ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 3080
Committed: Tue Dec 5 00:17:24 2006 UTC (17 years, 9 months ago) by chuckv
File size: 46415 byte(s)
Log Message:
Added interface to change number of neighbors in calculating neighbor list.

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 tim 2448 #include <map>
52 gezelter 1490
53 tim 1492 #include "brains/SimInfo.hpp"
54 gezelter 1930 #include "math/Vector3.hpp"
55     #include "primitives/Molecule.hpp"
56 tim 2982 #include "primitives/StuntDouble.hpp"
57 gezelter 2285 #include "UseTheForce/fCutoffPolicy.h"
58 chrisfen 2305 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 chrisfen 2415 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 chrisfen 2425 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 gezelter 1930 #include "UseTheForce/doForces_interface.h"
62 chuckv 3080 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 chrisfen 2309 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 chrisfen 2425 #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 gezelter 1930 #include "utils/MemoryUtils.hpp"
66 tim 1492 #include "utils/simError.h"
67 tim 2000 #include "selection/SelectionManager.hpp"
68 chuckv 2533 #include "io/ForceFieldOptions.hpp"
69     #include "UseTheForce/ForceField.hpp"
70 gezelter 1490
71 chuckv 3080
72 gezelter 1930 #ifdef IS_MPI
73     #include "UseTheForce/mpiComponentPlan.h"
74     #include "UseTheForce/DarkSide/simParallel_interface.h"
75     #endif
76 gezelter 1490
77 gezelter 1930 namespace oopse {
78 tim 2448 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79     std::map<int, std::set<int> >::iterator i = container.find(index);
80     std::set<int> result;
81     if (i != container.end()) {
82     result = i->second;
83     }
84 gezelter 1490
85 tim 2448 return result;
86     }
87    
88 tim 2469 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89     forceField_(ff), simParams_(simParams),
90 gezelter 2733 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 gezelter 2204 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
94     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
95 chrisfen 2917 sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
96 gezelter 1490
97 gezelter 2204 MoleculeStamp* molStamp;
98     int nMolWithSameStamp;
99     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
100 chrisfen 2344 int nGroups = 0; //total cutoff groups defined in meta-data file
101 gezelter 2204 CutoffGroupStamp* cgStamp;
102     RigidBodyStamp* rbStamp;
103     int nRigidAtoms = 0;
104 tim 2469 std::vector<Component*> components = simParams->getComponents();
105    
106     for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
107     molStamp = (*i)->getMoleculeStamp();
108     nMolWithSameStamp = (*i)->getNMol();
109 gezelter 1930
110     addMoleculeStamp(molStamp, nMolWithSameStamp);
111 gezelter 1490
112 gezelter 1930 //calculate atoms in molecules
113     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
114 gezelter 1490
115 gezelter 1930 //calculate atoms in cutoff groups
116     int nAtomsInGroups = 0;
117     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118    
119     for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 tim 2469 cgStamp = molStamp->getCutoffGroupStamp(j);
121 gezelter 2204 nAtomsInGroups += cgStamp->getNMembers();
122 gezelter 1930 }
123 gezelter 1490
124 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 chrisfen 2344
126 gezelter 1930 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
127 gezelter 1490
128 gezelter 1930 //calculate atoms in rigid bodies
129     int nAtomsInRigidBodies = 0;
130 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131 gezelter 1930
132     for (int j=0; j < nRigidBodiesInStamp; j++) {
133 tim 2469 rbStamp = molStamp->getRigidBodyStamp(j);
134 gezelter 2204 nAtomsInRigidBodies += rbStamp->getNMembers();
135 gezelter 1930 }
136 gezelter 1490
137 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
139    
140 gezelter 2204 }
141 chrisfen 1636
142 chrisfen 2344 //every free atom (atom does not belong to cutoff groups) is a cutoff
143     //group therefore the total number of cutoff groups in the system is
144     //equal to the total number of atoms minus number of atoms belong to
145     //cutoff group defined in meta-data file plus the number of cutoff
146     //groups defined in meta-data file
147 gezelter 2204 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148 gezelter 1490
149 chrisfen 2344 //every free atom (atom does not belong to rigid bodies) is an
150     //integrable object therefore the total number of integrable objects
151     //in the system is equal to the total number of atoms minus number of
152     //atoms belong to rigid body defined in meta-data file plus the number
153     //of rigid bodies defined in meta-data file
154     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155     + nGlobalRigidBodies_;
156    
157 gezelter 2204 nGlobalMols_ = molStampIds_.size();
158 gezelter 1490
159 gezelter 1930 #ifdef IS_MPI
160 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
161 gezelter 1930 #endif
162 tim 1976
163 gezelter 2204 }
164 gezelter 1490
165 gezelter 2204 SimInfo::~SimInfo() {
166 tim 2082 std::map<int, Molecule*>::iterator i;
167     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
168 gezelter 2204 delete i->second;
169 tim 2082 }
170     molecules_.clear();
171 tim 2187
172 gezelter 1930 delete sman_;
173     delete simParams_;
174     delete forceField_;
175 gezelter 2204 }
176 gezelter 1490
177 gezelter 2204 int SimInfo::getNGlobalConstraints() {
178 gezelter 1930 int nGlobalConstraints;
179     #ifdef IS_MPI
180     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
181     MPI_COMM_WORLD);
182     #else
183     nGlobalConstraints = nConstraints_;
184     #endif
185     return nGlobalConstraints;
186 gezelter 2204 }
187 gezelter 1490
188 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
189 gezelter 1930 MoleculeIterator i;
190 gezelter 1490
191 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
192     if (i == molecules_.end() ) {
193 gezelter 1490
194 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
195 gezelter 1930
196 gezelter 2204 nAtoms_ += mol->getNAtoms();
197     nBonds_ += mol->getNBonds();
198     nBends_ += mol->getNBends();
199     nTorsions_ += mol->getNTorsions();
200     nRigidBodies_ += mol->getNRigidBodies();
201     nIntegrableObjects_ += mol->getNIntegrableObjects();
202     nCutoffGroups_ += mol->getNCutoffGroups();
203     nConstraints_ += mol->getNConstraintPairs();
204 gezelter 1490
205 gezelter 2204 addExcludePairs(mol);
206 gezelter 1930
207 gezelter 2204 return true;
208 gezelter 1930 } else {
209 gezelter 2204 return false;
210 gezelter 1930 }
211 gezelter 2204 }
212 gezelter 1490
213 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
214 gezelter 1930 MoleculeIterator i;
215     i = molecules_.find(mol->getGlobalIndex());
216 gezelter 1490
217 gezelter 1930 if (i != molecules_.end() ) {
218 gezelter 1490
219 gezelter 2204 assert(mol == i->second);
220 gezelter 1930
221 gezelter 2204 nAtoms_ -= mol->getNAtoms();
222     nBonds_ -= mol->getNBonds();
223     nBends_ -= mol->getNBends();
224     nTorsions_ -= mol->getNTorsions();
225     nRigidBodies_ -= mol->getNRigidBodies();
226     nIntegrableObjects_ -= mol->getNIntegrableObjects();
227     nCutoffGroups_ -= mol->getNCutoffGroups();
228     nConstraints_ -= mol->getNConstraintPairs();
229 gezelter 1490
230 gezelter 2204 removeExcludePairs(mol);
231     molecules_.erase(mol->getGlobalIndex());
232 gezelter 1490
233 gezelter 2204 delete mol;
234 gezelter 1930
235 gezelter 2204 return true;
236 gezelter 1930 } else {
237 gezelter 2204 return false;
238 gezelter 1930 }
239    
240    
241 gezelter 2204 }
242 gezelter 1930
243    
244 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
245 gezelter 1930 i = molecules_.begin();
246     return i == molecules_.end() ? NULL : i->second;
247 gezelter 2204 }
248 gezelter 1930
249 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
250 gezelter 1930 ++i;
251     return i == molecules_.end() ? NULL : i->second;
252 gezelter 2204 }
253 gezelter 1490
254    
255 gezelter 2204 void SimInfo::calcNdf() {
256 gezelter 1930 int ndf_local;
257     MoleculeIterator i;
258     std::vector<StuntDouble*>::iterator j;
259     Molecule* mol;
260     StuntDouble* integrableObject;
261 gezelter 1490
262 gezelter 1930 ndf_local = 0;
263    
264     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
265 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
266     integrableObject = mol->nextIntegrableObject(j)) {
267 gezelter 1490
268 gezelter 2204 ndf_local += 3;
269 gezelter 1490
270 gezelter 2204 if (integrableObject->isDirectional()) {
271     if (integrableObject->isLinear()) {
272     ndf_local += 2;
273     } else {
274     ndf_local += 3;
275     }
276     }
277 gezelter 1930
278 tim 2469 }
279     }
280 gezelter 1930
281     // n_constraints is local, so subtract them on each processor
282     ndf_local -= nConstraints_;
283    
284     #ifdef IS_MPI
285     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
286     #else
287     ndf_ = ndf_local;
288     #endif
289    
290     // nZconstraints_ is global, as are the 3 COM translations for the
291     // entire system:
292     ndf_ = ndf_ - 3 - nZconstraint_;
293    
294 gezelter 2204 }
295 gezelter 1490
296 gezelter 2733 int SimInfo::getFdf() {
297     #ifdef IS_MPI
298     MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
299     #else
300     fdf_ = fdf_local;
301     #endif
302     return fdf_;
303     }
304    
305 gezelter 2204 void SimInfo::calcNdfRaw() {
306 gezelter 1930 int ndfRaw_local;
307 gezelter 1490
308 gezelter 1930 MoleculeIterator i;
309     std::vector<StuntDouble*>::iterator j;
310     Molecule* mol;
311     StuntDouble* integrableObject;
312    
313     // Raw degrees of freedom that we have to set
314     ndfRaw_local = 0;
315    
316     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
317 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
318     integrableObject = mol->nextIntegrableObject(j)) {
319 gezelter 1930
320 gezelter 2204 ndfRaw_local += 3;
321 gezelter 1930
322 gezelter 2204 if (integrableObject->isDirectional()) {
323     if (integrableObject->isLinear()) {
324     ndfRaw_local += 2;
325     } else {
326     ndfRaw_local += 3;
327     }
328     }
329 gezelter 1930
330 gezelter 2204 }
331 gezelter 1930 }
332    
333     #ifdef IS_MPI
334     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
335     #else
336     ndfRaw_ = ndfRaw_local;
337     #endif
338 gezelter 2204 }
339 gezelter 1490
340 gezelter 2204 void SimInfo::calcNdfTrans() {
341 gezelter 1930 int ndfTrans_local;
342 gezelter 1490
343 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
344 gezelter 1490
345    
346 gezelter 1930 #ifdef IS_MPI
347     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
348     #else
349     ndfTrans_ = ndfTrans_local;
350     #endif
351 gezelter 1490
352 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
353    
354 gezelter 2204 }
355 gezelter 1490
356 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
357 gezelter 1930 std::vector<Bond*>::iterator bondIter;
358     std::vector<Bend*>::iterator bendIter;
359     std::vector<Torsion*>::iterator torsionIter;
360     Bond* bond;
361     Bend* bend;
362     Torsion* torsion;
363     int a;
364     int b;
365     int c;
366     int d;
367 tim 2448
368     std::map<int, std::set<int> > atomGroups;
369    
370     Molecule::RigidBodyIterator rbIter;
371     RigidBody* rb;
372     Molecule::IntegrableObjectIterator ii;
373     StuntDouble* integrableObject;
374 gezelter 1930
375 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
376     integrableObject = mol->nextIntegrableObject(ii)) {
377    
378     if (integrableObject->isRigidBody()) {
379     rb = static_cast<RigidBody*>(integrableObject);
380     std::vector<Atom*> atoms = rb->getAtoms();
381     std::set<int> rigidAtoms;
382     for (int i = 0; i < atoms.size(); ++i) {
383     rigidAtoms.insert(atoms[i]->getGlobalIndex());
384     }
385     for (int i = 0; i < atoms.size(); ++i) {
386     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
387     }
388     } else {
389     std::set<int> oneAtomSet;
390     oneAtomSet.insert(integrableObject->getGlobalIndex());
391     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
392     }
393     }
394    
395    
396    
397 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
398 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
399     b = bond->getAtomB()->getGlobalIndex();
400     exclude_.addPair(a, b);
401 gezelter 1930 }
402 gezelter 1490
403 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
404 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
405     b = bend->getAtomB()->getGlobalIndex();
406     c = bend->getAtomC()->getGlobalIndex();
407 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
408     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
409     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
410 gezelter 1490
411 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
412     exclude_.addPairs(rigidSetA, rigidSetC);
413     exclude_.addPairs(rigidSetB, rigidSetC);
414    
415     //exclude_.addPair(a, b);
416     //exclude_.addPair(a, c);
417     //exclude_.addPair(b, c);
418 gezelter 1930 }
419 gezelter 1490
420 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
421 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
422     b = torsion->getAtomB()->getGlobalIndex();
423     c = torsion->getAtomC()->getGlobalIndex();
424     d = torsion->getAtomD()->getGlobalIndex();
425 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
426     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
427     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
428     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
429 gezelter 1490
430 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
431     exclude_.addPairs(rigidSetA, rigidSetC);
432     exclude_.addPairs(rigidSetA, rigidSetD);
433     exclude_.addPairs(rigidSetB, rigidSetC);
434     exclude_.addPairs(rigidSetB, rigidSetD);
435     exclude_.addPairs(rigidSetC, rigidSetD);
436    
437     /*
438     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
439     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
440     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
441     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
442     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
443     exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
444    
445    
446 gezelter 2204 exclude_.addPair(a, b);
447     exclude_.addPair(a, c);
448     exclude_.addPair(a, d);
449     exclude_.addPair(b, c);
450     exclude_.addPair(b, d);
451     exclude_.addPair(c, d);
452 tim 2448 */
453 gezelter 1490 }
454    
455 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
456 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
457     for (int i = 0; i < atoms.size() -1 ; ++i) {
458     for (int j = i + 1; j < atoms.size(); ++j) {
459     a = atoms[i]->getGlobalIndex();
460     b = atoms[j]->getGlobalIndex();
461     exclude_.addPair(a, b);
462     }
463     }
464 tim 2114 }
465    
466 gezelter 2204 }
467 gezelter 1930
468 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
469 gezelter 1930 std::vector<Bond*>::iterator bondIter;
470     std::vector<Bend*>::iterator bendIter;
471     std::vector<Torsion*>::iterator torsionIter;
472     Bond* bond;
473     Bend* bend;
474     Torsion* torsion;
475     int a;
476     int b;
477     int c;
478     int d;
479 tim 2448
480     std::map<int, std::set<int> > atomGroups;
481    
482     Molecule::RigidBodyIterator rbIter;
483     RigidBody* rb;
484     Molecule::IntegrableObjectIterator ii;
485     StuntDouble* integrableObject;
486 gezelter 1930
487 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
488     integrableObject = mol->nextIntegrableObject(ii)) {
489    
490     if (integrableObject->isRigidBody()) {
491     rb = static_cast<RigidBody*>(integrableObject);
492     std::vector<Atom*> atoms = rb->getAtoms();
493     std::set<int> rigidAtoms;
494     for (int i = 0; i < atoms.size(); ++i) {
495     rigidAtoms.insert(atoms[i]->getGlobalIndex());
496     }
497     for (int i = 0; i < atoms.size(); ++i) {
498     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
499     }
500     } else {
501     std::set<int> oneAtomSet;
502     oneAtomSet.insert(integrableObject->getGlobalIndex());
503     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
504     }
505     }
506    
507    
508 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
509 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
510     b = bond->getAtomB()->getGlobalIndex();
511     exclude_.removePair(a, b);
512 gezelter 1490 }
513 gezelter 1930
514     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
515 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
516     b = bend->getAtomB()->getGlobalIndex();
517     c = bend->getAtomC()->getGlobalIndex();
518 gezelter 1930
519 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
520     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
521     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
522    
523     exclude_.removePairs(rigidSetA, rigidSetB);
524     exclude_.removePairs(rigidSetA, rigidSetC);
525     exclude_.removePairs(rigidSetB, rigidSetC);
526    
527     //exclude_.removePair(a, b);
528     //exclude_.removePair(a, c);
529     //exclude_.removePair(b, c);
530 gezelter 1490 }
531 gezelter 1930
532     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
533 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
534     b = torsion->getAtomB()->getGlobalIndex();
535     c = torsion->getAtomC()->getGlobalIndex();
536     d = torsion->getAtomD()->getGlobalIndex();
537 gezelter 1930
538 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
539     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
540     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
541     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
542    
543     exclude_.removePairs(rigidSetA, rigidSetB);
544     exclude_.removePairs(rigidSetA, rigidSetC);
545     exclude_.removePairs(rigidSetA, rigidSetD);
546     exclude_.removePairs(rigidSetB, rigidSetC);
547     exclude_.removePairs(rigidSetB, rigidSetD);
548     exclude_.removePairs(rigidSetC, rigidSetD);
549    
550     /*
551     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
552     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
553     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
554     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
555     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
556     exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
557    
558    
559 gezelter 2204 exclude_.removePair(a, b);
560     exclude_.removePair(a, c);
561     exclude_.removePair(a, d);
562     exclude_.removePair(b, c);
563     exclude_.removePair(b, d);
564     exclude_.removePair(c, d);
565 tim 2448 */
566 gezelter 1930 }
567    
568 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
569 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
570     for (int i = 0; i < atoms.size() -1 ; ++i) {
571     for (int j = i + 1; j < atoms.size(); ++j) {
572     a = atoms[i]->getGlobalIndex();
573     b = atoms[j]->getGlobalIndex();
574     exclude_.removePair(a, b);
575     }
576     }
577 tim 2114 }
578    
579 gezelter 2204 }
580 gezelter 1490
581    
582 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
583 gezelter 1930 int curStampId;
584 gezelter 1490
585 gezelter 1930 //index from 0
586     curStampId = moleculeStamps_.size();
587 gezelter 1490
588 gezelter 1930 moleculeStamps_.push_back(molStamp);
589     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
590 gezelter 2204 }
591 gezelter 1490
592 gezelter 2204 void SimInfo::update() {
593 gezelter 1490
594 gezelter 1930 setupSimType();
595 gezelter 1490
596 gezelter 1930 #ifdef IS_MPI
597     setupFortranParallel();
598     #endif
599 gezelter 1490
600 gezelter 1930 setupFortranSim();
601 gezelter 1490
602 gezelter 1930 //setup fortran force field
603     /** @deprecate */
604     int isError = 0;
605 chrisfen 2297
606 chrisfen 3013 setupCutoff();
607    
608 chrisfen 2302 setupElectrostaticSummationMethod( isError );
609 chrisfen 2425 setupSwitchingFunction();
610 chrisfen 2917 setupAccumulateBoxDipole();
611 chrisfen 2297
612 gezelter 1930 if(isError){
613 gezelter 2204 sprintf( painCave.errMsg,
614     "ForceField error: There was an error initializing the forceField in fortran.\n" );
615     painCave.isFatal = 1;
616     simError();
617 gezelter 1930 }
618 gezelter 1490
619 gezelter 1930 calcNdf();
620     calcNdfRaw();
621     calcNdfTrans();
622    
623     fortranInitialized_ = true;
624 gezelter 2204 }
625 gezelter 1490
626 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
627 gezelter 1930 SimInfo::MoleculeIterator mi;
628     Molecule* mol;
629     Molecule::AtomIterator ai;
630     Atom* atom;
631     std::set<AtomType*> atomTypes;
632 gezelter 1490
633 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
634 gezelter 1490
635 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
636     atomTypes.insert(atom->getAtomType());
637     }
638 gezelter 1930
639     }
640 gezelter 1490
641 gezelter 1930 return atomTypes;
642 gezelter 2204 }
643 gezelter 1490
644 gezelter 2204 void SimInfo::setupSimType() {
645 gezelter 1930 std::set<AtomType*>::iterator i;
646     std::set<AtomType*> atomTypes;
647     atomTypes = getUniqueAtomTypes();
648 gezelter 1490
649 gezelter 1930 int useLennardJones = 0;
650     int useElectrostatic = 0;
651     int useEAM = 0;
652 chuckv 2433 int useSC = 0;
653 gezelter 1930 int useCharge = 0;
654     int useDirectional = 0;
655     int useDipole = 0;
656     int useGayBerne = 0;
657     int useSticky = 0;
658 chrisfen 2220 int useStickyPower = 0;
659 gezelter 1930 int useShape = 0;
660     int useFLARB = 0; //it is not in AtomType yet
661     int useDirectionalAtom = 0;
662     int useElectrostatics = 0;
663     //usePBC and useRF are from simParams
664 tim 2364 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
665 chrisfen 2310 int useRF;
666 chrisfen 2419 int useSF;
667 chrisfen 2917 int useSP;
668     int useBoxDipole;
669 tim 2364 std::string myMethod;
670 gezelter 1490
671 chrisfen 2310 // set the useRF logical
672 tim 2364 useRF = 0;
673 chrisfen 2419 useSF = 0;
674 gezelter 3054 useSP = 0;
675 chrisfen 2390
676    
677 tim 2364 if (simParams_->haveElectrostaticSummationMethod()) {
678 chrisfen 2390 std::string myMethod = simParams_->getElectrostaticSummationMethod();
679     toUpper(myMethod);
680 chrisfen 2917 if (myMethod == "REACTION_FIELD"){
681 gezelter 3054 useRF = 1;
682 chrisfen 2917 } else if (myMethod == "SHIFTED_FORCE"){
683     useSF = 1;
684     } else if (myMethod == "SHIFTED_POTENTIAL"){
685     useSP = 1;
686 chrisfen 2390 }
687 tim 2364 }
688 chrisfen 2917
689     if (simParams_->haveAccumulateBoxDipole())
690     if (simParams_->getAccumulateBoxDipole())
691     useBoxDipole = 1;
692 chrisfen 2310
693 gezelter 1930 //loop over all of the atom types
694     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
695 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
696     useElectrostatic |= (*i)->isElectrostatic();
697     useEAM |= (*i)->isEAM();
698 chuckv 2433 useSC |= (*i)->isSC();
699 gezelter 2204 useCharge |= (*i)->isCharge();
700     useDirectional |= (*i)->isDirectional();
701     useDipole |= (*i)->isDipole();
702     useGayBerne |= (*i)->isGayBerne();
703     useSticky |= (*i)->isSticky();
704 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
705 gezelter 2204 useShape |= (*i)->isShape();
706 gezelter 1930 }
707 gezelter 1490
708 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
709 gezelter 2204 useDirectionalAtom = 1;
710 gezelter 1930 }
711 gezelter 1490
712 gezelter 1930 if (useCharge || useDipole) {
713 gezelter 2204 useElectrostatics = 1;
714 gezelter 1930 }
715 gezelter 1490
716 gezelter 1930 #ifdef IS_MPI
717     int temp;
718 gezelter 1490
719 gezelter 1930 temp = usePBC;
720     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
721 gezelter 1490
722 gezelter 1930 temp = useDirectionalAtom;
723     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
724 gezelter 1490
725 gezelter 1930 temp = useLennardJones;
726     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
727 gezelter 1490
728 gezelter 1930 temp = useElectrostatics;
729     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
730 gezelter 1490
731 gezelter 1930 temp = useCharge;
732     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
733 gezelter 1490
734 gezelter 1930 temp = useDipole;
735     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
736 gezelter 1490
737 gezelter 1930 temp = useSticky;
738     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
739 gezelter 1490
740 chrisfen 2220 temp = useStickyPower;
741     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
742    
743 gezelter 1930 temp = useGayBerne;
744     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
745 gezelter 1490
746 gezelter 1930 temp = useEAM;
747     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748 gezelter 1490
749 chuckv 2433 temp = useSC;
750     MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
751    
752 gezelter 1930 temp = useShape;
753     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
754    
755     temp = useFLARB;
756     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
757    
758 chrisfen 2310 temp = useRF;
759     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
760    
761 chrisfen 2419 temp = useSF;
762 chrisfen 2917 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 chrisfen 2404
764 chrisfen 2917 temp = useSP;
765     MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766    
767     temp = useBoxDipole;
768     MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769    
770 gezelter 1490 #endif
771    
772 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
773     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
774     fInfo_.SIM_uses_LennardJones = useLennardJones;
775     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
776     fInfo_.SIM_uses_Charges = useCharge;
777     fInfo_.SIM_uses_Dipoles = useDipole;
778     fInfo_.SIM_uses_Sticky = useSticky;
779 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
780 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
781     fInfo_.SIM_uses_EAM = useEAM;
782 chuckv 2433 fInfo_.SIM_uses_SC = useSC;
783 gezelter 1930 fInfo_.SIM_uses_Shapes = useShape;
784     fInfo_.SIM_uses_FLARB = useFLARB;
785 chrisfen 2310 fInfo_.SIM_uses_RF = useRF;
786 chrisfen 2419 fInfo_.SIM_uses_SF = useSF;
787 chrisfen 2917 fInfo_.SIM_uses_SP = useSP;
788     fInfo_.SIM_uses_BoxDipole = useBoxDipole;
789 gezelter 2204 }
790 gezelter 1490
791 gezelter 2204 void SimInfo::setupFortranSim() {
792 gezelter 1930 int isError;
793     int nExclude;
794     std::vector<int> fortranGlobalGroupMembership;
795    
796     nExclude = exclude_.getSize();
797     isError = 0;
798 gezelter 1490
799 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
800     for (int i = 0; i < nGlobalAtoms_; i++) {
801 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
802 gezelter 1930 }
803 gezelter 1490
804 gezelter 1930 //calculate mass ratio of cutoff group
805 tim 2759 std::vector<RealType> mfact;
806 gezelter 1930 SimInfo::MoleculeIterator mi;
807     Molecule* mol;
808     Molecule::CutoffGroupIterator ci;
809     CutoffGroup* cg;
810     Molecule::AtomIterator ai;
811     Atom* atom;
812 tim 2759 RealType totalMass;
813 gezelter 1930
814     //to avoid memory reallocation, reserve enough space for mfact
815     mfact.reserve(getNCutoffGroups());
816 gezelter 1490
817 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
818 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
819 gezelter 1490
820 gezelter 2204 totalMass = cg->getMass();
821     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
822 chrisfen 2344 // Check for massless groups - set mfact to 1 if true
823     if (totalMass != 0)
824     mfact.push_back(atom->getMass()/totalMass);
825     else
826     mfact.push_back( 1.0 );
827 gezelter 2204 }
828 gezelter 1490
829 gezelter 2204 }
830 gezelter 1930 }
831 gezelter 1490
832 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
833     std::vector<int> identArray;
834 gezelter 1490
835 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
836     identArray.reserve(getNAtoms());
837    
838     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
839 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
840     identArray.push_back(atom->getIdent());
841     }
842 gezelter 1930 }
843 gezelter 1490
844 gezelter 1930 //fill molMembershipArray
845     //molMembershipArray is filled by SimCreator
846     std::vector<int> molMembershipArray(nGlobalAtoms_);
847     for (int i = 0; i < nGlobalAtoms_; i++) {
848 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
849 gezelter 1930 }
850    
851     //setup fortran simulation
852     int nGlobalExcludes = 0;
853     int* globalExcludes = NULL;
854     int* excludeList = exclude_.getExcludeList();
855     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
856 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
857     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
858 gezelter 1490
859 gezelter 1930 if( isError ){
860 gezelter 1490
861 gezelter 2204 sprintf( painCave.errMsg,
862     "There was an error setting the simulation information in fortran.\n" );
863     painCave.isFatal = 1;
864     painCave.severity = OOPSE_ERROR;
865     simError();
866 gezelter 1930 }
867    
868     #ifdef IS_MPI
869     sprintf( checkPointMsg,
870 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
871 gezelter 1930 MPIcheckPoint();
872     #endif // is_mpi
873 chuckv 3080
874     // Setup number of neighbors in neighbor list if present
875     if (simParams_->haveNeighborListNeighbors()) {
876     setNeighbors(simParams_->getNeighborListNeighbors());
877     }
878    
879    
880 gezelter 2204 }
881 gezelter 1490
882    
883 gezelter 1930 #ifdef IS_MPI
884 gezelter 2204 void SimInfo::setupFortranParallel() {
885 gezelter 1930
886     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
887     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
888     std::vector<int> localToGlobalCutoffGroupIndex;
889     SimInfo::MoleculeIterator mi;
890     Molecule::AtomIterator ai;
891     Molecule::CutoffGroupIterator ci;
892     Molecule* mol;
893     Atom* atom;
894     CutoffGroup* cg;
895     mpiSimData parallelData;
896     int isError;
897 gezelter 1490
898 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
899 gezelter 1490
900 gezelter 2204 //local index(index in DataStorge) of atom is important
901     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
902     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
903     }
904 gezelter 1490
905 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
906     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
907     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
908     }
909 gezelter 1930
910     }
911 gezelter 1490
912 gezelter 1930 //fill up mpiSimData struct
913     parallelData.nMolGlobal = getNGlobalMolecules();
914     parallelData.nMolLocal = getNMolecules();
915     parallelData.nAtomsGlobal = getNGlobalAtoms();
916     parallelData.nAtomsLocal = getNAtoms();
917     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
918     parallelData.nGroupsLocal = getNCutoffGroups();
919     parallelData.myNode = worldRank;
920     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
921 gezelter 1490
922 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
923     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
924     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
925     &localToGlobalCutoffGroupIndex[0], &isError);
926 gezelter 1490
927 gezelter 1930 if (isError) {
928 gezelter 2204 sprintf(painCave.errMsg,
929     "mpiRefresh errror: fortran didn't like something we gave it.\n");
930     painCave.isFatal = 1;
931     simError();
932 gezelter 1930 }
933 gezelter 1490
934 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
935     MPIcheckPoint();
936 gezelter 1490
937    
938 gezelter 2204 }
939 chrisfen 1636
940 gezelter 1930 #endif
941 chrisfen 1636
942 gezelter 2463 void SimInfo::setupCutoff() {
943 gezelter 1490
944 chuckv 2533 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
945    
946 gezelter 2463 // Check the cutoff policy
947 chuckv 2533 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
948    
949     std::string myPolicy;
950     if (forceFieldOptions_.haveCutoffPolicy()){
951     myPolicy = forceFieldOptions_.getCutoffPolicy();
952     }else if (simParams_->haveCutoffPolicy()) {
953     myPolicy = simParams_->getCutoffPolicy();
954     }
955    
956     if (!myPolicy.empty()){
957 tim 2364 toUpper(myPolicy);
958 gezelter 2285 if (myPolicy == "MIX") {
959     cp = MIX_CUTOFF_POLICY;
960     } else {
961     if (myPolicy == "MAX") {
962     cp = MAX_CUTOFF_POLICY;
963     } else {
964     if (myPolicy == "TRADITIONAL") {
965     cp = TRADITIONAL_CUTOFF_POLICY;
966     } else {
967     // throw error
968     sprintf( painCave.errMsg,
969     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
970     painCave.isFatal = 1;
971     simError();
972     }
973     }
974     }
975 gezelter 2463 }
976     notifyFortranCutoffPolicy(&cp);
977 chuckv 2328
978 gezelter 2463 // Check the Skin Thickness for neighborlists
979 tim 2759 RealType skin;
980 gezelter 2463 if (simParams_->haveSkinThickness()) {
981     skin = simParams_->getSkinThickness();
982     notifyFortranSkinThickness(&skin);
983     }
984    
985     // Check if the cutoff was set explicitly:
986     if (simParams_->haveCutoffRadius()) {
987     rcut_ = simParams_->getCutoffRadius();
988     if (simParams_->haveSwitchingRadius()) {
989     rsw_ = simParams_->getSwitchingRadius();
990     } else {
991 chrisfen 2578 if (fInfo_.SIM_uses_Charges |
992     fInfo_.SIM_uses_Dipoles |
993     fInfo_.SIM_uses_RF) {
994    
995     rsw_ = 0.85 * rcut_;
996     sprintf(painCave.errMsg,
997     "SimCreator Warning: No value was set for the switchingRadius.\n"
998 chrisfen 2579 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
999 chrisfen 2578 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1000     painCave.isFatal = 0;
1001     simError();
1002     } else {
1003     rsw_ = rcut_;
1004     sprintf(painCave.errMsg,
1005     "SimCreator Warning: No value was set for the switchingRadius.\n"
1006     "\tOOPSE will use the same value as the cutoffRadius.\n"
1007     "\tswitchingRadius = %f. for this simulation\n", rsw_);
1008     painCave.isFatal = 0;
1009     simError();
1010     }
1011 chrisfen 2579 }
1012    
1013 gezelter 2463 notifyFortranCutoffs(&rcut_, &rsw_);
1014    
1015     } else {
1016    
1017     // For electrostatic atoms, we'll assume a large safe value:
1018     if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1019     sprintf(painCave.errMsg,
1020     "SimCreator Warning: No value was set for the cutoffRadius.\n"
1021     "\tOOPSE will use a default value of 15.0 angstroms"
1022     "\tfor the cutoffRadius.\n");
1023     painCave.isFatal = 0;
1024     simError();
1025     rcut_ = 15.0;
1026    
1027     if (simParams_->haveElectrostaticSummationMethod()) {
1028     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1029     toUpper(myMethod);
1030     if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1031     if (simParams_->haveSwitchingRadius()){
1032     sprintf(painCave.errMsg,
1033     "SimInfo Warning: A value was set for the switchingRadius\n"
1034     "\teven though the electrostaticSummationMethod was\n"
1035     "\tset to %s\n", myMethod.c_str());
1036     painCave.isFatal = 1;
1037     simError();
1038     }
1039     }
1040     }
1041    
1042     if (simParams_->haveSwitchingRadius()){
1043     rsw_ = simParams_->getSwitchingRadius();
1044     } else {
1045     sprintf(painCave.errMsg,
1046     "SimCreator Warning: No value was set for switchingRadius.\n"
1047     "\tOOPSE will use a default value of\n"
1048     "\t0.85 * cutoffRadius for the switchingRadius\n");
1049     painCave.isFatal = 0;
1050     simError();
1051     rsw_ = 0.85 * rcut_;
1052     }
1053     notifyFortranCutoffs(&rcut_, &rsw_);
1054     } else {
1055     // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1056     // We'll punt and let fortran figure out the cutoffs later.
1057    
1058     notifyFortranYouAreOnYourOwn();
1059 chuckv 2328
1060 gezelter 2463 }
1061 chuckv 2328 }
1062 gezelter 2204 }
1063 gezelter 1490
1064 chrisfen 2302 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1065 chrisfen 2297
1066     int errorOut;
1067 chrisfen 2302 int esm = NONE;
1068 chrisfen 2408 int sm = UNDAMPED;
1069 tim 2759 RealType alphaVal;
1070     RealType dielectric;
1071 chrisfen 3013
1072 chrisfen 2297 errorOut = isError;
1073    
1074 chrisfen 2302 if (simParams_->haveElectrostaticSummationMethod()) {
1075 chrisfen 2303 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1076 tim 2364 toUpper(myMethod);
1077 chrisfen 2302 if (myMethod == "NONE") {
1078     esm = NONE;
1079 chrisfen 2297 } else {
1080 chrisfen 2408 if (myMethod == "SWITCHING_FUNCTION") {
1081     esm = SWITCHING_FUNCTION;
1082 chrisfen 2297 } else {
1083 chrisfen 2408 if (myMethod == "SHIFTED_POTENTIAL") {
1084     esm = SHIFTED_POTENTIAL;
1085     } else {
1086     if (myMethod == "SHIFTED_FORCE") {
1087     esm = SHIFTED_FORCE;
1088 chrisfen 2297 } else {
1089 chrisfen 3020 if (myMethod == "REACTION_FIELD") {
1090 chrisfen 2408 esm = REACTION_FIELD;
1091 chrisfen 3020 dielectric = simParams_->getDielectric();
1092     if (!simParams_->haveDielectric()) {
1093     // throw warning
1094     sprintf( painCave.errMsg,
1095     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1096     "\tA default value of %f will be used for the dielectric.\n", dielectric);
1097     painCave.isFatal = 0;
1098     simError();
1099     }
1100 chrisfen 2408 } else {
1101     // throw error
1102     sprintf( painCave.errMsg,
1103 gezelter 2463 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1104     "\t(Input file specified %s .)\n"
1105     "\telectrostaticSummationMethod must be one of: \"none\",\n"
1106     "\t\"shifted_potential\", \"shifted_force\", or \n"
1107     "\t\"reaction_field\".\n", myMethod.c_str() );
1108 chrisfen 2408 painCave.isFatal = 1;
1109     simError();
1110     }
1111     }
1112     }
1113 chrisfen 2297 }
1114     }
1115     }
1116 chrisfen 2408
1117 chrisfen 2415 if (simParams_->haveElectrostaticScreeningMethod()) {
1118     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1119 chrisfen 2408 toUpper(myScreen);
1120     if (myScreen == "UNDAMPED") {
1121     sm = UNDAMPED;
1122     } else {
1123     if (myScreen == "DAMPED") {
1124     sm = DAMPED;
1125     if (!simParams_->haveDampingAlpha()) {
1126 chrisfen 3013 // first set a cutoff dependent alpha value
1127     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1128     alphaVal = 0.5125 - rcut_* 0.025;
1129     // for values rcut > 20.5, alpha is zero
1130     if (alphaVal < 0) alphaVal = 0;
1131    
1132     // throw warning
1133 chrisfen 2408 sprintf( painCave.errMsg,
1134 gezelter 2463 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1135 chrisfen 3013 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1136 chrisfen 2408 painCave.isFatal = 0;
1137     simError();
1138 chrisfen 3072 } else {
1139     alphaVal = simParams_->getDampingAlpha();
1140 chrisfen 2408 }
1141 chrisfen 3072
1142 chrisfen 2415 } else {
1143     // throw error
1144     sprintf( painCave.errMsg,
1145 gezelter 2463 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1146     "\t(Input file specified %s .)\n"
1147     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1148     "or \"damped\".\n", myScreen.c_str() );
1149 chrisfen 2415 painCave.isFatal = 1;
1150     simError();
1151 chrisfen 2408 }
1152     }
1153     }
1154 chrisfen 2415
1155 chrisfen 2309 // let's pass some summation method variables to fortran
1156 chrisfen 2552 setElectrostaticSummationMethod( &esm );
1157 gezelter 2508 setFortranElectrostaticMethod( &esm );
1158 chrisfen 2408 setScreeningMethod( &sm );
1159     setDampingAlpha( &alphaVal );
1160 chrisfen 2309 setReactionFieldDielectric( &dielectric );
1161 gezelter 2463 initFortranFF( &errorOut );
1162 chrisfen 2297 }
1163    
1164 chrisfen 2425 void SimInfo::setupSwitchingFunction() {
1165     int ft = CUBIC;
1166    
1167     if (simParams_->haveSwitchingFunctionType()) {
1168     std::string funcType = simParams_->getSwitchingFunctionType();
1169     toUpper(funcType);
1170     if (funcType == "CUBIC") {
1171     ft = CUBIC;
1172     } else {
1173     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1174     ft = FIFTH_ORDER_POLY;
1175     } else {
1176     // throw error
1177     sprintf( painCave.errMsg,
1178     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1179     painCave.isFatal = 1;
1180     simError();
1181     }
1182     }
1183     }
1184    
1185     // send switching function notification to switcheroo
1186     setFunctionType(&ft);
1187    
1188     }
1189    
1190 chrisfen 2917 void SimInfo::setupAccumulateBoxDipole() {
1191    
1192     // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1193     if ( simParams_->haveAccumulateBoxDipole() )
1194     if ( simParams_->getAccumulateBoxDipole() ) {
1195     setAccumulateBoxDipole();
1196     calcBoxDipole_ = true;
1197     }
1198    
1199     }
1200    
1201 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
1202 gezelter 1930 properties_.addProperty(genData);
1203 gezelter 2204 }
1204 gezelter 1490
1205 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
1206 gezelter 1930 properties_.removeProperty(propName);
1207 gezelter 2204 }
1208 gezelter 1490
1209 gezelter 2204 void SimInfo::clearProperties() {
1210 gezelter 1930 properties_.clearProperties();
1211 gezelter 2204 }
1212 gezelter 1490
1213 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
1214 gezelter 1930 return properties_.getPropertyNames();
1215 gezelter 2204 }
1216 gezelter 1930
1217 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
1218 gezelter 1930 return properties_.getProperties();
1219 gezelter 2204 }
1220 gezelter 1490
1221 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1222 gezelter 1930 return properties_.getPropertyByName(propName);
1223 gezelter 2204 }
1224 gezelter 1490
1225 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1226 tim 2116 if (sman_ == sman) {
1227 gezelter 2204 return;
1228 tim 2116 }
1229     delete sman_;
1230 gezelter 1930 sman_ = sman;
1231 gezelter 1490
1232 gezelter 1930 Molecule* mol;
1233     RigidBody* rb;
1234     Atom* atom;
1235     SimInfo::MoleculeIterator mi;
1236     Molecule::RigidBodyIterator rbIter;
1237     Molecule::AtomIterator atomIter;;
1238    
1239     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1240    
1241 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1242     atom->setSnapshotManager(sman_);
1243     }
1244 gezelter 1930
1245 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1246     rb->setSnapshotManager(sman_);
1247     }
1248 gezelter 1930 }
1249 gezelter 1490
1250 gezelter 2204 }
1251 gezelter 1490
1252 gezelter 2204 Vector3d SimInfo::getComVel(){
1253 gezelter 1930 SimInfo::MoleculeIterator i;
1254     Molecule* mol;
1255 gezelter 1490
1256 gezelter 1930 Vector3d comVel(0.0);
1257 tim 2759 RealType totalMass = 0.0;
1258 gezelter 1490
1259 gezelter 1930
1260     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1261 tim 2759 RealType mass = mol->getMass();
1262 gezelter 2204 totalMass += mass;
1263     comVel += mass * mol->getComVel();
1264 gezelter 1930 }
1265 gezelter 1490
1266 gezelter 1930 #ifdef IS_MPI
1267 tim 2759 RealType tmpMass = totalMass;
1268 gezelter 1930 Vector3d tmpComVel(comVel);
1269 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1270     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1271 gezelter 1930 #endif
1272    
1273     comVel /= totalMass;
1274    
1275     return comVel;
1276 gezelter 2204 }
1277 gezelter 1490
1278 gezelter 2204 Vector3d SimInfo::getCom(){
1279 gezelter 1930 SimInfo::MoleculeIterator i;
1280     Molecule* mol;
1281 gezelter 1490
1282 gezelter 1930 Vector3d com(0.0);
1283 tim 2759 RealType totalMass = 0.0;
1284 gezelter 1930
1285     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1286 tim 2759 RealType mass = mol->getMass();
1287 gezelter 2204 totalMass += mass;
1288     com += mass * mol->getCom();
1289 gezelter 1930 }
1290 gezelter 1490
1291     #ifdef IS_MPI
1292 tim 2759 RealType tmpMass = totalMass;
1293 gezelter 1930 Vector3d tmpCom(com);
1294 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1295     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1296 gezelter 1490 #endif
1297    
1298 gezelter 1930 com /= totalMass;
1299 gezelter 1490
1300 gezelter 1930 return com;
1301 gezelter 1490
1302 gezelter 2204 }
1303 gezelter 1930
1304 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1305 gezelter 1930
1306     return o;
1307 gezelter 2204 }
1308 chuckv 2252
1309    
1310     /*
1311     Returns center of mass and center of mass velocity in one function call.
1312     */
1313    
1314     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1315     SimInfo::MoleculeIterator i;
1316     Molecule* mol;
1317    
1318    
1319 tim 2759 RealType totalMass = 0.0;
1320 chuckv 2252
1321 gezelter 1930
1322 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1323 tim 2759 RealType mass = mol->getMass();
1324 chuckv 2252 totalMass += mass;
1325     com += mass * mol->getCom();
1326     comVel += mass * mol->getComVel();
1327     }
1328    
1329     #ifdef IS_MPI
1330 tim 2759 RealType tmpMass = totalMass;
1331 chuckv 2252 Vector3d tmpCom(com);
1332     Vector3d tmpComVel(comVel);
1333 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1334     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1335     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1336 chuckv 2252 #endif
1337    
1338     com /= totalMass;
1339     comVel /= totalMass;
1340     }
1341    
1342     /*
1343     Return intertia tensor for entire system and angular momentum Vector.
1344 chuckv 2256
1345    
1346     [ Ixx -Ixy -Ixz ]
1347     J =| -Iyx Iyy -Iyz |
1348     [ -Izx -Iyz Izz ]
1349 chuckv 2252 */
1350    
1351     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1352    
1353    
1354 tim 2759 RealType xx = 0.0;
1355     RealType yy = 0.0;
1356     RealType zz = 0.0;
1357     RealType xy = 0.0;
1358     RealType xz = 0.0;
1359     RealType yz = 0.0;
1360 chuckv 2252 Vector3d com(0.0);
1361     Vector3d comVel(0.0);
1362    
1363     getComAll(com, comVel);
1364    
1365     SimInfo::MoleculeIterator i;
1366     Molecule* mol;
1367    
1368     Vector3d thisq(0.0);
1369     Vector3d thisv(0.0);
1370    
1371 tim 2759 RealType thisMass = 0.0;
1372 chuckv 2252
1373    
1374    
1375    
1376     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1377    
1378     thisq = mol->getCom()-com;
1379     thisv = mol->getComVel()-comVel;
1380     thisMass = mol->getMass();
1381     // Compute moment of intertia coefficients.
1382     xx += thisq[0]*thisq[0]*thisMass;
1383     yy += thisq[1]*thisq[1]*thisMass;
1384     zz += thisq[2]*thisq[2]*thisMass;
1385    
1386     // compute products of intertia
1387     xy += thisq[0]*thisq[1]*thisMass;
1388     xz += thisq[0]*thisq[2]*thisMass;
1389     yz += thisq[1]*thisq[2]*thisMass;
1390    
1391     angularMomentum += cross( thisq, thisv ) * thisMass;
1392    
1393     }
1394    
1395    
1396     inertiaTensor(0,0) = yy + zz;
1397     inertiaTensor(0,1) = -xy;
1398     inertiaTensor(0,2) = -xz;
1399     inertiaTensor(1,0) = -xy;
1400 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1401 chuckv 2252 inertiaTensor(1,2) = -yz;
1402     inertiaTensor(2,0) = -xz;
1403     inertiaTensor(2,1) = -yz;
1404     inertiaTensor(2,2) = xx + yy;
1405    
1406     #ifdef IS_MPI
1407     Mat3x3d tmpI(inertiaTensor);
1408     Vector3d tmpAngMom;
1409 tim 2759 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1410     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1411 chuckv 2252 #endif
1412    
1413     return;
1414     }
1415    
1416     //Returns the angular momentum of the system
1417     Vector3d SimInfo::getAngularMomentum(){
1418    
1419     Vector3d com(0.0);
1420     Vector3d comVel(0.0);
1421     Vector3d angularMomentum(0.0);
1422    
1423     getComAll(com,comVel);
1424    
1425     SimInfo::MoleculeIterator i;
1426     Molecule* mol;
1427    
1428 chuckv 2256 Vector3d thisr(0.0);
1429     Vector3d thisp(0.0);
1430 chuckv 2252
1431 tim 2759 RealType thisMass;
1432 chuckv 2252
1433     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1434 chuckv 2256 thisMass = mol->getMass();
1435     thisr = mol->getCom()-com;
1436     thisp = (mol->getComVel()-comVel)*thisMass;
1437 chuckv 2252
1438 chuckv 2256 angularMomentum += cross( thisr, thisp );
1439    
1440 chuckv 2252 }
1441    
1442     #ifdef IS_MPI
1443     Vector3d tmpAngMom;
1444 tim 2759 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1445 chuckv 2252 #endif
1446    
1447     return angularMomentum;
1448     }
1449    
1450 tim 2982 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1451     return IOIndexToIntegrableObject.at(index);
1452     }
1453    
1454     void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1455     IOIndexToIntegrableObject= v;
1456     }
1457    
1458     /*
1459     void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1460     assert( v.size() == nAtoms_ + nRigidBodies_);
1461     sdByGlobalIndex_ = v;
1462     }
1463    
1464     StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1465     //assert(index < nAtoms_ + nRigidBodies_);
1466     return sdByGlobalIndex_.at(index);
1467     }
1468     */
1469 gezelter 1930 }//end namespace oopse
1470