ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 3126
Committed: Fri Apr 6 21:53:43 2007 UTC (17 years, 5 months ago) by gezelter
File size: 48065 byte(s)
Log Message:
Massive update to do virials (both atomic and cutoff-group) correctly.
The rigid body constraint contributions had been missing and this was
masked by the use of cutoff groups...

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 tim 2448 #include <map>
52 gezelter 1490
53 tim 1492 #include "brains/SimInfo.hpp"
54 gezelter 1930 #include "math/Vector3.hpp"
55     #include "primitives/Molecule.hpp"
56 tim 2982 #include "primitives/StuntDouble.hpp"
57 gezelter 2285 #include "UseTheForce/fCutoffPolicy.h"
58 chrisfen 2305 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 chrisfen 2415 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 chrisfen 2425 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 gezelter 1930 #include "UseTheForce/doForces_interface.h"
62 chuckv 3080 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 chrisfen 2309 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 chrisfen 2425 #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 gezelter 1930 #include "utils/MemoryUtils.hpp"
66 tim 1492 #include "utils/simError.h"
67 tim 2000 #include "selection/SelectionManager.hpp"
68 chuckv 2533 #include "io/ForceFieldOptions.hpp"
69     #include "UseTheForce/ForceField.hpp"
70 gezelter 1490
71 chuckv 3080
72 gezelter 1930 #ifdef IS_MPI
73     #include "UseTheForce/mpiComponentPlan.h"
74     #include "UseTheForce/DarkSide/simParallel_interface.h"
75     #endif
76 gezelter 1490
77 gezelter 1930 namespace oopse {
78 tim 2448 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79     std::map<int, std::set<int> >::iterator i = container.find(index);
80     std::set<int> result;
81     if (i != container.end()) {
82     result = i->second;
83     }
84 gezelter 1490
85 tim 2448 return result;
86     }
87    
88 tim 2469 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89     forceField_(ff), simParams_(simParams),
90 gezelter 2733 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 gezelter 2204 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
94     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
95 gezelter 3126 sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
96     useAtomicVirial_(true) {
97 gezelter 1490
98 gezelter 2204 MoleculeStamp* molStamp;
99     int nMolWithSameStamp;
100     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
101 chrisfen 2344 int nGroups = 0; //total cutoff groups defined in meta-data file
102 gezelter 2204 CutoffGroupStamp* cgStamp;
103     RigidBodyStamp* rbStamp;
104     int nRigidAtoms = 0;
105 tim 2469 std::vector<Component*> components = simParams->getComponents();
106    
107     for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
108     molStamp = (*i)->getMoleculeStamp();
109     nMolWithSameStamp = (*i)->getNMol();
110 gezelter 1930
111     addMoleculeStamp(molStamp, nMolWithSameStamp);
112 gezelter 1490
113 gezelter 1930 //calculate atoms in molecules
114     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
115 gezelter 1490
116 gezelter 1930 //calculate atoms in cutoff groups
117     int nAtomsInGroups = 0;
118     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119    
120     for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 tim 2469 cgStamp = molStamp->getCutoffGroupStamp(j);
122 gezelter 2204 nAtomsInGroups += cgStamp->getNMembers();
123 gezelter 1930 }
124 gezelter 1490
125 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 chrisfen 2344
127 gezelter 1930 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
128 gezelter 1490
129 gezelter 1930 //calculate atoms in rigid bodies
130     int nAtomsInRigidBodies = 0;
131 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 gezelter 1930
133     for (int j=0; j < nRigidBodiesInStamp; j++) {
134 tim 2469 rbStamp = molStamp->getRigidBodyStamp(j);
135 gezelter 2204 nAtomsInRigidBodies += rbStamp->getNMembers();
136 gezelter 1930 }
137 gezelter 1490
138 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
140    
141 gezelter 2204 }
142 chrisfen 1636
143 chrisfen 2344 //every free atom (atom does not belong to cutoff groups) is a cutoff
144     //group therefore the total number of cutoff groups in the system is
145     //equal to the total number of atoms minus number of atoms belong to
146     //cutoff group defined in meta-data file plus the number of cutoff
147     //groups defined in meta-data file
148 gezelter 2204 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149 gezelter 1490
150 chrisfen 2344 //every free atom (atom does not belong to rigid bodies) is an
151     //integrable object therefore the total number of integrable objects
152     //in the system is equal to the total number of atoms minus number of
153     //atoms belong to rigid body defined in meta-data file plus the number
154     //of rigid bodies defined in meta-data file
155     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156     + nGlobalRigidBodies_;
157    
158 gezelter 2204 nGlobalMols_ = molStampIds_.size();
159 gezelter 1490
160 gezelter 1930 #ifdef IS_MPI
161 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
162 gezelter 1930 #endif
163 tim 1976
164 gezelter 2204 }
165 gezelter 1490
166 gezelter 2204 SimInfo::~SimInfo() {
167 tim 2082 std::map<int, Molecule*>::iterator i;
168     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
169 gezelter 2204 delete i->second;
170 tim 2082 }
171     molecules_.clear();
172 tim 2187
173 gezelter 1930 delete sman_;
174     delete simParams_;
175     delete forceField_;
176 gezelter 2204 }
177 gezelter 1490
178 gezelter 2204 int SimInfo::getNGlobalConstraints() {
179 gezelter 1930 int nGlobalConstraints;
180     #ifdef IS_MPI
181     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
182     MPI_COMM_WORLD);
183     #else
184     nGlobalConstraints = nConstraints_;
185     #endif
186     return nGlobalConstraints;
187 gezelter 2204 }
188 gezelter 1490
189 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
190 gezelter 1930 MoleculeIterator i;
191 gezelter 1490
192 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
193     if (i == molecules_.end() ) {
194 gezelter 1490
195 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
196 gezelter 1930
197 gezelter 2204 nAtoms_ += mol->getNAtoms();
198     nBonds_ += mol->getNBonds();
199     nBends_ += mol->getNBends();
200     nTorsions_ += mol->getNTorsions();
201     nRigidBodies_ += mol->getNRigidBodies();
202     nIntegrableObjects_ += mol->getNIntegrableObjects();
203     nCutoffGroups_ += mol->getNCutoffGroups();
204     nConstraints_ += mol->getNConstraintPairs();
205 gezelter 1490
206 gezelter 2204 addExcludePairs(mol);
207 gezelter 1930
208 gezelter 2204 return true;
209 gezelter 1930 } else {
210 gezelter 2204 return false;
211 gezelter 1930 }
212 gezelter 2204 }
213 gezelter 1490
214 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
215 gezelter 1930 MoleculeIterator i;
216     i = molecules_.find(mol->getGlobalIndex());
217 gezelter 1490
218 gezelter 1930 if (i != molecules_.end() ) {
219 gezelter 1490
220 gezelter 2204 assert(mol == i->second);
221 gezelter 1930
222 gezelter 2204 nAtoms_ -= mol->getNAtoms();
223     nBonds_ -= mol->getNBonds();
224     nBends_ -= mol->getNBends();
225     nTorsions_ -= mol->getNTorsions();
226     nRigidBodies_ -= mol->getNRigidBodies();
227     nIntegrableObjects_ -= mol->getNIntegrableObjects();
228     nCutoffGroups_ -= mol->getNCutoffGroups();
229     nConstraints_ -= mol->getNConstraintPairs();
230 gezelter 1490
231 gezelter 2204 removeExcludePairs(mol);
232     molecules_.erase(mol->getGlobalIndex());
233 gezelter 1490
234 gezelter 2204 delete mol;
235 gezelter 1930
236 gezelter 2204 return true;
237 gezelter 1930 } else {
238 gezelter 2204 return false;
239 gezelter 1930 }
240    
241    
242 gezelter 2204 }
243 gezelter 1930
244    
245 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246 gezelter 1930 i = molecules_.begin();
247     return i == molecules_.end() ? NULL : i->second;
248 gezelter 2204 }
249 gezelter 1930
250 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251 gezelter 1930 ++i;
252     return i == molecules_.end() ? NULL : i->second;
253 gezelter 2204 }
254 gezelter 1490
255    
256 gezelter 2204 void SimInfo::calcNdf() {
257 gezelter 1930 int ndf_local;
258     MoleculeIterator i;
259     std::vector<StuntDouble*>::iterator j;
260     Molecule* mol;
261     StuntDouble* integrableObject;
262 gezelter 1490
263 gezelter 1930 ndf_local = 0;
264    
265     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267     integrableObject = mol->nextIntegrableObject(j)) {
268 gezelter 1490
269 gezelter 2204 ndf_local += 3;
270 gezelter 1490
271 gezelter 2204 if (integrableObject->isDirectional()) {
272     if (integrableObject->isLinear()) {
273     ndf_local += 2;
274     } else {
275     ndf_local += 3;
276     }
277     }
278 gezelter 1930
279 tim 2469 }
280     }
281 gezelter 1930
282     // n_constraints is local, so subtract them on each processor
283     ndf_local -= nConstraints_;
284    
285     #ifdef IS_MPI
286     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287     #else
288     ndf_ = ndf_local;
289     #endif
290    
291     // nZconstraints_ is global, as are the 3 COM translations for the
292     // entire system:
293     ndf_ = ndf_ - 3 - nZconstraint_;
294    
295 gezelter 2204 }
296 gezelter 1490
297 gezelter 2733 int SimInfo::getFdf() {
298     #ifdef IS_MPI
299     MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300     #else
301     fdf_ = fdf_local;
302     #endif
303     return fdf_;
304     }
305    
306 gezelter 2204 void SimInfo::calcNdfRaw() {
307 gezelter 1930 int ndfRaw_local;
308 gezelter 1490
309 gezelter 1930 MoleculeIterator i;
310     std::vector<StuntDouble*>::iterator j;
311     Molecule* mol;
312     StuntDouble* integrableObject;
313    
314     // Raw degrees of freedom that we have to set
315     ndfRaw_local = 0;
316    
317     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319     integrableObject = mol->nextIntegrableObject(j)) {
320 gezelter 1930
321 gezelter 2204 ndfRaw_local += 3;
322 gezelter 1930
323 gezelter 2204 if (integrableObject->isDirectional()) {
324     if (integrableObject->isLinear()) {
325     ndfRaw_local += 2;
326     } else {
327     ndfRaw_local += 3;
328     }
329     }
330 gezelter 1930
331 gezelter 2204 }
332 gezelter 1930 }
333    
334     #ifdef IS_MPI
335     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336     #else
337     ndfRaw_ = ndfRaw_local;
338     #endif
339 gezelter 2204 }
340 gezelter 1490
341 gezelter 2204 void SimInfo::calcNdfTrans() {
342 gezelter 1930 int ndfTrans_local;
343 gezelter 1490
344 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
345 gezelter 1490
346    
347 gezelter 1930 #ifdef IS_MPI
348     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
349     #else
350     ndfTrans_ = ndfTrans_local;
351     #endif
352 gezelter 1490
353 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354    
355 gezelter 2204 }
356 gezelter 1490
357 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
358 gezelter 1930 std::vector<Bond*>::iterator bondIter;
359     std::vector<Bend*>::iterator bendIter;
360     std::vector<Torsion*>::iterator torsionIter;
361     Bond* bond;
362     Bend* bend;
363     Torsion* torsion;
364     int a;
365     int b;
366     int c;
367     int d;
368 tim 2448
369     std::map<int, std::set<int> > atomGroups;
370    
371     Molecule::RigidBodyIterator rbIter;
372     RigidBody* rb;
373     Molecule::IntegrableObjectIterator ii;
374     StuntDouble* integrableObject;
375 gezelter 1930
376 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
377     integrableObject = mol->nextIntegrableObject(ii)) {
378    
379     if (integrableObject->isRigidBody()) {
380     rb = static_cast<RigidBody*>(integrableObject);
381     std::vector<Atom*> atoms = rb->getAtoms();
382     std::set<int> rigidAtoms;
383     for (int i = 0; i < atoms.size(); ++i) {
384     rigidAtoms.insert(atoms[i]->getGlobalIndex());
385     }
386     for (int i = 0; i < atoms.size(); ++i) {
387     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
388     }
389     } else {
390     std::set<int> oneAtomSet;
391     oneAtomSet.insert(integrableObject->getGlobalIndex());
392     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
393     }
394     }
395    
396    
397    
398 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
399 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
400     b = bond->getAtomB()->getGlobalIndex();
401     exclude_.addPair(a, b);
402 gezelter 1930 }
403 gezelter 1490
404 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
405 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
406     b = bend->getAtomB()->getGlobalIndex();
407     c = bend->getAtomC()->getGlobalIndex();
408 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
409     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
410     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
411 gezelter 1490
412 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
413     exclude_.addPairs(rigidSetA, rigidSetC);
414     exclude_.addPairs(rigidSetB, rigidSetC);
415    
416     //exclude_.addPair(a, b);
417     //exclude_.addPair(a, c);
418     //exclude_.addPair(b, c);
419 gezelter 1930 }
420 gezelter 1490
421 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
422 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
423     b = torsion->getAtomB()->getGlobalIndex();
424     c = torsion->getAtomC()->getGlobalIndex();
425     d = torsion->getAtomD()->getGlobalIndex();
426 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
427     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
428     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
429     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
430 gezelter 1490
431 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
432     exclude_.addPairs(rigidSetA, rigidSetC);
433     exclude_.addPairs(rigidSetA, rigidSetD);
434     exclude_.addPairs(rigidSetB, rigidSetC);
435     exclude_.addPairs(rigidSetB, rigidSetD);
436     exclude_.addPairs(rigidSetC, rigidSetD);
437    
438     /*
439     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
440     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
441     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
442     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
443     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
444     exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
445    
446    
447 gezelter 2204 exclude_.addPair(a, b);
448     exclude_.addPair(a, c);
449     exclude_.addPair(a, d);
450     exclude_.addPair(b, c);
451     exclude_.addPair(b, d);
452     exclude_.addPair(c, d);
453 tim 2448 */
454 gezelter 1490 }
455    
456 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
457 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
458     for (int i = 0; i < atoms.size() -1 ; ++i) {
459     for (int j = i + 1; j < atoms.size(); ++j) {
460     a = atoms[i]->getGlobalIndex();
461     b = atoms[j]->getGlobalIndex();
462     exclude_.addPair(a, b);
463     }
464     }
465 tim 2114 }
466    
467 gezelter 2204 }
468 gezelter 1930
469 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
470 gezelter 1930 std::vector<Bond*>::iterator bondIter;
471     std::vector<Bend*>::iterator bendIter;
472     std::vector<Torsion*>::iterator torsionIter;
473     Bond* bond;
474     Bend* bend;
475     Torsion* torsion;
476     int a;
477     int b;
478     int c;
479     int d;
480 tim 2448
481     std::map<int, std::set<int> > atomGroups;
482    
483     Molecule::RigidBodyIterator rbIter;
484     RigidBody* rb;
485     Molecule::IntegrableObjectIterator ii;
486     StuntDouble* integrableObject;
487 gezelter 1930
488 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
489     integrableObject = mol->nextIntegrableObject(ii)) {
490    
491     if (integrableObject->isRigidBody()) {
492     rb = static_cast<RigidBody*>(integrableObject);
493     std::vector<Atom*> atoms = rb->getAtoms();
494     std::set<int> rigidAtoms;
495     for (int i = 0; i < atoms.size(); ++i) {
496     rigidAtoms.insert(atoms[i]->getGlobalIndex());
497     }
498     for (int i = 0; i < atoms.size(); ++i) {
499     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
500     }
501     } else {
502     std::set<int> oneAtomSet;
503     oneAtomSet.insert(integrableObject->getGlobalIndex());
504     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
505     }
506     }
507    
508    
509 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
510 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
511     b = bond->getAtomB()->getGlobalIndex();
512     exclude_.removePair(a, b);
513 gezelter 1490 }
514 gezelter 1930
515     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
516 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
517     b = bend->getAtomB()->getGlobalIndex();
518     c = bend->getAtomC()->getGlobalIndex();
519 gezelter 1930
520 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
521     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
522     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
523    
524     exclude_.removePairs(rigidSetA, rigidSetB);
525     exclude_.removePairs(rigidSetA, rigidSetC);
526     exclude_.removePairs(rigidSetB, rigidSetC);
527    
528     //exclude_.removePair(a, b);
529     //exclude_.removePair(a, c);
530     //exclude_.removePair(b, c);
531 gezelter 1490 }
532 gezelter 1930
533     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
534 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
535     b = torsion->getAtomB()->getGlobalIndex();
536     c = torsion->getAtomC()->getGlobalIndex();
537     d = torsion->getAtomD()->getGlobalIndex();
538 gezelter 1930
539 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
540     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
541     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
542     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
543    
544     exclude_.removePairs(rigidSetA, rigidSetB);
545     exclude_.removePairs(rigidSetA, rigidSetC);
546     exclude_.removePairs(rigidSetA, rigidSetD);
547     exclude_.removePairs(rigidSetB, rigidSetC);
548     exclude_.removePairs(rigidSetB, rigidSetD);
549     exclude_.removePairs(rigidSetC, rigidSetD);
550    
551     /*
552     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
553     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
554     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
555     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
556     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
557     exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
558    
559    
560 gezelter 2204 exclude_.removePair(a, b);
561     exclude_.removePair(a, c);
562     exclude_.removePair(a, d);
563     exclude_.removePair(b, c);
564     exclude_.removePair(b, d);
565     exclude_.removePair(c, d);
566 tim 2448 */
567 gezelter 1930 }
568    
569 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
570 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
571     for (int i = 0; i < atoms.size() -1 ; ++i) {
572     for (int j = i + 1; j < atoms.size(); ++j) {
573     a = atoms[i]->getGlobalIndex();
574     b = atoms[j]->getGlobalIndex();
575     exclude_.removePair(a, b);
576     }
577     }
578 tim 2114 }
579    
580 gezelter 2204 }
581 gezelter 1490
582    
583 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
584 gezelter 1930 int curStampId;
585 gezelter 1490
586 gezelter 1930 //index from 0
587     curStampId = moleculeStamps_.size();
588 gezelter 1490
589 gezelter 1930 moleculeStamps_.push_back(molStamp);
590     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
591 gezelter 2204 }
592 gezelter 1490
593 gezelter 2204 void SimInfo::update() {
594 gezelter 1490
595 gezelter 1930 setupSimType();
596 gezelter 1490
597 gezelter 1930 #ifdef IS_MPI
598     setupFortranParallel();
599     #endif
600 gezelter 1490
601 gezelter 1930 setupFortranSim();
602 gezelter 1490
603 gezelter 1930 //setup fortran force field
604     /** @deprecate */
605     int isError = 0;
606 chrisfen 2297
607 chrisfen 3013 setupCutoff();
608    
609 chrisfen 2302 setupElectrostaticSummationMethod( isError );
610 chrisfen 2425 setupSwitchingFunction();
611 chrisfen 2917 setupAccumulateBoxDipole();
612 chrisfen 2297
613 gezelter 1930 if(isError){
614 gezelter 2204 sprintf( painCave.errMsg,
615     "ForceField error: There was an error initializing the forceField in fortran.\n" );
616     painCave.isFatal = 1;
617     simError();
618 gezelter 1930 }
619 gezelter 1490
620 gezelter 1930 calcNdf();
621     calcNdfRaw();
622     calcNdfTrans();
623    
624     fortranInitialized_ = true;
625 gezelter 2204 }
626 gezelter 1490
627 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
628 gezelter 1930 SimInfo::MoleculeIterator mi;
629     Molecule* mol;
630     Molecule::AtomIterator ai;
631     Atom* atom;
632     std::set<AtomType*> atomTypes;
633 gezelter 1490
634 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
635 gezelter 1490
636 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
637     atomTypes.insert(atom->getAtomType());
638     }
639 gezelter 1930
640     }
641 gezelter 1490
642 gezelter 1930 return atomTypes;
643 gezelter 2204 }
644 gezelter 1490
645 gezelter 2204 void SimInfo::setupSimType() {
646 gezelter 1930 std::set<AtomType*>::iterator i;
647     std::set<AtomType*> atomTypes;
648     atomTypes = getUniqueAtomTypes();
649 gezelter 1490
650 gezelter 1930 int useLennardJones = 0;
651     int useElectrostatic = 0;
652     int useEAM = 0;
653 chuckv 2433 int useSC = 0;
654 gezelter 1930 int useCharge = 0;
655     int useDirectional = 0;
656     int useDipole = 0;
657     int useGayBerne = 0;
658     int useSticky = 0;
659 chrisfen 2220 int useStickyPower = 0;
660 gezelter 1930 int useShape = 0;
661     int useFLARB = 0; //it is not in AtomType yet
662     int useDirectionalAtom = 0;
663     int useElectrostatics = 0;
664     //usePBC and useRF are from simParams
665 tim 2364 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
666 chrisfen 2310 int useRF;
667 chrisfen 2419 int useSF;
668 chrisfen 2917 int useSP;
669     int useBoxDipole;
670 gezelter 3126
671 tim 2364 std::string myMethod;
672 gezelter 1490
673 chrisfen 2310 // set the useRF logical
674 tim 2364 useRF = 0;
675 chrisfen 2419 useSF = 0;
676 gezelter 3054 useSP = 0;
677 chrisfen 2390
678    
679 tim 2364 if (simParams_->haveElectrostaticSummationMethod()) {
680 chrisfen 2390 std::string myMethod = simParams_->getElectrostaticSummationMethod();
681     toUpper(myMethod);
682 chrisfen 2917 if (myMethod == "REACTION_FIELD"){
683 gezelter 3054 useRF = 1;
684 chrisfen 2917 } else if (myMethod == "SHIFTED_FORCE"){
685     useSF = 1;
686     } else if (myMethod == "SHIFTED_POTENTIAL"){
687     useSP = 1;
688 chrisfen 2390 }
689 tim 2364 }
690 chrisfen 2917
691     if (simParams_->haveAccumulateBoxDipole())
692     if (simParams_->getAccumulateBoxDipole())
693     useBoxDipole = 1;
694 chrisfen 2310
695 gezelter 3126 useAtomicVirial_ = simParams_->getUseAtomicVirial();
696    
697 gezelter 1930 //loop over all of the atom types
698     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
699 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
700     useElectrostatic |= (*i)->isElectrostatic();
701     useEAM |= (*i)->isEAM();
702 chuckv 2433 useSC |= (*i)->isSC();
703 gezelter 2204 useCharge |= (*i)->isCharge();
704     useDirectional |= (*i)->isDirectional();
705     useDipole |= (*i)->isDipole();
706     useGayBerne |= (*i)->isGayBerne();
707     useSticky |= (*i)->isSticky();
708 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
709 gezelter 2204 useShape |= (*i)->isShape();
710 gezelter 1930 }
711 gezelter 1490
712 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
713 gezelter 2204 useDirectionalAtom = 1;
714 gezelter 1930 }
715 gezelter 1490
716 gezelter 1930 if (useCharge || useDipole) {
717 gezelter 2204 useElectrostatics = 1;
718 gezelter 1930 }
719 gezelter 1490
720 gezelter 1930 #ifdef IS_MPI
721     int temp;
722 gezelter 1490
723 gezelter 1930 temp = usePBC;
724     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
725 gezelter 1490
726 gezelter 1930 temp = useDirectionalAtom;
727     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
728 gezelter 1490
729 gezelter 1930 temp = useLennardJones;
730     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
731 gezelter 1490
732 gezelter 1930 temp = useElectrostatics;
733     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
734 gezelter 1490
735 gezelter 1930 temp = useCharge;
736     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
737 gezelter 1490
738 gezelter 1930 temp = useDipole;
739     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
740 gezelter 1490
741 gezelter 1930 temp = useSticky;
742     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
743 gezelter 1490
744 chrisfen 2220 temp = useStickyPower;
745     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
746    
747 gezelter 1930 temp = useGayBerne;
748     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
749 gezelter 1490
750 gezelter 1930 temp = useEAM;
751     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
752 gezelter 1490
753 chuckv 2433 temp = useSC;
754     MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
755    
756 gezelter 1930 temp = useShape;
757     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
758    
759     temp = useFLARB;
760     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
761    
762 chrisfen 2310 temp = useRF;
763     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
764    
765 chrisfen 2419 temp = useSF;
766 chrisfen 2917 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
767 chrisfen 2404
768 chrisfen 2917 temp = useSP;
769     MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
770    
771     temp = useBoxDipole;
772     MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773    
774 gezelter 3126 temp = useAtomicVirial_;
775     MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
776    
777 gezelter 1490 #endif
778    
779 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
780     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
781     fInfo_.SIM_uses_LennardJones = useLennardJones;
782     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
783     fInfo_.SIM_uses_Charges = useCharge;
784     fInfo_.SIM_uses_Dipoles = useDipole;
785     fInfo_.SIM_uses_Sticky = useSticky;
786 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
787 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
788     fInfo_.SIM_uses_EAM = useEAM;
789 chuckv 2433 fInfo_.SIM_uses_SC = useSC;
790 gezelter 1930 fInfo_.SIM_uses_Shapes = useShape;
791     fInfo_.SIM_uses_FLARB = useFLARB;
792 chrisfen 2310 fInfo_.SIM_uses_RF = useRF;
793 chrisfen 2419 fInfo_.SIM_uses_SF = useSF;
794 chrisfen 2917 fInfo_.SIM_uses_SP = useSP;
795     fInfo_.SIM_uses_BoxDipole = useBoxDipole;
796 gezelter 3126 fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
797 gezelter 2204 }
798 gezelter 1490
799 gezelter 2204 void SimInfo::setupFortranSim() {
800 gezelter 1930 int isError;
801     int nExclude;
802     std::vector<int> fortranGlobalGroupMembership;
803    
804     nExclude = exclude_.getSize();
805     isError = 0;
806 gezelter 1490
807 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
808     for (int i = 0; i < nGlobalAtoms_; i++) {
809 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
810 gezelter 1930 }
811 gezelter 1490
812 gezelter 1930 //calculate mass ratio of cutoff group
813 tim 2759 std::vector<RealType> mfact;
814 gezelter 1930 SimInfo::MoleculeIterator mi;
815     Molecule* mol;
816     Molecule::CutoffGroupIterator ci;
817     CutoffGroup* cg;
818     Molecule::AtomIterator ai;
819     Atom* atom;
820 tim 2759 RealType totalMass;
821 gezelter 1930
822     //to avoid memory reallocation, reserve enough space for mfact
823     mfact.reserve(getNCutoffGroups());
824 gezelter 1490
825 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
826 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
827 gezelter 1490
828 gezelter 2204 totalMass = cg->getMass();
829     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
830 chrisfen 2344 // Check for massless groups - set mfact to 1 if true
831     if (totalMass != 0)
832     mfact.push_back(atom->getMass()/totalMass);
833     else
834     mfact.push_back( 1.0 );
835 gezelter 2204 }
836 gezelter 1490
837 gezelter 2204 }
838 gezelter 1930 }
839 gezelter 1490
840 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
841     std::vector<int> identArray;
842 gezelter 1490
843 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
844     identArray.reserve(getNAtoms());
845    
846     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
847 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848     identArray.push_back(atom->getIdent());
849     }
850 gezelter 1930 }
851 gezelter 1490
852 gezelter 1930 //fill molMembershipArray
853     //molMembershipArray is filled by SimCreator
854     std::vector<int> molMembershipArray(nGlobalAtoms_);
855     for (int i = 0; i < nGlobalAtoms_; i++) {
856 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
857 gezelter 1930 }
858    
859     //setup fortran simulation
860     int nGlobalExcludes = 0;
861     int* globalExcludes = NULL;
862     int* excludeList = exclude_.getExcludeList();
863     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
864 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
865     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
866 gezelter 1490
867 gezelter 1930 if( isError ){
868 gezelter 1490
869 gezelter 2204 sprintf( painCave.errMsg,
870     "There was an error setting the simulation information in fortran.\n" );
871     painCave.isFatal = 1;
872     painCave.severity = OOPSE_ERROR;
873     simError();
874 gezelter 1930 }
875    
876     #ifdef IS_MPI
877     sprintf( checkPointMsg,
878 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
879 gezelter 1930 MPIcheckPoint();
880     #endif // is_mpi
881 chuckv 3080
882     // Setup number of neighbors in neighbor list if present
883     if (simParams_->haveNeighborListNeighbors()) {
884 chuckv 3121 int nlistNeighbors = simParams_->getNeighborListNeighbors();
885     setNeighbors(&nlistNeighbors);
886 chuckv 3080 }
887    
888    
889 gezelter 2204 }
890 gezelter 1490
891    
892 gezelter 1930 #ifdef IS_MPI
893 gezelter 2204 void SimInfo::setupFortranParallel() {
894 gezelter 1930
895     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
896     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
897     std::vector<int> localToGlobalCutoffGroupIndex;
898     SimInfo::MoleculeIterator mi;
899     Molecule::AtomIterator ai;
900     Molecule::CutoffGroupIterator ci;
901     Molecule* mol;
902     Atom* atom;
903     CutoffGroup* cg;
904     mpiSimData parallelData;
905     int isError;
906 gezelter 1490
907 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
908 gezelter 1490
909 gezelter 2204 //local index(index in DataStorge) of atom is important
910     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
911     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
912     }
913 gezelter 1490
914 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
915     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
916     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
917     }
918 gezelter 1930
919     }
920 gezelter 1490
921 gezelter 1930 //fill up mpiSimData struct
922     parallelData.nMolGlobal = getNGlobalMolecules();
923     parallelData.nMolLocal = getNMolecules();
924     parallelData.nAtomsGlobal = getNGlobalAtoms();
925     parallelData.nAtomsLocal = getNAtoms();
926     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
927     parallelData.nGroupsLocal = getNCutoffGroups();
928     parallelData.myNode = worldRank;
929     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
930 gezelter 1490
931 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
932     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
933     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
934     &localToGlobalCutoffGroupIndex[0], &isError);
935 gezelter 1490
936 gezelter 1930 if (isError) {
937 gezelter 2204 sprintf(painCave.errMsg,
938     "mpiRefresh errror: fortran didn't like something we gave it.\n");
939     painCave.isFatal = 1;
940     simError();
941 gezelter 1930 }
942 gezelter 1490
943 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
944     MPIcheckPoint();
945 gezelter 1490
946    
947 gezelter 2204 }
948 chrisfen 1636
949 gezelter 1930 #endif
950 chrisfen 1636
951 gezelter 2463 void SimInfo::setupCutoff() {
952 gezelter 1490
953 chuckv 2533 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
954    
955 gezelter 2463 // Check the cutoff policy
956 chuckv 2533 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
957    
958     std::string myPolicy;
959     if (forceFieldOptions_.haveCutoffPolicy()){
960     myPolicy = forceFieldOptions_.getCutoffPolicy();
961     }else if (simParams_->haveCutoffPolicy()) {
962     myPolicy = simParams_->getCutoffPolicy();
963     }
964    
965     if (!myPolicy.empty()){
966 tim 2364 toUpper(myPolicy);
967 gezelter 2285 if (myPolicy == "MIX") {
968     cp = MIX_CUTOFF_POLICY;
969     } else {
970     if (myPolicy == "MAX") {
971     cp = MAX_CUTOFF_POLICY;
972     } else {
973     if (myPolicy == "TRADITIONAL") {
974     cp = TRADITIONAL_CUTOFF_POLICY;
975     } else {
976     // throw error
977     sprintf( painCave.errMsg,
978     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
979     painCave.isFatal = 1;
980     simError();
981     }
982     }
983     }
984 gezelter 2463 }
985     notifyFortranCutoffPolicy(&cp);
986 chuckv 2328
987 gezelter 2463 // Check the Skin Thickness for neighborlists
988 tim 2759 RealType skin;
989 gezelter 2463 if (simParams_->haveSkinThickness()) {
990     skin = simParams_->getSkinThickness();
991     notifyFortranSkinThickness(&skin);
992     }
993    
994     // Check if the cutoff was set explicitly:
995     if (simParams_->haveCutoffRadius()) {
996     rcut_ = simParams_->getCutoffRadius();
997     if (simParams_->haveSwitchingRadius()) {
998     rsw_ = simParams_->getSwitchingRadius();
999     } else {
1000 chrisfen 2578 if (fInfo_.SIM_uses_Charges |
1001     fInfo_.SIM_uses_Dipoles |
1002     fInfo_.SIM_uses_RF) {
1003    
1004     rsw_ = 0.85 * rcut_;
1005     sprintf(painCave.errMsg,
1006     "SimCreator Warning: No value was set for the switchingRadius.\n"
1007 chrisfen 2579 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1008 chrisfen 2578 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1009     painCave.isFatal = 0;
1010     simError();
1011     } else {
1012     rsw_ = rcut_;
1013     sprintf(painCave.errMsg,
1014     "SimCreator Warning: No value was set for the switchingRadius.\n"
1015     "\tOOPSE will use the same value as the cutoffRadius.\n"
1016     "\tswitchingRadius = %f. for this simulation\n", rsw_);
1017     painCave.isFatal = 0;
1018     simError();
1019     }
1020 chrisfen 2579 }
1021    
1022 gezelter 2463 notifyFortranCutoffs(&rcut_, &rsw_);
1023    
1024     } else {
1025    
1026     // For electrostatic atoms, we'll assume a large safe value:
1027     if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1028     sprintf(painCave.errMsg,
1029     "SimCreator Warning: No value was set for the cutoffRadius.\n"
1030     "\tOOPSE will use a default value of 15.0 angstroms"
1031     "\tfor the cutoffRadius.\n");
1032     painCave.isFatal = 0;
1033     simError();
1034     rcut_ = 15.0;
1035    
1036     if (simParams_->haveElectrostaticSummationMethod()) {
1037     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1038     toUpper(myMethod);
1039     if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1040     if (simParams_->haveSwitchingRadius()){
1041     sprintf(painCave.errMsg,
1042     "SimInfo Warning: A value was set for the switchingRadius\n"
1043     "\teven though the electrostaticSummationMethod was\n"
1044     "\tset to %s\n", myMethod.c_str());
1045     painCave.isFatal = 1;
1046     simError();
1047     }
1048     }
1049     }
1050    
1051     if (simParams_->haveSwitchingRadius()){
1052     rsw_ = simParams_->getSwitchingRadius();
1053     } else {
1054     sprintf(painCave.errMsg,
1055     "SimCreator Warning: No value was set for switchingRadius.\n"
1056     "\tOOPSE will use a default value of\n"
1057     "\t0.85 * cutoffRadius for the switchingRadius\n");
1058     painCave.isFatal = 0;
1059     simError();
1060     rsw_ = 0.85 * rcut_;
1061     }
1062     notifyFortranCutoffs(&rcut_, &rsw_);
1063     } else {
1064     // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1065     // We'll punt and let fortran figure out the cutoffs later.
1066    
1067     notifyFortranYouAreOnYourOwn();
1068 chuckv 2328
1069 gezelter 2463 }
1070 chuckv 2328 }
1071 gezelter 2204 }
1072 gezelter 1490
1073 chrisfen 2302 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1074 chrisfen 2297
1075     int errorOut;
1076 chrisfen 2302 int esm = NONE;
1077 chrisfen 2408 int sm = UNDAMPED;
1078 tim 2759 RealType alphaVal;
1079     RealType dielectric;
1080 chrisfen 3013
1081 chrisfen 2297 errorOut = isError;
1082    
1083 chrisfen 2302 if (simParams_->haveElectrostaticSummationMethod()) {
1084 chrisfen 2303 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1085 tim 2364 toUpper(myMethod);
1086 chrisfen 2302 if (myMethod == "NONE") {
1087     esm = NONE;
1088 chrisfen 2297 } else {
1089 chrisfen 2408 if (myMethod == "SWITCHING_FUNCTION") {
1090     esm = SWITCHING_FUNCTION;
1091 chrisfen 2297 } else {
1092 chrisfen 2408 if (myMethod == "SHIFTED_POTENTIAL") {
1093     esm = SHIFTED_POTENTIAL;
1094     } else {
1095     if (myMethod == "SHIFTED_FORCE") {
1096     esm = SHIFTED_FORCE;
1097 chrisfen 2297 } else {
1098 chrisfen 3020 if (myMethod == "REACTION_FIELD") {
1099 chrisfen 2408 esm = REACTION_FIELD;
1100 chrisfen 3020 dielectric = simParams_->getDielectric();
1101     if (!simParams_->haveDielectric()) {
1102     // throw warning
1103     sprintf( painCave.errMsg,
1104     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1105     "\tA default value of %f will be used for the dielectric.\n", dielectric);
1106     painCave.isFatal = 0;
1107     simError();
1108     }
1109 chrisfen 2408 } else {
1110     // throw error
1111     sprintf( painCave.errMsg,
1112 gezelter 2463 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1113     "\t(Input file specified %s .)\n"
1114     "\telectrostaticSummationMethod must be one of: \"none\",\n"
1115     "\t\"shifted_potential\", \"shifted_force\", or \n"
1116     "\t\"reaction_field\".\n", myMethod.c_str() );
1117 chrisfen 2408 painCave.isFatal = 1;
1118     simError();
1119     }
1120     }
1121     }
1122 chrisfen 2297 }
1123     }
1124     }
1125 chrisfen 2408
1126 chrisfen 2415 if (simParams_->haveElectrostaticScreeningMethod()) {
1127     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1128 chrisfen 2408 toUpper(myScreen);
1129     if (myScreen == "UNDAMPED") {
1130     sm = UNDAMPED;
1131     } else {
1132     if (myScreen == "DAMPED") {
1133     sm = DAMPED;
1134     if (!simParams_->haveDampingAlpha()) {
1135 chrisfen 3013 // first set a cutoff dependent alpha value
1136     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1137     alphaVal = 0.5125 - rcut_* 0.025;
1138     // for values rcut > 20.5, alpha is zero
1139     if (alphaVal < 0) alphaVal = 0;
1140    
1141     // throw warning
1142 chrisfen 2408 sprintf( painCave.errMsg,
1143 gezelter 2463 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1144 chrisfen 3013 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1145 chrisfen 2408 painCave.isFatal = 0;
1146     simError();
1147 chrisfen 3072 } else {
1148     alphaVal = simParams_->getDampingAlpha();
1149 chrisfen 2408 }
1150 chrisfen 3072
1151 chrisfen 2415 } else {
1152     // throw error
1153     sprintf( painCave.errMsg,
1154 gezelter 2463 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1155     "\t(Input file specified %s .)\n"
1156     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1157     "or \"damped\".\n", myScreen.c_str() );
1158 chrisfen 2415 painCave.isFatal = 1;
1159     simError();
1160 chrisfen 2408 }
1161     }
1162     }
1163 chrisfen 2415
1164 chrisfen 2309 // let's pass some summation method variables to fortran
1165 chrisfen 2552 setElectrostaticSummationMethod( &esm );
1166 gezelter 2508 setFortranElectrostaticMethod( &esm );
1167 chrisfen 2408 setScreeningMethod( &sm );
1168     setDampingAlpha( &alphaVal );
1169 chrisfen 2309 setReactionFieldDielectric( &dielectric );
1170 gezelter 2463 initFortranFF( &errorOut );
1171 chrisfen 2297 }
1172    
1173 chrisfen 2425 void SimInfo::setupSwitchingFunction() {
1174     int ft = CUBIC;
1175    
1176     if (simParams_->haveSwitchingFunctionType()) {
1177     std::string funcType = simParams_->getSwitchingFunctionType();
1178     toUpper(funcType);
1179     if (funcType == "CUBIC") {
1180     ft = CUBIC;
1181     } else {
1182     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1183     ft = FIFTH_ORDER_POLY;
1184     } else {
1185     // throw error
1186     sprintf( painCave.errMsg,
1187     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1188     painCave.isFatal = 1;
1189     simError();
1190     }
1191     }
1192     }
1193    
1194     // send switching function notification to switcheroo
1195     setFunctionType(&ft);
1196    
1197     }
1198    
1199 chrisfen 2917 void SimInfo::setupAccumulateBoxDipole() {
1200    
1201     // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1202     if ( simParams_->haveAccumulateBoxDipole() )
1203     if ( simParams_->getAccumulateBoxDipole() ) {
1204     setAccumulateBoxDipole();
1205     calcBoxDipole_ = true;
1206     }
1207    
1208     }
1209    
1210 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
1211 gezelter 1930 properties_.addProperty(genData);
1212 gezelter 2204 }
1213 gezelter 1490
1214 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
1215 gezelter 1930 properties_.removeProperty(propName);
1216 gezelter 2204 }
1217 gezelter 1490
1218 gezelter 2204 void SimInfo::clearProperties() {
1219 gezelter 1930 properties_.clearProperties();
1220 gezelter 2204 }
1221 gezelter 1490
1222 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
1223 gezelter 1930 return properties_.getPropertyNames();
1224 gezelter 2204 }
1225 gezelter 1930
1226 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
1227 gezelter 1930 return properties_.getProperties();
1228 gezelter 2204 }
1229 gezelter 1490
1230 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1231 gezelter 1930 return properties_.getPropertyByName(propName);
1232 gezelter 2204 }
1233 gezelter 1490
1234 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1235 tim 2116 if (sman_ == sman) {
1236 gezelter 2204 return;
1237 tim 2116 }
1238     delete sman_;
1239 gezelter 1930 sman_ = sman;
1240 gezelter 1490
1241 gezelter 1930 Molecule* mol;
1242     RigidBody* rb;
1243     Atom* atom;
1244     SimInfo::MoleculeIterator mi;
1245     Molecule::RigidBodyIterator rbIter;
1246     Molecule::AtomIterator atomIter;;
1247    
1248     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1249    
1250 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1251     atom->setSnapshotManager(sman_);
1252     }
1253 gezelter 1930
1254 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1255     rb->setSnapshotManager(sman_);
1256     }
1257 gezelter 1930 }
1258 gezelter 1490
1259 gezelter 2204 }
1260 gezelter 1490
1261 gezelter 2204 Vector3d SimInfo::getComVel(){
1262 gezelter 1930 SimInfo::MoleculeIterator i;
1263     Molecule* mol;
1264 gezelter 1490
1265 gezelter 1930 Vector3d comVel(0.0);
1266 tim 2759 RealType totalMass = 0.0;
1267 gezelter 1490
1268 gezelter 1930
1269     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1270 tim 2759 RealType mass = mol->getMass();
1271 gezelter 2204 totalMass += mass;
1272     comVel += mass * mol->getComVel();
1273 gezelter 1930 }
1274 gezelter 1490
1275 gezelter 1930 #ifdef IS_MPI
1276 tim 2759 RealType tmpMass = totalMass;
1277 gezelter 1930 Vector3d tmpComVel(comVel);
1278 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1279     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1280 gezelter 1930 #endif
1281    
1282     comVel /= totalMass;
1283    
1284     return comVel;
1285 gezelter 2204 }
1286 gezelter 1490
1287 gezelter 2204 Vector3d SimInfo::getCom(){
1288 gezelter 1930 SimInfo::MoleculeIterator i;
1289     Molecule* mol;
1290 gezelter 1490
1291 gezelter 1930 Vector3d com(0.0);
1292 tim 2759 RealType totalMass = 0.0;
1293 gezelter 1930
1294     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1295 tim 2759 RealType mass = mol->getMass();
1296 gezelter 2204 totalMass += mass;
1297     com += mass * mol->getCom();
1298 gezelter 1930 }
1299 gezelter 1490
1300     #ifdef IS_MPI
1301 tim 2759 RealType tmpMass = totalMass;
1302 gezelter 1930 Vector3d tmpCom(com);
1303 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1304     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1305 gezelter 1490 #endif
1306    
1307 gezelter 1930 com /= totalMass;
1308 gezelter 1490
1309 gezelter 1930 return com;
1310 gezelter 1490
1311 gezelter 2204 }
1312 gezelter 1930
1313 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1314 gezelter 1930
1315     return o;
1316 gezelter 2204 }
1317 chuckv 2252
1318    
1319     /*
1320     Returns center of mass and center of mass velocity in one function call.
1321     */
1322    
1323     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1324     SimInfo::MoleculeIterator i;
1325     Molecule* mol;
1326    
1327    
1328 tim 2759 RealType totalMass = 0.0;
1329 chuckv 2252
1330 gezelter 1930
1331 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1332 tim 2759 RealType mass = mol->getMass();
1333 chuckv 2252 totalMass += mass;
1334     com += mass * mol->getCom();
1335     comVel += mass * mol->getComVel();
1336     }
1337    
1338     #ifdef IS_MPI
1339 tim 2759 RealType tmpMass = totalMass;
1340 chuckv 2252 Vector3d tmpCom(com);
1341     Vector3d tmpComVel(comVel);
1342 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1343     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1344     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1345 chuckv 2252 #endif
1346    
1347     com /= totalMass;
1348     comVel /= totalMass;
1349     }
1350    
1351     /*
1352     Return intertia tensor for entire system and angular momentum Vector.
1353 chuckv 2256
1354    
1355     [ Ixx -Ixy -Ixz ]
1356     J =| -Iyx Iyy -Iyz |
1357     [ -Izx -Iyz Izz ]
1358 chuckv 2252 */
1359    
1360     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1361    
1362    
1363 tim 2759 RealType xx = 0.0;
1364     RealType yy = 0.0;
1365     RealType zz = 0.0;
1366     RealType xy = 0.0;
1367     RealType xz = 0.0;
1368     RealType yz = 0.0;
1369 chuckv 2252 Vector3d com(0.0);
1370     Vector3d comVel(0.0);
1371    
1372     getComAll(com, comVel);
1373    
1374     SimInfo::MoleculeIterator i;
1375     Molecule* mol;
1376    
1377     Vector3d thisq(0.0);
1378     Vector3d thisv(0.0);
1379    
1380 tim 2759 RealType thisMass = 0.0;
1381 chuckv 2252
1382    
1383    
1384    
1385     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1386    
1387     thisq = mol->getCom()-com;
1388     thisv = mol->getComVel()-comVel;
1389     thisMass = mol->getMass();
1390     // Compute moment of intertia coefficients.
1391     xx += thisq[0]*thisq[0]*thisMass;
1392     yy += thisq[1]*thisq[1]*thisMass;
1393     zz += thisq[2]*thisq[2]*thisMass;
1394    
1395     // compute products of intertia
1396     xy += thisq[0]*thisq[1]*thisMass;
1397     xz += thisq[0]*thisq[2]*thisMass;
1398     yz += thisq[1]*thisq[2]*thisMass;
1399    
1400     angularMomentum += cross( thisq, thisv ) * thisMass;
1401    
1402     }
1403    
1404    
1405     inertiaTensor(0,0) = yy + zz;
1406     inertiaTensor(0,1) = -xy;
1407     inertiaTensor(0,2) = -xz;
1408     inertiaTensor(1,0) = -xy;
1409 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1410 chuckv 2252 inertiaTensor(1,2) = -yz;
1411     inertiaTensor(2,0) = -xz;
1412     inertiaTensor(2,1) = -yz;
1413     inertiaTensor(2,2) = xx + yy;
1414    
1415     #ifdef IS_MPI
1416     Mat3x3d tmpI(inertiaTensor);
1417     Vector3d tmpAngMom;
1418 tim 2759 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1419     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1420 chuckv 2252 #endif
1421    
1422     return;
1423     }
1424    
1425     //Returns the angular momentum of the system
1426     Vector3d SimInfo::getAngularMomentum(){
1427    
1428     Vector3d com(0.0);
1429     Vector3d comVel(0.0);
1430     Vector3d angularMomentum(0.0);
1431    
1432     getComAll(com,comVel);
1433    
1434     SimInfo::MoleculeIterator i;
1435     Molecule* mol;
1436    
1437 chuckv 2256 Vector3d thisr(0.0);
1438     Vector3d thisp(0.0);
1439 chuckv 2252
1440 tim 2759 RealType thisMass;
1441 chuckv 2252
1442     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1443 chuckv 2256 thisMass = mol->getMass();
1444     thisr = mol->getCom()-com;
1445     thisp = (mol->getComVel()-comVel)*thisMass;
1446 chuckv 2252
1447 chuckv 2256 angularMomentum += cross( thisr, thisp );
1448    
1449 chuckv 2252 }
1450    
1451     #ifdef IS_MPI
1452     Vector3d tmpAngMom;
1453 tim 2759 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1454 chuckv 2252 #endif
1455    
1456     return angularMomentum;
1457     }
1458    
1459 tim 2982 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1460     return IOIndexToIntegrableObject.at(index);
1461     }
1462    
1463     void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1464     IOIndexToIntegrableObject= v;
1465     }
1466    
1467 chuckv 3100 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1468     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1469     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1470     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1471     */
1472     void SimInfo::getGyrationalVolume(RealType &volume){
1473     Mat3x3d intTensor;
1474     RealType det;
1475     Vector3d dummyAngMom;
1476     RealType sysconstants;
1477     RealType geomCnst;
1478    
1479     geomCnst = 3.0/2.0;
1480     /* Get the inertial tensor and angular momentum for free*/
1481     getInertiaTensor(intTensor,dummyAngMom);
1482    
1483     det = intTensor.determinant();
1484     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1485     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1486     return;
1487     }
1488    
1489     void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1490     Mat3x3d intTensor;
1491     Vector3d dummyAngMom;
1492     RealType sysconstants;
1493     RealType geomCnst;
1494    
1495     geomCnst = 3.0/2.0;
1496     /* Get the inertial tensor and angular momentum for free*/
1497     getInertiaTensor(intTensor,dummyAngMom);
1498    
1499     detI = intTensor.determinant();
1500     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1501     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1502     return;
1503     }
1504 tim 2982 /*
1505     void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1506     assert( v.size() == nAtoms_ + nRigidBodies_);
1507     sdByGlobalIndex_ = v;
1508     }
1509    
1510     StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1511     //assert(index < nAtoms_ + nRigidBodies_);
1512     return sdByGlobalIndex_.at(index);
1513     }
1514     */
1515 gezelter 1930 }//end namespace oopse
1516