion*>::iterator torsionIter;
358     Bond* bond;
359     Bend* bend;
360     Torsion* torsion;
361     int a;
362     int b;
363     int c;
364     int d;
365 tim 2448
366     std::map<int, std::set<int> > atomGroups;
367    
368     Molecule::RigidBodyIterator rbIter;
369     RigidBody* rb;
370     Molecule::IntegrableObjectIterator ii;
371     StuntDouble* integrableObject;
372 gezelter 1930
373 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
374     integrableObject = mol->nextIntegrableObject(ii)) {
375    
376     if (integrableObject->isRigidBody()) {
377     rb = static_cast<RigidBody*>(integrableObject);
378     std::vector<Atom*> atoms = rb->getAtoms();
379     std::set<int> rigidAtoms;
380     for (int i = 0; i < atoms.size(); ++i) {
381     rigidAtoms.insert(atoms[i]->getGlobalIndex());
382     }
383     for (int i = 0; i < atoms.size(); ++i) {
384     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385     }
386     } else {
387     std::set<int> oneAtomSet;
388     oneAtomSet.insert(integrableObject->getGlobalIndex());
389     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
390     }
391     }
392    
393    
394    
395 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
396 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
397     b = bond->getAtomB()->getGlobalIndex();
398     exclude_.addPair(a, b);
399 gezelter 1930 }
400 gezelter 1490
401 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
402 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
403     b = bend->getAtomB()->getGlobalIndex();
404     c = bend->getAtomC()->getGlobalIndex();
405 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408 gezelter 1490
409 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
410     exclude_.addPairs(rigidSetA, rigidSetC);
411     exclude_.addPairs(rigidSetB, rigidSetC);
412    
413     //exclude_.addPair(a, b);
414     //exclude_.addPair(a, c);
415     //exclude_.addPair(b, c);
416 gezelter 1930 }
417 gezelter 1490
418 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
419 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
420     b = torsion->getAtomB()->getGlobalIndex();
421     c = torsion->getAtomC()->getGlobalIndex();
422     d = torsion->getAtomD()->getGlobalIndex();
423 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
427 gezelter 1490
428 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
429     exclude_.addPairs(rigidSetA, rigidSetC);
430     exclude_.addPairs(rigidSetA, rigidSetD);
431     exclude_.addPairs(rigidSetB, rigidSetC);
432     exclude_.addPairs(rigidSetB, rigidSetD);
433     exclude_.addPairs(rigidSetC, rigidSetD);
434    
435     /*
436     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
437     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
438     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
439     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
440     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
441     exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
442    
443    
444 gezelter 2204 exclude_.addPair(a, b);
445     exclude_.addPair(a, c);
446     exclude_.addPair(a, d);
447     exclude_.addPair(b, c);
448     exclude_.addPair(b, d);
449     exclude_.addPair(c, d);
450 tim 2448 */
451 gezelter 1490 }
452    
453 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
454 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
455     for (int i = 0; i < atoms.size() -1 ; ++i) {
456     for (int j = i + 1; j < atoms.size(); ++j) {
457     a = atoms[i]->getGlobalIndex();
458     b = atoms[j]->getGlobalIndex();
459     exclude_.addPair(a, b);
460     }
461     }
462 tim 2114 }
463    
464 gezelter 2204 }
465 gezelter 1930
466 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
467 gezelter 1930 std::vector<Bond*>::iterator bondIter;
468     std::vector<Bend*>::iterator bendIter;
469     std::vector<Torsion*>::iterator torsionIter;
470     Bond* bond;
471     Bend* bend;
472     Torsion* torsion;
473     int a;
474     int b;
475     int c;
476     int d;
477 tim 2448
478     std::map<int, std::set<int> > atomGroups;
479    
480     Molecule::RigidBodyIterator rbIter;
481     RigidBody* rb;
482     Molecule::IntegrableObjectIterator ii;
483     StuntDouble* integrableObject;
484 gezelter 1930
485 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
486     integrableObject = mol->nextIntegrableObject(ii)) {
487    
488     if (integrableObject->isRigidBody()) {
489     rb = static_cast<RigidBody*>(integrableObject);
490     std::vector<Atom*> atoms = rb->getAtoms();
491     std::set<int> rigidAtoms;
492     for (int i = 0; i < atoms.size(); ++i) {
493     rigidAtoms.insert(atoms[i]->getGlobalIndex());
494     }
495     for (int i = 0; i < atoms.size(); ++i) {
496     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
497     }
498     } else {
499     std::set<int> oneAtomSet;
500     oneAtomSet.insert(integrableObject->getGlobalIndex());
501     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
502     }
503     }
504    
505    
506 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
507 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
508     b = bond->getAtomB()->getGlobalIndex();
509     exclude_.removePair(a, b);
510 gezelter 1490 }
511 gezelter 1930
512     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
513 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
514     b = bend->getAtomB()->getGlobalIndex();
515     c = bend->getAtomC()->getGlobalIndex();
516 gezelter 1930
517 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520    
521     exclude_.removePairs(rigidSetA, rigidSetB);
522     exclude_.removePairs(rigidSetA, rigidSetC);
523     exclude_.removePairs(rigidSetB, rigidSetC);
524    
525     //exclude_.removePair(a, b);
526     //exclude_.removePair(a, c);
527     //exclude_.removePair(b, c);
528 gezelter 1490 }
529 gezelter 1930
530     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
531 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
532     b = torsion->getAtomB()->getGlobalIndex();
533     c = torsion->getAtomC()->getGlobalIndex();
534     d = torsion->getAtomD()->getGlobalIndex();
535 gezelter 1930
536 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
537     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
538     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
539     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
540    
541     exclude_.removePairs(rigidSetA, rigidSetB);
542     exclude_.removePairs(rigidSetA, rigidSetC);
543     exclude_.removePairs(rigidSetA, rigidSetD);
544     exclude_.removePairs(rigidSetB, rigidSetC);
545     exclude_.removePairs(rigidSetB, rigidSetD);
546     exclude_.removePairs(rigidSetC, rigidSetD);
547    
548     /*
549     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554     exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
555    
556    
557 gezelter 2204 exclude_.removePair(a, b);
558     exclude_.removePair(a, c);
559     exclude_.removePair(a, d);
560     exclude_.removePair(b, c);
561     exclude_.removePair(b, d);
562     exclude_.removePair(c, d);
563 tim 2448 */
564 gezelter 1930 }
565    
566 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
567 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
568     for (int i = 0; i < atoms.size() -1 ; ++i) {
569     for (int j = i + 1; j < atoms.size(); ++j) {
570     a = atoms[i]->getGlobalIndex();
571     b = atoms[j]->getGlobalIndex();
572     exclude_.removePair(a, b);
573     }
574     }
575 tim 2114 }
576    
577 gezelter 2204 }
578 gezelter 1490
579    
580 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
581 gezelter 1930 int curStampId;
582 gezelter 1490
583 gezelter 1930 //index from 0
584     curStampId = moleculeStamps_.size();
585 gezelter 1490
586 gezelter 1930 moleculeStamps_.push_back(molStamp);
587     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
588 gezelter 2204 }
589 gezelter 1490
590 gezelter 2204 void SimInfo::update() {
591 gezelter 1490
592 gezelter 1930 setupSimType();
593 gezelter 1490
594 gezelter 1930 #ifdef IS_MPI
595     setupFortranParallel();
596     #endif
597 gezelter 1490
598 gezelter 1930 setupFortranSim();
599 gezelter 1490
600 gezelter 1930 //setup fortran force field
601     /** @deprecate */
602     int isError = 0;
603 chrisfen 2297
604 chrisfen 3013 setupCutoff();
605    
606 chrisfen 2302 setupElectrostaticSummationMethod( isError );
607 chrisfen 2425 setupSwitchingFunction();
608 chrisfen 2917 setupAccumulateBoxDipole();
609 chrisfen 2297
610 gezelter 1930 if(isError){
611 gezelter 2204 sprintf( painCave.errMsg,
612     "ForceField error: There was an error initializing the forceField in fortran.\n" );
613     painCave.isFatal = 1;
614     simError();
615 gezelter 1930 }
616 gezelter 1490
617 gezelter 1930 calcNdf();
618     calcNdfRaw();
619     calcNdfTrans();
620    
621     fortranInitialized_ = true;
622 gezelter 2204 }
623 gezelter 1490
624 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
625 gezelter 1930 SimInfo::MoleculeIterator mi;
626     Molecule* mol;
627     Molecule::AtomIterator ai;
628     Atom* atom;
629     std::set<AtomType*> atomTypes;
630 gezelter 1490
631 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
632 gezelter 1490
633 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
634     atomTypes.insert(atom->getAtomType());
635     }
636 gezelter 1930
637     }
638 gezelter 1490
639 gezelter 1930 return atomTypes;
640 gezelter 2204 }
641 gezelter 1490
642 gezelter 2204 void SimInfo::setupSimType() {
643 gezelter 1930 std::set<AtomType*>::iterator i;
644     std::set<AtomType*> atomTypes;
645     atomTypes = getUniqueAtomTypes();
646 gezelter 1490
647 gezelter 1930 int useLennardJones = 0;
648     int useElectrostatic = 0;
649     int useEAM = 0;
650 chuckv 2433 int useSC = 0;
651 gezelter 1930 int useCharge = 0;
652     int useDirectional = 0;
653     int useDipole = 0;
654     int useGayBerne = 0;
655     int useSticky = 0;
656 chrisfen 2220 int useStickyPower = 0;
657 gezelter 1930 int useShape = 0;
658     int useFLARB = 0; //it is not in AtomType yet
659     int useDirectionalAtom = 0;
660     int useElectrostatics = 0;
661     //usePBC and useRF are from simParams
662 tim 2364 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 chrisfen 2310 int useRF;
664 chrisfen 2419 int useSF;
665 chrisfen 2917 int useSP;
666     int useBoxDipole;
667 tim 2364 std::string myMethod;
668 gezelter 1490
669 chrisfen 2310 // set the useRF logical
670 tim 2364 useRF = 0;
671 chrisfen 2419 useSF = 0;
672 gezelter 3054 useSP = 0;
673 chrisfen 2390
674    
675 tim 2364 if (simParams_->haveElectrostaticSummationMethod()) {
676 chrisfen 2390 std::string myMethod = simParams_->getElectrostaticSummationMethod();
677     toUpper(myMethod);
678 chrisfen 2917 if (myMethod == "REACTION_FIELD"){
679 gezelter 3054 useRF = 1;
680 chrisfen 2917 } else if (myMethod == "SHIFTED_FORCE"){
681     useSF = 1;
682     } else if (myMethod == "SHIFTED_POTENTIAL"){
683     useSP = 1;
684 chrisfen 2390 }
685 tim 2364 }
686 chrisfen 2917
687     if (simParams_->haveAccumulateBoxDipole())
688     if (simParams_->getAccumulateBoxDipole())
689     useBoxDipole = 1;
690 chrisfen 2310
691 gezelter 1930 //loop over all of the atom types
692     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
693 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
694     useElectrostatic |= (*i)->isElectrostatic();
695     useEAM |= (*i)->isEAM();
696 chuckv 2433 useSC |= (*i)->isSC();
697 gezelter 2204 useCharge |= (*i)->isCharge();
698     useDirectional |= (*i)->isDirectional();
699     useDipole |= (*i)->isDipole();
700     useGayBerne |= (*i)->isGayBerne();
701     useSticky |= (*i)->isSticky();
702 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
703 gezelter 2204 useShape |= (*i)->isShape();
704 gezelter 1930 }
705 gezelter 1490
706 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
707 gezelter 2204 useDirectionalAtom = 1;
708 gezelter 1930 }
709 gezelter 1490
710 gezelter 1930 if (useCharge || useDipole) {
711 gezelter 2204 useElectrostatics = 1;
712 gezelter 1930 }
713 gezelter 1490
714 gezelter 1930 #ifdef IS_MPI
715     int temp;
716 gezelter 1490
717 gezelter 1930 temp = usePBC;
718     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
719 gezelter 1490
720 gezelter 1930 temp = useDirectionalAtom;
721     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
722 gezelter 1490
723 gezelter 1930 temp = useLennardJones;
724     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
725 gezelter 1490
726 gezelter 1930 temp = useElectrostatics;
727     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
728 gezelter 1490
729 gezelter 1930 temp = useCharge;
730     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
731 gezelter 1490
732 gezelter 1930 temp = useDipole;
733     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
734 gezelter 1490
735 gezelter 1930 temp = useSticky;
736     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
737 gezelter 1490
738 chrisfen 2220 temp = useStickyPower;
739     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
740    
741 gezelter 1930 temp = useGayBerne;
742     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
743 gezelter 1490
744 gezelter 1930 temp = useEAM;
745     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
746 gezelter 1490
747 chuckv 2433 temp = useSC;
748     MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
749    
750 gezelter 1930 temp = useShape;
751     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
752    
753     temp = useFLARB;
754     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
755    
756 chrisfen 2310 temp = useRF;
757     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
758    
759 chrisfen 2419 temp = useSF;
760 chrisfen 2917 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
761 chrisfen 2404
762 chrisfen 2917 temp = useSP;
763     MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
764    
765     temp = useBoxDipole;
766     MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
767    
768 gezelter 1490 #endif
769    
770 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
771     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
772     fInfo_.SIM_uses_LennardJones = useLennardJones;
773     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
774     fInfo_.SIM_uses_Charges = useCharge;
775     fInfo_.SIM_uses_Dipoles = useDipole;
776     fInfo_.SIM_uses_Sticky = useSticky;
777 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
778 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
779     fInfo_.SIM_uses_EAM = useEAM;
780 chuckv 2433 fInfo_.SIM_uses_SC = useSC;
781 gezelter 1930 fInfo_.SIM_uses_Shapes = useShape;
782     fInfo_.SIM_uses_FLARB = useFLARB;
783 chrisfen 2310 fInfo_.SIM_uses_RF = useRF;
784 chrisfen 2419 fInfo_.SIM_uses_SF = useSF;
785 chrisfen 2917 fInfo_.SIM_uses_SP = useSP;
786     fInfo_.SIM_uses_BoxDipole = useBoxDipole;
787 gezelter 2204 }
788 gezelter 1490
789 gezelter 2204 void SimInfo::setupFortranSim() {
790 gezelter 1930 int isError;
791     int nExclude;
792     std::vector<int> fortranGlobalGroupMembership;
793    
794     nExclude = exclude_.getSize();
795     isError = 0;
796 gezelter 1490
797 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
798     for (int i = 0; i < nGlobalAtoms_; i++) {
799 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
800 gezelter 1930 }
801 gezelter 1490
802 gezelter 1930 //calculate mass ratio of cutoff group
803 tim 2759 std::vector<RealType> mfact;
804 gezelter 1930 SimInfo::MoleculeIterator mi;
805     Molecule* mol;
806     Molecule::CutoffGroupIterator ci;
807     CutoffGroup* cg;
808     Molecule::AtomIterator ai;
809     Atom* atom;
810 tim 2759 RealType totalMass;
811 gezelter 1930
812     //to avoid memory reallocation, reserve enough space for mfact
813     mfact.reserve(getNCutoffGroups());
814 gezelter 1490
815 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
816 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
817 gezelter 1490
818 gezelter 2204 totalMass = cg->getMass();
819     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
820 chrisfen 2344 // Check for massless groups - set mfact to 1 if true
821     if (totalMass != 0)
822     mfact.push_back(atom->getMass()/totalMass);
823     else
824     mfact.push_back( 1.0 );
825 gezelter 2204 }
826 gezelter 1490
827 gezelter 2204 }
828 gezelter 1930 }
829 gezelter 1490
830 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
831     std::vector<int> identArray;
832 gezelter 1490
833 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
834     identArray.reserve(getNAtoms());
835    
836     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
837 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
838     identArray.push_back(atom->getIdent());
839     }
840 gezelter 1930 }
841 gezelter 1490
842 gezelter 1930 //fill molMembershipArray
843     //molMembershipArray is filled by SimCreator
844     std::vector<int> molMembershipArray(nGlobalAtoms_);
845     for (int i = 0; i < nGlobalAtoms_; i++) {
846 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
847 gezelter 1930 }
848    
849     //setup fortran simulation
850     int nGlobalExcludes = 0;
851     int* globalExcludes = NULL;
852     int* excludeList = exclude_.getExcludeList();
853     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
854 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
855     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
856 gezelter 1490
857 gezelter 1930 if( isError ){
858 gezelter 1490
859 gezelter 2204 sprintf( painCave.errMsg,
860     "There was an error setting the simulation information in fortran.\n" );
861     painCave.isFatal = 1;
862     painCave.severity = OOPSE_ERROR;
863     simError();
864 gezelter 1930 }
865    
866     #ifdef IS_MPI
867     sprintf( checkPointMsg,
868 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
869 gezelter 1930 MPIcheckPoint();
870     #endif // is_mpi
871 gezelter 2204 }
872 gezelter 1490
873    
874 gezelter 1930 #ifdef IS_MPI
875 gezelter 2204 void SimInfo::setupFortranParallel() {
876 gezelter 1930
877     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
878     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
879     std::vector<int> localToGlobalCutoffGroupIndex;
880     SimInfo::MoleculeIterator mi;
881     Molecule::AtomIterator ai;
882     Molecule::CutoffGroupIterator ci;
883     Molecule* mol;
884     Atom* atom;
885     CutoffGroup* cg;
886     mpiSimData parallelData;
887     int isError;
888 gezelter 1490
889 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
890 gezelter 1490
891 gezelter 2204 //local index(index in DataStorge) of atom is important
892     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
894     }
895 gezelter 1490
896 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
897     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
898     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
899     }
900 gezelter 1930
901     }
902 gezelter 1490
903 gezelter 1930 //fill up mpiSimData struct
904     parallelData.nMolGlobal = getNGlobalMolecules();
905     parallelData.nMolLocal = getNMolecules();
906     parallelData.nAtomsGlobal = getNGlobalAtoms();
907     parallelData.nAtomsLocal = getNAtoms();
908     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
909     parallelData.nGroupsLocal = getNCutoffGroups();
910     parallelData.myNode = worldRank;
911     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
912 gezelter 1490
913 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
914     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
915     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
916     &localToGlobalCutoffGroupIndex[0], &isError);
917 gezelter 1490
918 gezelter 1930 if (isError) {
919 gezelter 2204 sprintf(painCave.errMsg,
920     "mpiRefresh errror: fortran didn't like something we gave it.\n");
921     painCave.isFatal = 1;
922     simError();
923 gezelter 1930 }
924 gezelter 1490
925 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
926     MPIcheckPoint();
927 gezelter 1490
928    
929 gezelter 2204 }
930 chrisfen 1636
931 gezelter 1930 #endif
932 chrisfen 1636
933 gezelter 2463 void SimInfo::setupCutoff() {
934 gezelter 1490
935 chuckv 2533 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
936    
937 gezelter 2463 // Check the cutoff policy
938 chuckv 2533 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
939    
940     std::string myPolicy;
941     if (forceFieldOptions_.haveCutoffPolicy()){
942     myPolicy = forceFieldOptions_.getCutoffPolicy();
943     }else if (simParams_->haveCutoffPolicy()) {
944     myPolicy = simParams_->getCutoffPolicy();
945     }
946    
947     if (!myPolicy.empty()){
948 tim 2364 toUpper(myPolicy);
949 gezelter 2285 if (myPolicy == "MIX") {
950     cp = MIX_CUTOFF_POLICY;
951     } else {
952     if (myPolicy == "MAX") {
953     cp = MAX_CUTOFF_POLICY;
954     } else {
955     if (myPolicy == "TRADITIONAL") {
956     cp = TRADITIONAL_CUTOFF_POLICY;
957     } else {
958     // throw error
959     sprintf( painCave.errMsg,
960     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
961     painCave.isFatal = 1;
962     simError();
963     }
964     }
965     }
966 gezelter 2463 }
967     notifyFortranCutoffPolicy(&cp);
968 chuckv 2328
969 gezelter 2463 // Check the Skin Thickness for neighborlists
970 tim 2759 RealType skin;
971 gezelter 2463 if (simParams_->haveSkinThickness()) {
972     skin = simParams_->getSkinThickness();
973     notifyFortranSkinThickness(&skin);
974     }
975    
976     // Check if the cutoff was set explicitly:
977     if (simParams_->haveCutoffRadius()) {
978     rcut_ = simParams_->getCutoffRadius();
979     if (simParams_->haveSwitchingRadius()) {
980     rsw_ = simParams_->getSwitchingRadius();
981     } else {
982 chrisfen 2578 if (fInfo_.SIM_uses_Charges |
983     fInfo_.SIM_uses_Dipoles |
984     fInfo_.SIM_uses_RF) {
985    
986     rsw_ = 0.85 * rcut_;
987     sprintf(painCave.errMsg,
988     "SimCreator Warning: No value was set for the switchingRadius.\n"
989 chrisfen 2579 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
990 chrisfen 2578 "\tswitchingRadius = %f. for this simulation\n", rsw_);
991     painCave.isFatal = 0;
992     simError();
993     } else {
994     rsw_ = rcut_;
995     sprintf(painCave.errMsg,
996     "SimCreator Warning: No value was set for the switchingRadius.\n"
997     "\tOOPSE will use the same value as the cutoffRadius.\n"
998     "\tswitchingRadius = %f. for this simulation\n", rsw_);
999     painCave.isFatal = 0;
1000     simError();
1001     }
1002 chrisfen 2579 }
1003    
1004 gezelter 2463 notifyFortranCutoffs(&rcut_, &rsw_);
1005    
1006     } else {
1007    
1008     // For electrostatic atoms, we'll assume a large safe value:
1009     if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1010     sprintf(painCave.errMsg,
1011     "SimCreator Warning: No value was set for the cutoffRadius.\n"
1012     "\tOOPSE will use a default value of 15.0 angstroms"
1013     "\tfor the cutoffRadius.\n");
1014     painCave.isFatal = 0;
1015     simError();
1016     rcut_ = 15.0;
1017    
1018     if (simParams_->haveElectrostaticSummationMethod()) {
1019     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1020     toUpper(myMethod);
1021     if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1022     if (simParams_->haveSwitchingRadius()){
1023     sprintf(painCave.errMsg,
1024     "SimInfo Warning: A value was set for the switchingRadius\n"
1025     "\teven though the electrostaticSummationMethod was\n"
1026     "\tset to %s\n", myMethod.c_str());
1027     painCave.isFatal = 1;
1028     simError();
1029     }
1030     }
1031     }
1032    
1033     if (simParams_->haveSwitchingRadius()){
1034     rsw_ = simParams_->getSwitchingRadius();
1035     } else {
1036     sprintf(painCave.errMsg,
1037     "SimCreator Warning: No value was set for switchingRadius.\n"
1038     "\tOOPSE will use a default value of\n"
1039     "\t0.85 * cutoffRadius for the switchingRadius\n");
1040     painCave.isFatal = 0;
1041     simError();
1042     rsw_ = 0.85 * rcut_;
1043     }
1044     notifyFortranCutoffs(&rcut_, &rsw_);
1045     } else {
1046     // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1047     // We'll punt and let fortran figure out the cutoffs later.
1048    
1049     notifyFortranYouAreOnYourOwn();
1050 chuckv 2328
1051 gezelter 2463 }
1052 chuckv 2328 }
1053 gezelter 2204 }
1054 gezelter 1490
1055 chrisfen 2302 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1056 chrisfen 2297
1057     int errorOut;
1058 chrisfen 2302 int esm = NONE;
1059 chrisfen 2408 int sm = UNDAMPED;
1060 tim 2759 RealType alphaVal;
1061     RealType dielectric;
1062 chrisfen 3013
1063 chrisfen 2297 errorOut = isError;
1064    
1065 chrisfen 2302 if (simParams_->haveElectrostaticSummationMethod()) {
1066 chrisfen 2303 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1067 tim 2364 toUpper(myMethod);
1068 chrisfen 2302 if (myMethod == "NONE") {
1069     esm = NONE;
1070 chrisfen 2297 } else {
1071 chrisfen 2408 if (myMethod == "SWITCHING_FUNCTION") {
1072     esm = SWITCHING_FUNCTION;
1073 chrisfen 2297 } else {
1074 chrisfen 2408 if (myMethod == "SHIFTED_POTENTIAL") {
1075     esm = SHIFTED_POTENTIAL;
1076     } else {
1077     if (myMethod == "SHIFTED_FORCE") {
1078     esm = SHIFTED_FORCE;
1079 chrisfen 2297 } else {
1080 chrisfen 3020 if (myMethod == "REACTION_FIELD") {
1081 chrisfen 2408 esm = REACTION_FIELD;
1082 chrisfen 3020 dielectric = simParams_->getDielectric();
1083     if (!simParams_->haveDielectric()) {
1084     // throw warning
1085     sprintf( painCave.errMsg,
1086     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1087     "\tA default value of %f will be used for the dielectric.\n", dielectric);
1088     painCave.isFatal = 0;
1089     simError();
1090     }
1091 chrisfen 2408 } else {
1092     // throw error
1093     sprintf( painCave.errMsg,
1094 gezelter 2463 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1095     "\t(Input file specified %s .)\n"
1096     "\telectrostaticSummationMethod must be one of: \"none\",\n"
1097     "\t\"shifted_potential\", \"shifted_force\", or \n"
1098     "\t\"reaction_field\".\n", myMethod.c_str() );
1099 chrisfen 2408 painCave.isFatal = 1;
1100     simError();
1101     }
1102     }
1103     }
1104 chrisfen 2297 }
1105     }
1106     }
1107 chrisfen 2408
1108 chrisfen 2415 if (simParams_->haveElectrostaticScreeningMethod()) {
1109     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1110 chrisfen 2408 toUpper(myScreen);
1111     if (myScreen == "UNDAMPED") {
1112     sm = UNDAMPED;
1113     } else {
1114     if (myScreen == "DAMPED") {
1115     sm = DAMPED;
1116     if (!simParams_->haveDampingAlpha()) {
1117 chrisfen 3013 // first set a cutoff dependent alpha value
1118     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1119     alphaVal = 0.5125 - rcut_* 0.025;
1120     // for values rcut > 20.5, alpha is zero
1121     if (alphaVal < 0) alphaVal = 0;
1122    
1123     // throw warning
1124 chrisfen 2408 sprintf( painCave.errMsg,
1125 gezelter 2463 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1126 chrisfen 3013 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1127 chrisfen 2408 painCave.isFatal = 0;
1128     simError();
1129     }
1130 chrisfen 2415 } else {
1131     // throw error
1132     sprintf( painCave.errMsg,
1133 gezelter 2463 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1134     "\t(Input file specified %s .)\n"
1135     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1136     "or \"damped\".\n", myScreen.c_str() );
1137 chrisfen 2415 painCave.isFatal = 1;
1138     simError();
1139 chrisfen 2408 }
1140     }
1141     }
1142 chrisfen 2415
1143 chrisfen 2309 // let's pass some summation method variables to fortran
1144 chrisfen 2552 setElectrostaticSummationMethod( &esm );
1145 gezelter 2508 setFortranElectrostaticMethod( &esm );
1146 chrisfen 2408 setScreeningMethod( &sm );
1147     setDampingAlpha( &alphaVal );
1148 chrisfen 2309 setReactionFieldDielectric( &dielectric );
1149 gezelter 2463 initFortranFF( &errorOut );
1150 chrisfen 2297 }
1151    
1152 chrisfen 2425 void SimInfo::setupSwitchingFunction() {
1153     int ft = CUBIC;
1154    
1155     if (simParams_->haveSwitchingFunctionType()) {
1156     std::string funcType = simParams_->getSwitchingFunctionType();
1157     toUpper(funcType);
1158     if (funcType == "CUBIC") {
1159     ft = CUBIC;
1160     } else {
1161     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1162     ft = FIFTH_ORDER_POLY;
1163     } else {
1164     // throw error
1165     sprintf( painCave.errMsg,
1166     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1167     painCave.isFatal = 1;
1168     simError();
1169     }
1170     }
1171     }
1172    
1173     // send switching function notification to switcheroo
1174     setFunctionType(&ft);
1175    
1176     }
1177    
1178 chrisfen 2917 void SimInfo::setupAccumulateBoxDipole() {
1179    
1180     // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1181     if ( simParams_->haveAccumulateBoxDipole() )
1182     if ( simParams_->getAccumulateBoxDipole() ) {
1183     setAccumulateBoxDipole();
1184     calcBoxDipole_ = true;
1185     }
1186    
1187     }
1188    
1189 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
1190 gezelter 1930 properties_.addProperty(genData);
1191 gezelter 2204 }
1192 gezelter 1490
1193 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
1194 gezelter 1930 properties_.removeProperty(propName);
1195 gezelter 2204 }
1196 gezelter 1490
1197 gezelter 2204 void SimInfo::clearProperties() {
1198 gezelter 1930 properties_.clearProperties();
1199 gezelter 2204 }
1200 gezelter 1490
1201 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
1202 gezelter 1930 return properties_.getPropertyNames();
1203 gezelter 2204 }
1204 gezelter 1930
1205 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
1206 gezelter 1930 return properties_.getProperties();
1207 gezelter 2204 }
1208 gezelter 1490
1209 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1210 gezelter 1930 return properties_.getPropertyByName(propName);
1211 gezelter 2204 }
1212 gezelter 1490
1213 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1214 tim 2116 if (sman_ == sman) {
1215 gezelter 2204 return;
1216 tim 2116 }
1217     delete sman_;
1218 gezelter 1930 sman_ = sman;
1219 gezelter 1490
1220 gezelter 1930 Molecule* mol;
1221     RigidBody* rb;
1222     Atom* atom;
1223     SimInfo::MoleculeIterator mi;
1224     Molecule::RigidBodyIterator rbIter;
1225     Molecule::AtomIterator atomIter;;
1226    
1227     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1228    
1229 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1230     atom->setSnapshotManager(sman_);
1231     }
1232 gezelter 1930
1233 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1234     rb->setSnapshotManager(sman_);
1235     }
1236 gezelter 1930 }
1237 gezelter 1490
1238 gezelter 2204 }
1239 gezelter 1490
1240 gezelter 2204 Vector3d SimInfo::getComVel(){
1241 gezelter 1930 SimInfo::MoleculeIterator i;
1242     Molecule* mol;
1243 gezelter 1490
1244 gezelter 1930 Vector3d comVel(0.0);
1245 tim 2759 RealType totalMass = 0.0;
1246 gezelter 1490
1247 gezelter 1930
1248     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1249 tim 2759 RealType mass = mol->getMass();
1250 gezelter 2204 totalMass += mass;
1251     comVel += mass * mol->getComVel();
1252 gezelter 1930 }
1253 gezelter 1490
1254 gezelter 1930 #ifdef IS_MPI
1255 tim 2759 RealType tmpMass = totalMass;
1256 gezelter 1930 Vector3d tmpComVel(comVel);
1257 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1258     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1259 gezelter 1930 #endif
1260    
1261     comVel /= totalMass;
1262    
1263     return comVel;
1264 gezelter 2204 }
1265 gezelter 1490
1266 gezelter 2204 Vector3d SimInfo::getCom(){
1267 gezelter 1930 SimInfo::MoleculeIterator i;
1268     Molecule* mol;
1269 gezelter 1490
1270 gezelter 1930 Vector3d com(0.0);
1271 tim 2759 RealType totalMass = 0.0;
1272 gezelter 1930
1273     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1274 tim 2759 RealType mass = mol->getMass();
1275 gezelter 2204 totalMass += mass;
1276     com += mass * mol->getCom();
1277 gezelter 1930 }
1278 gezelter 1490
1279     #ifdef IS_MPI
1280 tim 2759 RealType tmpMass = totalMass;
1281 gezelter 1930 Vector3d tmpCom(com);
1282 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1283     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1284 gezelter 1490 #endif
1285    
1286 gezelter 1930 com /= totalMass;
1287 gezelter 1490
1288 gezelter 1930 return com;
1289 gezelter 1490
1290 gezelter 2204 }
1291 gezelter 1930
1292 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1293 gezelter 1930
1294     return o;
1295 gezelter 2204 }
1296 chuckv 2252
1297    
1298     /*
1299     Returns center of mass and center of mass velocity in one function call.
1300     */
1301    
1302     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1303     SimInfo::MoleculeIterator i;
1304     Molecule* mol;
1305    
1306    
1307 tim 2759 RealType totalMass = 0.0;
1308 chuckv 2252
1309 gezelter 1930
1310 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1311 tim 2759 RealType mass = mol->getMass();
1312 chuckv 2252 totalMass += mass;
1313     com += mass * mol->getCom();
1314     comVel += mass * mol->getComVel();
1315     }
1316    
1317     #ifdef IS_MPI
1318 tim 2759 RealType tmpMass = totalMass;
1319 chuckv 2252 Vector3d tmpCom(com);
1320     Vector3d tmpComVel(comVel);
1321 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1322     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1324 chuckv 2252 #endif
1325    
1326     com /= totalMass;
1327     comVel /= totalMass;
1328     }
1329    
1330     /*
1331     Return intertia tensor for entire system and angular momentum Vector.
1332 chuckv 2256
1333    
1334     [ Ixx -Ixy -Ixz ]
1335     J =| -Iyx Iyy -Iyz |
1336     [ -Izx -Iyz Izz ]
1337 chuckv 2252 */
1338    
1339     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1340    
1341    
1342 tim 2759 RealType xx = 0.0;
1343     RealType yy = 0.0;
1344     RealType zz = 0.0;
1345     RealType xy = 0.0;
1346     RealType xz = 0.0;
1347     RealType yz = 0.0;
1348 chuckv 2252 Vector3d com(0.0);
1349     Vector3d comVel(0.0);
1350    
1351     getComAll(com, comVel);
1352    
1353     SimInfo::MoleculeIterator i;
1354     Molecule* mol;
1355    
1356     Vector3d thisq(0.0);
1357     Vector3d thisv(0.0);
1358    
1359 tim 2759 RealType thisMass = 0.0;
1360 chuckv 2252
1361    
1362    
1363    
1364     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1365    
1366     thisq = mol->getCom()-com;
1367     thisv = mol->getComVel()-comVel;
1368     thisMass = mol->getMass();
1369     // Compute moment of intertia coefficients.
1370     xx += thisq[0]*thisq[0]*thisMass;
1371     yy += thisq[1]*thisq[1]*thisMass;
1372     zz += thisq[2]*thisq[2]*thisMass;
1373    
1374     // compute products of intertia
1375     xy += thisq[0]*thisq[1]*thisMass;
1376     xz += thisq[0]*thisq[2]*thisMass;
1377     yz += thisq[1]*thisq[2]*thisMass;
1378    
1379     angularMomentum += cross( thisq, thisv ) * thisMass;
1380    
1381     }
1382    
1383    
1384     inertiaTensor(0,0) = yy + zz;
1385     inertiaTensor(0,1) = -xy;
1386     inertiaTensor(0,2) = -xz;
1387     inertiaTensor(1,0) = -xy;
1388 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1389 chuckv 2252 inertiaTensor(1,2) = -yz;
1390     inertiaTensor(2,0) = -xz;
1391     inertiaTensor(2,1) = -yz;
1392     inertiaTensor(2,2) = xx + yy;
1393    
1394     #ifdef IS_MPI
1395     Mat3x3d tmpI(inertiaTensor);
1396     Vector3d tmpAngMom;
1397 tim 2759 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1398     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1399 chuckv 2252 #endif
1400    
1401     return;
1402     }
1403    
1404     //Returns the angular momentum of the system
1405     Vector3d SimInfo::getAngularMomentum(){
1406    
1407     Vector3d com(0.0);
1408     Vector3d comVel(0.0);
1409     Vector3d angularMomentum(0.0);
1410    
1411     getComAll(com,comVel);
1412    
1413     SimInfo::MoleculeIterator i;
1414     Molecule* mol;
1415    
1416 chuckv 2256 Vector3d thisr(0.0);
1417     Vector3d thisp(0.0);
1418 chuckv 2252
1419 tim 2759 RealType thisMass;
1420 chuckv 2252
1421     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1422 chuckv 2256 thisMass = mol->getMass();
1423     thisr = mol->getCom()-com;
1424     thisp = (mol->getComVel()-comVel)*thisMass;
1425 chuckv 2252
1426 chuckv 2256 angularMomentum += cross( thisr, thisp );
1427    
1428 chuckv 2252 }
1429    
1430     #ifdef IS_MPI
1431     Vector3d tmpAngMom;
1432 tim 2759 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1433 chuckv 2252 #endif
1434    
1435     return angularMomentum;
1436     }
1437    
1438 tim 2982 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1439     return IOIndexToIntegrableObject.at(index);
1440     }
1441    
1442     void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1443     IOIndexToIntegrableObject= v;
1444     }
1445    
1446     /*
1447     void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1448     assert( v.size() == nAtoms_ + nRigidBodies_);
1449     sdByGlobalIndex_ = v;
1450     }
1451    
1452     StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1453     //assert(index < nAtoms_ + nRigidBodies_);
1454     return sdByGlobalIndex_.at(index);
1455     }
1456     */
1457 gezelter 1930 }//end namespace oopse
1458