ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 3121
Committed: Mon Feb 26 04:45:42 2007 UTC (17 years, 6 months ago) by chuckv
File size: 47811 byte(s)
Log Message:
Fixed a bug in NeighborListNeighbors.

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 tim 2448 #include <map>
52 gezelter 1490
53 tim 1492 #include "brains/SimInfo.hpp"
54 gezelter 1930 #include "math/Vector3.hpp"
55     #include "primitives/Molecule.hpp"
56 tim 2982 #include "primitives/StuntDouble.hpp"
57 gezelter 2285 #include "UseTheForce/fCutoffPolicy.h"
58 chrisfen 2305 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 chrisfen 2415 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 chrisfen 2425 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 gezelter 1930 #include "UseTheForce/doForces_interface.h"
62 chuckv 3080 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 chrisfen 2309 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 chrisfen 2425 #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 gezelter 1930 #include "utils/MemoryUtils.hpp"
66 tim 1492 #include "utils/simError.h"
67 tim 2000 #include "selection/SelectionManager.hpp"
68 chuckv 2533 #include "io/ForceFieldOptions.hpp"
69     #include "UseTheForce/ForceField.hpp"
70 gezelter 1490
71 chuckv 3080
72 gezelter 1930 #ifdef IS_MPI
73     #include "UseTheForce/mpiComponentPlan.h"
74     #include "UseTheForce/DarkSide/simParallel_interface.h"
75     #endif
76 gezelter 1490
77 gezelter 1930 namespace oopse {
78 tim 2448 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79     std::map<int, std::set<int> >::iterator i = container.find(index);
80     std::set<int> result;
81     if (i != container.end()) {
82     result = i->second;
83     }
84 gezelter 1490
85 tim 2448 return result;
86     }
87    
88 tim 2469 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89     forceField_(ff), simParams_(simParams),
90 gezelter 2733 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 gezelter 2204 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
94     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
95 chrisfen 2917 sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
96 gezelter 1490
97 gezelter 2204 MoleculeStamp* molStamp;
98     int nMolWithSameStamp;
99     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
100 chrisfen 2344 int nGroups = 0; //total cutoff groups defined in meta-data file
101 gezelter 2204 CutoffGroupStamp* cgStamp;
102     RigidBodyStamp* rbStamp;
103     int nRigidAtoms = 0;
104 tim 2469 std::vector<Component*> components = simParams->getComponents();
105    
106     for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
107     molStamp = (*i)->getMoleculeStamp();
108     nMolWithSameStamp = (*i)->getNMol();
109 gezelter 1930
110     addMoleculeStamp(molStamp, nMolWithSameStamp);
111 gezelter 1490
112 gezelter 1930 //calculate atoms in molecules
113     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
114 gezelter 1490
115 gezelter 1930 //calculate atoms in cutoff groups
116     int nAtomsInGroups = 0;
117     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118    
119     for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 tim 2469 cgStamp = molStamp->getCutoffGroupStamp(j);
121 gezelter 2204 nAtomsInGroups += cgStamp->getNMembers();
122 gezelter 1930 }
123 gezelter 1490
124 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 chrisfen 2344
126 gezelter 1930 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
127 gezelter 1490
128 gezelter 1930 //calculate atoms in rigid bodies
129     int nAtomsInRigidBodies = 0;
130 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131 gezelter 1930
132     for (int j=0; j < nRigidBodiesInStamp; j++) {
133 tim 2469 rbStamp = molStamp->getRigidBodyStamp(j);
134 gezelter 2204 nAtomsInRigidBodies += rbStamp->getNMembers();
135 gezelter 1930 }
136 gezelter 1490
137 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
139    
140 gezelter 2204 }
141 chrisfen 1636
142 chrisfen 2344 //every free atom (atom does not belong to cutoff groups) is a cutoff
143     //group therefore the total number of cutoff groups in the system is
144     //equal to the total number of atoms minus number of atoms belong to
145     //cutoff group defined in meta-data file plus the number of cutoff
146     //groups defined in meta-data file
147 gezelter 2204 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148 gezelter 1490
149 chrisfen 2344 //every free atom (atom does not belong to rigid bodies) is an
150     //integrable object therefore the total number of integrable objects
151     //in the system is equal to the total number of atoms minus number of
152     //atoms belong to rigid body defined in meta-data file plus the number
153     //of rigid bodies defined in meta-data file
154     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155     + nGlobalRigidBodies_;
156    
157 gezelter 2204 nGlobalMols_ = molStampIds_.size();
158 gezelter 1490
159 gezelter 1930 #ifdef IS_MPI
160 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
161 gezelter 1930 #endif
162 tim 1976
163 gezelter 2204 }
164 gezelter 1490
165 gezelter 2204 SimInfo::~SimInfo() {
166 tim 2082 std::map<int, Molecule*>::iterator i;
167     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
168 gezelter 2204 delete i->second;
169 tim 2082 }
170     molecules_.clear();
171 tim 2187
172 gezelter 1930 delete sman_;
173     delete simParams_;
174     delete forceField_;
175 gezelter 2204 }
176 gezelter 1490
177 gezelter 2204 int SimInfo::getNGlobalConstraints() {
178 gezelter 1930 int nGlobalConstraints;
179     #ifdef IS_MPI
180     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
181     MPI_COMM_WORLD);
182     #else
183     nGlobalConstraints = nConstraints_;
184     #endif
185     return nGlobalConstraints;
186 gezelter 2204 }
187 gezelter 1490
188 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
189 gezelter 1930 MoleculeIterator i;
190 gezelter 1490
191 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
192     if (i == molecules_.end() ) {
193 gezelter 1490
194 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
195 gezelter 1930
196 gezelter 2204 nAtoms_ += mol->getNAtoms();
197     nBonds_ += mol->getNBonds();
198     nBends_ += mol->getNBends();
199     nTorsions_ += mol->getNTorsions();
200     nRigidBodies_ += mol->getNRigidBodies();
201     nIntegrableObjects_ += mol->getNIntegrableObjects();
202     nCutoffGroups_ += mol->getNCutoffGroups();
203     nConstraints_ += mol->getNConstraintPairs();
204 gezelter 1490
205 gezelter 2204 addExcludePairs(mol);
206 gezelter 1930
207 gezelter 2204 return true;
208 gezelter 1930 } else {
209 gezelter 2204 return false;
210 gezelter 1930 }
211 gezelter 2204 }
212 gezelter 1490
213 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
214 gezelter 1930 MoleculeIterator i;
215     i = molecules_.find(mol->getGlobalIndex());
216 gezelter 1490
217 gezelter 1930 if (i != molecules_.end() ) {
218 gezelter 1490
219 gezelter 2204 assert(mol == i->second);
220 gezelter 1930
221 gezelter 2204 nAtoms_ -= mol->getNAtoms();
222     nBonds_ -= mol->getNBonds();
223     nBends_ -= mol->getNBends();
224     nTorsions_ -= mol->getNTorsions();
225     nRigidBodies_ -= mol->getNRigidBodies();
226     nIntegrableObjects_ -= mol->getNIntegrableObjects();
227     nCutoffGroups_ -= mol->getNCutoffGroups();
228     nConstraints_ -= mol->getNConstraintPairs();
229 gezelter 1490
230 gezelter 2204 removeExcludePairs(mol);
231     molecules_.erase(mol->getGlobalIndex());
232 gezelter 1490
233 gezelter 2204 delete mol;
234 gezelter 1930
235 gezelter 2204 return true;
236 gezelter 1930 } else {
237 gezelter 2204 return false;
238 gezelter 1930 }
239    
240    
241 gezelter 2204 }
242 gezelter 1930
243    
244 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
245 gezelter 1930 i = molecules_.begin();
246     return i == molecules_.end() ? NULL : i->second;
247 gezelter 2204 }
248 gezelter 1930
249 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
250 gezelter 1930 ++i;
251     return i == molecules_.end() ? NULL : i->second;
252 gezelter 2204 }
253 gezelter 1490
254    
255 gezelter 2204 void SimInfo::calcNdf() {
256 gezelter 1930 int ndf_local;
257     MoleculeIterator i;
258     std::vector<StuntDouble*>::iterator j;
259     Molecule* mol;
260     StuntDouble* integrableObject;
261 gezelter 1490
262 gezelter 1930 ndf_local = 0;
263    
264     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
265 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
266     integrableObject = mol->nextIntegrableObject(j)) {
267 gezelter 1490
268 gezelter 2204 ndf_local += 3;
269 gezelter 1490
270 gezelter 2204 if (integrableObject->isDirectional()) {
271     if (integrableObject->isLinear()) {
272     ndf_local += 2;
273     } else {
274     ndf_local += 3;
275     }
276     }
277 gezelter 1930
278 tim 2469 }
279     }
280 gezelter 1930
281     // n_constraints is local, so subtract them on each processor
282     ndf_local -= nConstraints_;
283    
284     #ifdef IS_MPI
285     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
286     #else
287     ndf_ = ndf_local;
288     #endif
289    
290     // nZconstraints_ is global, as are the 3 COM translations for the
291     // entire system:
292     ndf_ = ndf_ - 3 - nZconstraint_;
293    
294 gezelter 2204 }
295 gezelter 1490
296 gezelter 2733 int SimInfo::getFdf() {
297     #ifdef IS_MPI
298     MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
299     #else
300     fdf_ = fdf_local;
301     #endif
302     return fdf_;
303     }
304    
305 gezelter 2204 void SimInfo::calcNdfRaw() {
306 gezelter 1930 int ndfRaw_local;
307 gezelter 1490
308 gezelter 1930 MoleculeIterator i;
309     std::vector<StuntDouble*>::iterator j;
310     Molecule* mol;
311     StuntDouble* integrableObject;
312    
313     // Raw degrees of freedom that we have to set
314     ndfRaw_local = 0;
315    
316     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
317 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
318     integrableObject = mol->nextIntegrableObject(j)) {
319 gezelter 1930
320 gezelter 2204 ndfRaw_local += 3;
321 gezelter 1930
322 gezelter 2204 if (integrableObject->isDirectional()) {
323     if (integrableObject->isLinear()) {
324     ndfRaw_local += 2;
325     } else {
326     ndfRaw_local += 3;
327     }
328     }
329 gezelter 1930
330 gezelter 2204 }
331 gezelter 1930 }
332    
333     #ifdef IS_MPI
334     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
335     #else
336     ndfRaw_ = ndfRaw_local;
337     #endif
338 gezelter 2204 }
339 gezelter 1490
340 gezelter 2204 void SimInfo::calcNdfTrans() {
341 gezelter 1930 int ndfTrans_local;
342 gezelter 1490
343 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
344 gezelter 1490
345    
346 gezelter 1930 #ifdef IS_MPI
347     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
348     #else
349     ndfTrans_ = ndfTrans_local;
350     #endif
351 gezelter 1490
352 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
353    
354 gezelter 2204 }
355 gezelter 1490
356 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
357 gezelter 1930 std::vector<Bond*>::iterator bondIter;
358     std::vector<Bend*>::iterator bendIter;
359     std::vector<Torsion*>::iterator torsionIter;
360     Bond* bond;
361     Bend* bend;
362     Torsion* torsion;
363     int a;
364     int b;
365     int c;
366     int d;
367 tim 2448
368     std::map<int, std::set<int> > atomGroups;
369    
370     Molecule::RigidBodyIterator rbIter;
371     RigidBody* rb;
372     Molecule::IntegrableObjectIterator ii;
373     StuntDouble* integrableObject;
374 gezelter 1930
375 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
376     integrableObject = mol->nextIntegrableObject(ii)) {
377    
378     if (integrableObject->isRigidBody()) {
379     rb = static_cast<RigidBody*>(integrableObject);
380     std::vector<Atom*> atoms = rb->getAtoms();
381     std::set<int> rigidAtoms;
382     for (int i = 0; i < atoms.size(); ++i) {
383     rigidAtoms.insert(atoms[i]->getGlobalIndex());
384     }
385     for (int i = 0; i < atoms.size(); ++i) {
386     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
387     }
388     } else {
389     std::set<int> oneAtomSet;
390     oneAtomSet.insert(integrableObject->getGlobalIndex());
391     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
392     }
393     }
394    
395    
396    
397 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
398 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
399     b = bond->getAtomB()->getGlobalIndex();
400     exclude_.addPair(a, b);
401 gezelter 1930 }
402 gezelter 1490
403 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
404 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
405     b = bend->getAtomB()->getGlobalIndex();
406     c = bend->getAtomC()->getGlobalIndex();
407 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
408     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
409     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
410 gezelter 1490
411 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
412     exclude_.addPairs(rigidSetA, rigidSetC);
413     exclude_.addPairs(rigidSetB, rigidSetC);
414    
415     //exclude_.addPair(a, b);
416     //exclude_.addPair(a, c);
417     //exclude_.addPair(b, c);
418 gezelter 1930 }
419 gezelter 1490
420 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
421 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
422     b = torsion->getAtomB()->getGlobalIndex();
423     c = torsion->getAtomC()->getGlobalIndex();
424     d = torsion->getAtomD()->getGlobalIndex();
425 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
426     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
427     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
428     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
429 gezelter 1490
430 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
431     exclude_.addPairs(rigidSetA, rigidSetC);
432     exclude_.addPairs(rigidSetA, rigidSetD);
433     exclude_.addPairs(rigidSetB, rigidSetC);
434     exclude_.addPairs(rigidSetB, rigidSetD);
435     exclude_.addPairs(rigidSetC, rigidSetD);
436    
437     /*
438     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
439     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
440     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
441     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
442     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
443     exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
444    
445    
446 gezelter 2204 exclude_.addPair(a, b);
447     exclude_.addPair(a, c);
448     exclude_.addPair(a, d);
449     exclude_.addPair(b, c);
450     exclude_.addPair(b, d);
451     exclude_.addPair(c, d);
452 tim 2448 */
453 gezelter 1490 }
454    
455 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
456 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
457     for (int i = 0; i < atoms.size() -1 ; ++i) {
458     for (int j = i + 1; j < atoms.size(); ++j) {
459     a = atoms[i]->getGlobalIndex();
460     b = atoms[j]->getGlobalIndex();
461     exclude_.addPair(a, b);
462     }
463     }
464 tim 2114 }
465    
466 gezelter 2204 }
467 gezelter 1930
468 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
469 gezelter 1930 std::vector<Bond*>::iterator bondIter;
470     std::vector<Bend*>::iterator bendIter;
471     std::vector<Torsion*>::iterator torsionIter;
472     Bond* bond;
473     Bend* bend;
474     Torsion* torsion;
475     int a;
476     int b;
477     int c;
478     int d;
479 tim 2448
480     std::map<int, std::set<int> > atomGroups;
481    
482     Molecule::RigidBodyIterator rbIter;
483     RigidBody* rb;
484     Molecule::IntegrableObjectIterator ii;
485     StuntDouble* integrableObject;
486 gezelter 1930
487 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
488     integrableObject = mol->nextIntegrableObject(ii)) {
489    
490     if (integrableObject->isRigidBody()) {
491     rb = static_cast<RigidBody*>(integrableObject);
492     std::vector<Atom*> atoms = rb->getAtoms();
493     std::set<int> rigidAtoms;
494     for (int i = 0; i < atoms.size(); ++i) {
495     rigidAtoms.insert(atoms[i]->getGlobalIndex());
496     }
497     for (int i = 0; i < atoms.size(); ++i) {
498     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
499     }
500     } else {
501     std::set<int> oneAtomSet;
502     oneAtomSet.insert(integrableObject->getGlobalIndex());
503     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
504     }
505     }
506    
507    
508 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
509 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
510     b = bond->getAtomB()->getGlobalIndex();
511     exclude_.removePair(a, b);
512 gezelter 1490 }
513 gezelter 1930
514     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
515 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
516     b = bend->getAtomB()->getGlobalIndex();
517     c = bend->getAtomC()->getGlobalIndex();
518 gezelter 1930
519 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
520     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
521     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
522    
523     exclude_.removePairs(rigidSetA, rigidSetB);
524     exclude_.removePairs(rigidSetA, rigidSetC);
525     exclude_.removePairs(rigidSetB, rigidSetC);
526    
527     //exclude_.removePair(a, b);
528     //exclude_.removePair(a, c);
529     //exclude_.removePair(b, c);
530 gezelter 1490 }
531 gezelter 1930
532     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
533 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
534     b = torsion->getAtomB()->getGlobalIndex();
535     c = torsion->getAtomC()->getGlobalIndex();
536     d = torsion->getAtomD()->getGlobalIndex();
537 gezelter 1930
538 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
539     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
540     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
541     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
542    
543     exclude_.removePairs(rigidSetA, rigidSetB);
544     exclude_.removePairs(rigidSetA, rigidSetC);
545     exclude_.removePairs(rigidSetA, rigidSetD);
546     exclude_.removePairs(rigidSetB, rigidSetC);
547     exclude_.removePairs(rigidSetB, rigidSetD);
548     exclude_.removePairs(rigidSetC, rigidSetD);
549    
550     /*
551     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
552     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
553     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
554     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
555     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
556     exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
557    
558    
559 gezelter 2204 exclude_.removePair(a, b);
560     exclude_.removePair(a, c);
561     exclude_.removePair(a, d);
562     exclude_.removePair(b, c);
563     exclude_.removePair(b, d);
564     exclude_.removePair(c, d);
565 tim 2448 */
566 gezelter 1930 }
567    
568 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
569 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
570     for (int i = 0; i < atoms.size() -1 ; ++i) {
571     for (int j = i + 1; j < atoms.size(); ++j) {
572     a = atoms[i]->getGlobalIndex();
573     b = atoms[j]->getGlobalIndex();
574     exclude_.removePair(a, b);
575     }
576     }
577 tim 2114 }
578    
579 gezelter 2204 }
580 gezelter 1490
581    
582 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
583 gezelter 1930 int curStampId;
584 gezelter 1490
585 gezelter 1930 //index from 0
586     curStampId = moleculeStamps_.size();
587 gezelter 1490
588 gezelter 1930 moleculeStamps_.push_back(molStamp);
589     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
590 gezelter 2204 }
591 gezelter 1490
592 gezelter 2204 void SimInfo::update() {
593 gezelter 1490
594 gezelter 1930 setupSimType();
595 gezelter 1490
596 gezelter 1930 #ifdef IS_MPI
597     setupFortranParallel();
598     #endif
599 gezelter 1490
600 gezelter 1930 setupFortranSim();
601 gezelter 1490
602 gezelter 1930 //setup fortran force field
603     /** @deprecate */
604     int isError = 0;
605 chrisfen 2297
606 chrisfen 3013 setupCutoff();
607    
608 chrisfen 2302 setupElectrostaticSummationMethod( isError );
609 chrisfen 2425 setupSwitchingFunction();
610 chrisfen 2917 setupAccumulateBoxDipole();
611 chrisfen 2297
612 gezelter 1930 if(isError){
613 gezelter 2204 sprintf( painCave.errMsg,
614     "ForceField error: There was an error initializing the forceField in fortran.\n" );
615     painCave.isFatal = 1;
616     simError();
617 gezelter 1930 }
618 gezelter 1490
619 gezelter 1930 calcNdf();
620     calcNdfRaw();
621     calcNdfTrans();
622    
623     fortranInitialized_ = true;
624 gezelter 2204 }
625 gezelter 1490
626 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
627 gezelter 1930 SimInfo::MoleculeIterator mi;
628     Molecule* mol;
629     Molecule::AtomIterator ai;
630     Atom* atom;
631     std::set<AtomType*> atomTypes;
632 gezelter 1490
633 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
634 gezelter 1490
635 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
636     atomTypes.insert(atom->getAtomType());
637     }
638 gezelter 1930
639     }
640 gezelter 1490
641 gezelter 1930 return atomTypes;
642 gezelter 2204 }
643 gezelter 1490
644 gezelter 2204 void SimInfo::setupSimType() {
645 gezelter 1930 std::set<AtomType*>::iterator i;
646     std::set<AtomType*> atomTypes;
647     atomTypes = getUniqueAtomTypes();
648 gezelter 1490
649 gezelter 1930 int useLennardJones = 0;
650     int useElectrostatic = 0;
651     int useEAM = 0;
652 chuckv 2433 int useSC = 0;
653 gezelter 1930 int useCharge = 0;
654     int useDirectional = 0;
655     int useDipole = 0;
656     int useGayBerne = 0;
657     int useSticky = 0;
658 chrisfen 2220 int useStickyPower = 0;
659 gezelter 1930 int useShape = 0;
660     int useFLARB = 0; //it is not in AtomType yet
661     int useDirectionalAtom = 0;
662     int useElectrostatics = 0;
663     //usePBC and useRF are from simParams
664 tim 2364 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
665 chrisfen 2310 int useRF;
666 chrisfen 2419 int useSF;
667 chrisfen 2917 int useSP;
668     int useBoxDipole;
669 tim 2364 std::string myMethod;
670 gezelter 1490
671 chrisfen 2310 // set the useRF logical
672 tim 2364 useRF = 0;
673 chrisfen 2419 useSF = 0;
674 gezelter 3054 useSP = 0;
675 chrisfen 2390
676    
677 tim 2364 if (simParams_->haveElectrostaticSummationMethod()) {
678 chrisfen 2390 std::string myMethod = simParams_->getElectrostaticSummationMethod();
679     toUpper(myMethod);
680 chrisfen 2917 if (myMethod == "REACTION_FIELD"){
681 gezelter 3054 useRF = 1;
682 chrisfen 2917 } else if (myMethod == "SHIFTED_FORCE"){
683     useSF = 1;
684     } else if (myMethod == "SHIFTED_POTENTIAL"){
685     useSP = 1;
686 chrisfen 2390 }
687 tim 2364 }
688 chrisfen 2917
689     if (simParams_->haveAccumulateBoxDipole())
690     if (simParams_->getAccumulateBoxDipole())
691     useBoxDipole = 1;
692 chrisfen 2310
693 gezelter 1930 //loop over all of the atom types
694     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
695 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
696     useElectrostatic |= (*i)->isElectrostatic();
697     useEAM |= (*i)->isEAM();
698 chuckv 2433 useSC |= (*i)->isSC();
699 gezelter 2204 useCharge |= (*i)->isCharge();
700     useDirectional |= (*i)->isDirectional();
701     useDipole |= (*i)->isDipole();
702     useGayBerne |= (*i)->isGayBerne();
703     useSticky |= (*i)->isSticky();
704 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
705 gezelter 2204 useShape |= (*i)->isShape();
706 gezelter 1930 }
707 gezelter 1490
708 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
709 gezelter 2204 useDirectionalAtom = 1;
710 gezelter 1930 }
711 gezelter 1490
712 gezelter 1930 if (useCharge || useDipole) {
713 gezelter 2204 useElectrostatics = 1;
714 gezelter 1930 }
715 gezelter 1490
716 gezelter 1930 #ifdef IS_MPI
717     int temp;
718 gezelter 1490
719 gezelter 1930 temp = usePBC;
720     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
721 gezelter 1490
722 gezelter 1930 temp = useDirectionalAtom;
723     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
724 gezelter 1490
725 gezelter 1930 temp = useLennardJones;
726     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
727 gezelter 1490
728 gezelter 1930 temp = useElectrostatics;
729     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
730 gezelter 1490
731 gezelter 1930 temp = useCharge;
732     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
733 gezelter 1490
734 gezelter 1930 temp = useDipole;
735     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
736 gezelter 1490
737 gezelter 1930 temp = useSticky;
738     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
739 gezelter 1490
740 chrisfen 2220 temp = useStickyPower;
741     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
742    
743 gezelter 1930 temp = useGayBerne;
744     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
745 gezelter 1490
746 gezelter 1930 temp = useEAM;
747     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748 gezelter 1490
749 chuckv 2433 temp = useSC;
750     MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
751    
752 gezelter 1930 temp = useShape;
753     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
754    
755     temp = useFLARB;
756     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
757    
758 chrisfen 2310 temp = useRF;
759     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
760    
761 chrisfen 2419 temp = useSF;
762 chrisfen 2917 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 chrisfen 2404
764 chrisfen 2917 temp = useSP;
765     MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766    
767     temp = useBoxDipole;
768     MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769    
770 gezelter 1490 #endif
771    
772 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
773     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
774     fInfo_.SIM_uses_LennardJones = useLennardJones;
775     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
776     fInfo_.SIM_uses_Charges = useCharge;
777     fInfo_.SIM_uses_Dipoles = useDipole;
778     fInfo_.SIM_uses_Sticky = useSticky;
779 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
780 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
781     fInfo_.SIM_uses_EAM = useEAM;
782 chuckv 2433 fInfo_.SIM_uses_SC = useSC;
783 gezelter 1930 fInfo_.SIM_uses_Shapes = useShape;
784     fInfo_.SIM_uses_FLARB = useFLARB;
785 chrisfen 2310 fInfo_.SIM_uses_RF = useRF;
786 chrisfen 2419 fInfo_.SIM_uses_SF = useSF;
787 chrisfen 2917 fInfo_.SIM_uses_SP = useSP;
788     fInfo_.SIM_uses_BoxDipole = useBoxDipole;
789 gezelter 2204 }
790 gezelter 1490
791 gezelter 2204 void SimInfo::setupFortranSim() {
792 gezelter 1930 int isError;
793     int nExclude;
794     std::vector<int> fortranGlobalGroupMembership;
795    
796     nExclude = exclude_.getSize();
797     isError = 0;
798 gezelter 1490
799 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
800     for (int i = 0; i < nGlobalAtoms_; i++) {
801 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
802 gezelter 1930 }
803 gezelter 1490
804 gezelter 1930 //calculate mass ratio of cutoff group
805 tim 2759 std::vector<RealType> mfact;
806 gezelter 1930 SimInfo::MoleculeIterator mi;
807     Molecule* mol;
808     Molecule::CutoffGroupIterator ci;
809     CutoffGroup* cg;
810     Molecule::AtomIterator ai;
811     Atom* atom;
812 tim 2759 RealType totalMass;
813 gezelter 1930
814     //to avoid memory reallocation, reserve enough space for mfact
815     mfact.reserve(getNCutoffGroups());
816 gezelter 1490
817 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
818 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
819 gezelter 1490
820 gezelter 2204 totalMass = cg->getMass();
821     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
822 chrisfen 2344 // Check for massless groups - set mfact to 1 if true
823     if (totalMass != 0)
824     mfact.push_back(atom->getMass()/totalMass);
825     else
826     mfact.push_back( 1.0 );
827 gezelter 2204 }
828 gezelter 1490
829 gezelter 2204 }
830 gezelter 1930 }
831 gezelter 1490
832 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
833     std::vector<int> identArray;
834 gezelter 1490
835 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
836     identArray.reserve(getNAtoms());
837    
838     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
839 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
840     identArray.push_back(atom->getIdent());
841     }
842 gezelter 1930 }
843 gezelter 1490
844 gezelter 1930 //fill molMembershipArray
845     //molMembershipArray is filled by SimCreator
846     std::vector<int> molMembershipArray(nGlobalAtoms_);
847     for (int i = 0; i < nGlobalAtoms_; i++) {
848 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
849 gezelter 1930 }
850    
851     //setup fortran simulation
852     int nGlobalExcludes = 0;
853     int* globalExcludes = NULL;
854     int* excludeList = exclude_.getExcludeList();
855     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
856 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
857     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
858 gezelter 1490
859 gezelter 1930 if( isError ){
860 gezelter 1490
861 gezelter 2204 sprintf( painCave.errMsg,
862     "There was an error setting the simulation information in fortran.\n" );
863     painCave.isFatal = 1;
864     painCave.severity = OOPSE_ERROR;
865     simError();
866 gezelter 1930 }
867    
868     #ifdef IS_MPI
869     sprintf( checkPointMsg,
870 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
871 gezelter 1930 MPIcheckPoint();
872     #endif // is_mpi
873 chuckv 3080
874     // Setup number of neighbors in neighbor list if present
875     if (simParams_->haveNeighborListNeighbors()) {
876 chuckv 3121 int nlistNeighbors = simParams_->getNeighborListNeighbors();
877     setNeighbors(&nlistNeighbors);
878 chuckv 3080 }
879    
880    
881 gezelter 2204 }
882 gezelter 1490
883    
884 gezelter 1930 #ifdef IS_MPI
885 gezelter 2204 void SimInfo::setupFortranParallel() {
886 gezelter 1930
887     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
888     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
889     std::vector<int> localToGlobalCutoffGroupIndex;
890     SimInfo::MoleculeIterator mi;
891     Molecule::AtomIterator ai;
892     Molecule::CutoffGroupIterator ci;
893     Molecule* mol;
894     Atom* atom;
895     CutoffGroup* cg;
896     mpiSimData parallelData;
897     int isError;
898 gezelter 1490
899 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
900 gezelter 1490
901 gezelter 2204 //local index(index in DataStorge) of atom is important
902     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
903     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
904     }
905 gezelter 1490
906 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
907     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
908     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
909     }
910 gezelter 1930
911     }
912 gezelter 1490
913 gezelter 1930 //fill up mpiSimData struct
914     parallelData.nMolGlobal = getNGlobalMolecules();
915     parallelData.nMolLocal = getNMolecules();
916     parallelData.nAtomsGlobal = getNGlobalAtoms();
917     parallelData.nAtomsLocal = getNAtoms();
918     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
919     parallelData.nGroupsLocal = getNCutoffGroups();
920     parallelData.myNode = worldRank;
921     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
922 gezelter 1490
923 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
924     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
925     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
926     &localToGlobalCutoffGroupIndex[0], &isError);
927 gezelter 1490
928 gezelter 1930 if (isError) {
929 gezelter 2204 sprintf(painCave.errMsg,
930     "mpiRefresh errror: fortran didn't like something we gave it.\n");
931     painCave.isFatal = 1;
932     simError();
933 gezelter 1930 }
934 gezelter 1490
935 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
936     MPIcheckPoint();
937 gezelter 1490
938    
939 gezelter 2204 }
940 chrisfen 1636
941 gezelter 1930 #endif
942 chrisfen 1636
943 gezelter 2463 void SimInfo::setupCutoff() {
944 gezelter 1490
945 chuckv 2533 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
946    
947 gezelter 2463 // Check the cutoff policy
948 chuckv 2533 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
949    
950     std::string myPolicy;
951     if (forceFieldOptions_.haveCutoffPolicy()){
952     myPolicy = forceFieldOptions_.getCutoffPolicy();
953     }else if (simParams_->haveCutoffPolicy()) {
954     myPolicy = simParams_->getCutoffPolicy();
955     }
956    
957     if (!myPolicy.empty()){
958 tim 2364 toUpper(myPolicy);
959 gezelter 2285 if (myPolicy == "MIX") {
960     cp = MIX_CUTOFF_POLICY;
961     } else {
962     if (myPolicy == "MAX") {
963     cp = MAX_CUTOFF_POLICY;
964     } else {
965     if (myPolicy == "TRADITIONAL") {
966     cp = TRADITIONAL_CUTOFF_POLICY;
967     } else {
968     // throw error
969     sprintf( painCave.errMsg,
970     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
971     painCave.isFatal = 1;
972     simError();
973     }
974     }
975     }
976 gezelter 2463 }
977     notifyFortranCutoffPolicy(&cp);
978 chuckv 2328
979 gezelter 2463 // Check the Skin Thickness for neighborlists
980 tim 2759 RealType skin;
981 gezelter 2463 if (simParams_->haveSkinThickness()) {
982     skin = simParams_->getSkinThickness();
983     notifyFortranSkinThickness(&skin);
984     }
985    
986     // Check if the cutoff was set explicitly:
987     if (simParams_->haveCutoffRadius()) {
988     rcut_ = simParams_->getCutoffRadius();
989     if (simParams_->haveSwitchingRadius()) {
990     rsw_ = simParams_->getSwitchingRadius();
991     } else {
992 chrisfen 2578 if (fInfo_.SIM_uses_Charges |
993     fInfo_.SIM_uses_Dipoles |
994     fInfo_.SIM_uses_RF) {
995    
996     rsw_ = 0.85 * rcut_;
997     sprintf(painCave.errMsg,
998     "SimCreator Warning: No value was set for the switchingRadius.\n"
999 chrisfen 2579 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1000 chrisfen 2578 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1001     painCave.isFatal = 0;
1002     simError();
1003     } else {
1004     rsw_ = rcut_;
1005     sprintf(painCave.errMsg,
1006     "SimCreator Warning: No value was set for the switchingRadius.\n"
1007     "\tOOPSE will use the same value as the cutoffRadius.\n"
1008     "\tswitchingRadius = %f. for this simulation\n", rsw_);
1009     painCave.isFatal = 0;
1010     simError();
1011     }
1012 chrisfen 2579 }
1013    
1014 gezelter 2463 notifyFortranCutoffs(&rcut_, &rsw_);
1015    
1016     } else {
1017    
1018     // For electrostatic atoms, we'll assume a large safe value:
1019     if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1020     sprintf(painCave.errMsg,
1021     "SimCreator Warning: No value was set for the cutoffRadius.\n"
1022     "\tOOPSE will use a default value of 15.0 angstroms"
1023     "\tfor the cutoffRadius.\n");
1024     painCave.isFatal = 0;
1025     simError();
1026     rcut_ = 15.0;
1027    
1028     if (simParams_->haveElectrostaticSummationMethod()) {
1029     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1030     toUpper(myMethod);
1031     if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1032     if (simParams_->haveSwitchingRadius()){
1033     sprintf(painCave.errMsg,
1034     "SimInfo Warning: A value was set for the switchingRadius\n"
1035     "\teven though the electrostaticSummationMethod was\n"
1036     "\tset to %s\n", myMethod.c_str());
1037     painCave.isFatal = 1;
1038     simError();
1039     }
1040     }
1041     }
1042    
1043     if (simParams_->haveSwitchingRadius()){
1044     rsw_ = simParams_->getSwitchingRadius();
1045     } else {
1046     sprintf(painCave.errMsg,
1047     "SimCreator Warning: No value was set for switchingRadius.\n"
1048     "\tOOPSE will use a default value of\n"
1049     "\t0.85 * cutoffRadius for the switchingRadius\n");
1050     painCave.isFatal = 0;
1051     simError();
1052     rsw_ = 0.85 * rcut_;
1053     }
1054     notifyFortranCutoffs(&rcut_, &rsw_);
1055     } else {
1056     // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1057     // We'll punt and let fortran figure out the cutoffs later.
1058    
1059     notifyFortranYouAreOnYourOwn();
1060 chuckv 2328
1061 gezelter 2463 }
1062 chuckv 2328 }
1063 gezelter 2204 }
1064 gezelter 1490
1065 chrisfen 2302 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1066 chrisfen 2297
1067     int errorOut;
1068 chrisfen 2302 int esm = NONE;
1069 chrisfen 2408 int sm = UNDAMPED;
1070 tim 2759 RealType alphaVal;
1071     RealType dielectric;
1072 chrisfen 3013
1073 chrisfen 2297 errorOut = isError;
1074    
1075 chrisfen 2302 if (simParams_->haveElectrostaticSummationMethod()) {
1076 chrisfen 2303 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1077 tim 2364 toUpper(myMethod);
1078 chrisfen 2302 if (myMethod == "NONE") {
1079     esm = NONE;
1080 chrisfen 2297 } else {
1081 chrisfen 2408 if (myMethod == "SWITCHING_FUNCTION") {
1082     esm = SWITCHING_FUNCTION;
1083 chrisfen 2297 } else {
1084 chrisfen 2408 if (myMethod == "SHIFTED_POTENTIAL") {
1085     esm = SHIFTED_POTENTIAL;
1086     } else {
1087     if (myMethod == "SHIFTED_FORCE") {
1088     esm = SHIFTED_FORCE;
1089 chrisfen 2297 } else {
1090 chrisfen 3020 if (myMethod == "REACTION_FIELD") {
1091 chrisfen 2408 esm = REACTION_FIELD;
1092 chrisfen 3020 dielectric = simParams_->getDielectric();
1093     if (!simParams_->haveDielectric()) {
1094     // throw warning
1095     sprintf( painCave.errMsg,
1096     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1097     "\tA default value of %f will be used for the dielectric.\n", dielectric);
1098     painCave.isFatal = 0;
1099     simError();
1100     }
1101 chrisfen 2408 } else {
1102     // throw error
1103     sprintf( painCave.errMsg,
1104 gezelter 2463 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1105     "\t(Input file specified %s .)\n"
1106     "\telectrostaticSummationMethod must be one of: \"none\",\n"
1107     "\t\"shifted_potential\", \"shifted_force\", or \n"
1108     "\t\"reaction_field\".\n", myMethod.c_str() );
1109 chrisfen 2408 painCave.isFatal = 1;
1110     simError();
1111     }
1112     }
1113     }
1114 chrisfen 2297 }
1115     }
1116     }
1117 chrisfen 2408
1118 chrisfen 2415 if (simParams_->haveElectrostaticScreeningMethod()) {
1119     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1120 chrisfen 2408 toUpper(myScreen);
1121     if (myScreen == "UNDAMPED") {
1122     sm = UNDAMPED;
1123     } else {
1124     if (myScreen == "DAMPED") {
1125     sm = DAMPED;
1126     if (!simParams_->haveDampingAlpha()) {
1127 chrisfen 3013 // first set a cutoff dependent alpha value
1128     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1129     alphaVal = 0.5125 - rcut_* 0.025;
1130     // for values rcut > 20.5, alpha is zero
1131     if (alphaVal < 0) alphaVal = 0;
1132    
1133     // throw warning
1134 chrisfen 2408 sprintf( painCave.errMsg,
1135 gezelter 2463 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1136 chrisfen 3013 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1137 chrisfen 2408 painCave.isFatal = 0;
1138     simError();
1139 chrisfen 3072 } else {
1140     alphaVal = simParams_->getDampingAlpha();
1141 chrisfen 2408 }
1142 chrisfen 3072
1143 chrisfen 2415 } else {
1144     // throw error
1145     sprintf( painCave.errMsg,
1146 gezelter 2463 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1147     "\t(Input file specified %s .)\n"
1148     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1149     "or \"damped\".\n", myScreen.c_str() );
1150 chrisfen 2415 painCave.isFatal = 1;
1151     simError();
1152 chrisfen 2408 }
1153     }
1154     }
1155 chrisfen 2415
1156 chrisfen 2309 // let's pass some summation method variables to fortran
1157 chrisfen 2552 setElectrostaticSummationMethod( &esm );
1158 gezelter 2508 setFortranElectrostaticMethod( &esm );
1159 chrisfen 2408 setScreeningMethod( &sm );
1160     setDampingAlpha( &alphaVal );
1161 chrisfen 2309 setReactionFieldDielectric( &dielectric );
1162 gezelter 2463 initFortranFF( &errorOut );
1163 chrisfen 2297 }
1164    
1165 chrisfen 2425 void SimInfo::setupSwitchingFunction() {
1166     int ft = CUBIC;
1167    
1168     if (simParams_->haveSwitchingFunctionType()) {
1169     std::string funcType = simParams_->getSwitchingFunctionType();
1170     toUpper(funcType);
1171     if (funcType == "CUBIC") {
1172     ft = CUBIC;
1173     } else {
1174     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1175     ft = FIFTH_ORDER_POLY;
1176     } else {
1177     // throw error
1178     sprintf( painCave.errMsg,
1179     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1180     painCave.isFatal = 1;
1181     simError();
1182     }
1183     }
1184     }
1185    
1186     // send switching function notification to switcheroo
1187     setFunctionType(&ft);
1188    
1189     }
1190    
1191 chrisfen 2917 void SimInfo::setupAccumulateBoxDipole() {
1192    
1193     // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1194     if ( simParams_->haveAccumulateBoxDipole() )
1195     if ( simParams_->getAccumulateBoxDipole() ) {
1196     setAccumulateBoxDipole();
1197     calcBoxDipole_ = true;
1198     }
1199    
1200     }
1201    
1202 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
1203 gezelter 1930 properties_.addProperty(genData);
1204 gezelter 2204 }
1205 gezelter 1490
1206 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
1207 gezelter 1930 properties_.removeProperty(propName);
1208 gezelter 2204 }
1209 gezelter 1490
1210 gezelter 2204 void SimInfo::clearProperties() {
1211 gezelter 1930 properties_.clearProperties();
1212 gezelter 2204 }
1213 gezelter 1490
1214 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
1215 gezelter 1930 return properties_.getPropertyNames();
1216 gezelter 2204 }
1217 gezelter 1930
1218 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
1219 gezelter 1930 return properties_.getProperties();
1220 gezelter 2204 }
1221 gezelter 1490
1222 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1223 gezelter 1930 return properties_.getPropertyByName(propName);
1224 gezelter 2204 }
1225 gezelter 1490
1226 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1227 tim 2116 if (sman_ == sman) {
1228 gezelter 2204 return;
1229 tim 2116 }
1230     delete sman_;
1231 gezelter 1930 sman_ = sman;
1232 gezelter 1490
1233 gezelter 1930 Molecule* mol;
1234     RigidBody* rb;
1235     Atom* atom;
1236     SimInfo::MoleculeIterator mi;
1237     Molecule::RigidBodyIterator rbIter;
1238     Molecule::AtomIterator atomIter;;
1239    
1240     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1241    
1242 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1243     atom->setSnapshotManager(sman_);
1244     }
1245 gezelter 1930
1246 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1247     rb->setSnapshotManager(sman_);
1248     }
1249 gezelter 1930 }
1250 gezelter 1490
1251 gezelter 2204 }
1252 gezelter 1490
1253 gezelter 2204 Vector3d SimInfo::getComVel(){
1254 gezelter 1930 SimInfo::MoleculeIterator i;
1255     Molecule* mol;
1256 gezelter 1490
1257 gezelter 1930 Vector3d comVel(0.0);
1258 tim 2759 RealType totalMass = 0.0;
1259 gezelter 1490
1260 gezelter 1930
1261     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1262 tim 2759 RealType mass = mol->getMass();
1263 gezelter 2204 totalMass += mass;
1264     comVel += mass * mol->getComVel();
1265 gezelter 1930 }
1266 gezelter 1490
1267 gezelter 1930 #ifdef IS_MPI
1268 tim 2759 RealType tmpMass = totalMass;
1269 gezelter 1930 Vector3d tmpComVel(comVel);
1270 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1271     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1272 gezelter 1930 #endif
1273    
1274     comVel /= totalMass;
1275    
1276     return comVel;
1277 gezelter 2204 }
1278 gezelter 1490
1279 gezelter 2204 Vector3d SimInfo::getCom(){
1280 gezelter 1930 SimInfo::MoleculeIterator i;
1281     Molecule* mol;
1282 gezelter 1490
1283 gezelter 1930 Vector3d com(0.0);
1284 tim 2759 RealType totalMass = 0.0;
1285 gezelter 1930
1286     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1287 tim 2759 RealType mass = mol->getMass();
1288 gezelter 2204 totalMass += mass;
1289     com += mass * mol->getCom();
1290 gezelter 1930 }
1291 gezelter 1490
1292     #ifdef IS_MPI
1293 tim 2759 RealType tmpMass = totalMass;
1294 gezelter 1930 Vector3d tmpCom(com);
1295 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1296     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1297 gezelter 1490 #endif
1298    
1299 gezelter 1930 com /= totalMass;
1300 gezelter 1490
1301 gezelter 1930 return com;
1302 gezelter 1490
1303 gezelter 2204 }
1304 gezelter 1930
1305 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1306 gezelter 1930
1307     return o;
1308 gezelter 2204 }
1309 chuckv 2252
1310    
1311     /*
1312     Returns center of mass and center of mass velocity in one function call.
1313     */
1314    
1315     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1316     SimInfo::MoleculeIterator i;
1317     Molecule* mol;
1318    
1319    
1320 tim 2759 RealType totalMass = 0.0;
1321 chuckv 2252
1322 gezelter 1930
1323 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1324 tim 2759 RealType mass = mol->getMass();
1325 chuckv 2252 totalMass += mass;
1326     com += mass * mol->getCom();
1327     comVel += mass * mol->getComVel();
1328     }
1329    
1330     #ifdef IS_MPI
1331 tim 2759 RealType tmpMass = totalMass;
1332 chuckv 2252 Vector3d tmpCom(com);
1333     Vector3d tmpComVel(comVel);
1334 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1335     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1336     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1337 chuckv 2252 #endif
1338    
1339     com /= totalMass;
1340     comVel /= totalMass;
1341     }
1342    
1343     /*
1344     Return intertia tensor for entire system and angular momentum Vector.
1345 chuckv 2256
1346    
1347     [ Ixx -Ixy -Ixz ]
1348     J =| -Iyx Iyy -Iyz |
1349     [ -Izx -Iyz Izz ]
1350 chuckv 2252 */
1351    
1352     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1353    
1354    
1355 tim 2759 RealType xx = 0.0;
1356     RealType yy = 0.0;
1357     RealType zz = 0.0;
1358     RealType xy = 0.0;
1359     RealType xz = 0.0;
1360     RealType yz = 0.0;
1361 chuckv 2252 Vector3d com(0.0);
1362     Vector3d comVel(0.0);
1363    
1364     getComAll(com, comVel);
1365    
1366     SimInfo::MoleculeIterator i;
1367     Molecule* mol;
1368    
1369     Vector3d thisq(0.0);
1370     Vector3d thisv(0.0);
1371    
1372 tim 2759 RealType thisMass = 0.0;
1373 chuckv 2252
1374    
1375    
1376    
1377     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1378    
1379     thisq = mol->getCom()-com;
1380     thisv = mol->getComVel()-comVel;
1381     thisMass = mol->getMass();
1382     // Compute moment of intertia coefficients.
1383     xx += thisq[0]*thisq[0]*thisMass;
1384     yy += thisq[1]*thisq[1]*thisMass;
1385     zz += thisq[2]*thisq[2]*thisMass;
1386    
1387     // compute products of intertia
1388     xy += thisq[0]*thisq[1]*thisMass;
1389     xz += thisq[0]*thisq[2]*thisMass;
1390     yz += thisq[1]*thisq[2]*thisMass;
1391    
1392     angularMomentum += cross( thisq, thisv ) * thisMass;
1393    
1394     }
1395    
1396    
1397     inertiaTensor(0,0) = yy + zz;
1398     inertiaTensor(0,1) = -xy;
1399     inertiaTensor(0,2) = -xz;
1400     inertiaTensor(1,0) = -xy;
1401 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1402 chuckv 2252 inertiaTensor(1,2) = -yz;
1403     inertiaTensor(2,0) = -xz;
1404     inertiaTensor(2,1) = -yz;
1405     inertiaTensor(2,2) = xx + yy;
1406    
1407     #ifdef IS_MPI
1408     Mat3x3d tmpI(inertiaTensor);
1409     Vector3d tmpAngMom;
1410 tim 2759 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1411     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1412 chuckv 2252 #endif
1413    
1414     return;
1415     }
1416    
1417     //Returns the angular momentum of the system
1418     Vector3d SimInfo::getAngularMomentum(){
1419    
1420     Vector3d com(0.0);
1421     Vector3d comVel(0.0);
1422     Vector3d angularMomentum(0.0);
1423    
1424     getComAll(com,comVel);
1425    
1426     SimInfo::MoleculeIterator i;
1427     Molecule* mol;
1428    
1429 chuckv 2256 Vector3d thisr(0.0);
1430     Vector3d thisp(0.0);
1431 chuckv 2252
1432 tim 2759 RealType thisMass;
1433 chuckv 2252
1434     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1435 chuckv 2256 thisMass = mol->getMass();
1436     thisr = mol->getCom()-com;
1437     thisp = (mol->getComVel()-comVel)*thisMass;
1438 chuckv 2252
1439 chuckv 2256 angularMomentum += cross( thisr, thisp );
1440    
1441 chuckv 2252 }
1442    
1443     #ifdef IS_MPI
1444     Vector3d tmpAngMom;
1445 tim 2759 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1446 chuckv 2252 #endif
1447    
1448     return angularMomentum;
1449     }
1450    
1451 tim 2982 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1452     return IOIndexToIntegrableObject.at(index);
1453     }
1454    
1455     void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1456     IOIndexToIntegrableObject= v;
1457     }
1458    
1459 chuckv 3100 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1460     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1461     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1462     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1463     */
1464     void SimInfo::getGyrationalVolume(RealType &volume){
1465     Mat3x3d intTensor;
1466     RealType det;
1467     Vector3d dummyAngMom;
1468     RealType sysconstants;
1469     RealType geomCnst;
1470    
1471     geomCnst = 3.0/2.0;
1472     /* Get the inertial tensor and angular momentum for free*/
1473     getInertiaTensor(intTensor,dummyAngMom);
1474    
1475     det = intTensor.determinant();
1476     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1477     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1478     return;
1479     }
1480    
1481     void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1482     Mat3x3d intTensor;
1483     Vector3d dummyAngMom;
1484     RealType sysconstants;
1485     RealType geomCnst;
1486    
1487     geomCnst = 3.0/2.0;
1488     /* Get the inertial tensor and angular momentum for free*/
1489     getInertiaTensor(intTensor,dummyAngMom);
1490    
1491     detI = intTensor.determinant();
1492     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1493     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1494     return;
1495     }
1496 tim 2982 /*
1497     void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1498     assert( v.size() == nAtoms_ + nRigidBodies_);
1499     sdByGlobalIndex_ = v;
1500     }
1501    
1502     StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1503     //assert(index < nAtoms_ + nRigidBodies_);
1504     return sdByGlobalIndex_.at(index);
1505     }
1506     */
1507 gezelter 1930 }//end namespace oopse
1508