ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 3129
Committed: Fri Apr 20 18:15:48 2007 UTC (17 years, 5 months ago) by chrisfen
File size: 48718 byte(s)
Log Message:
SF Lennard-Jones was added for everyones' enjoyment.  The behavior is tethered to the electrostaticSummationMethod keyword.

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 tim 2448 #include <map>
52 gezelter 1490
53 tim 1492 #include "brains/SimInfo.hpp"
54 gezelter 1930 #include "math/Vector3.hpp"
55     #include "primitives/Molecule.hpp"
56 tim 2982 #include "primitives/StuntDouble.hpp"
57 gezelter 2285 #include "UseTheForce/fCutoffPolicy.h"
58 chrisfen 2305 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 chrisfen 2415 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 chrisfen 2425 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 gezelter 1930 #include "UseTheForce/doForces_interface.h"
62 chuckv 3080 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 chrisfen 2309 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 chrisfen 2425 #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 gezelter 1930 #include "utils/MemoryUtils.hpp"
66 tim 1492 #include "utils/simError.h"
67 tim 2000 #include "selection/SelectionManager.hpp"
68 chuckv 2533 #include "io/ForceFieldOptions.hpp"
69     #include "UseTheForce/ForceField.hpp"
70 gezelter 1490
71 chuckv 3080
72 gezelter 1930 #ifdef IS_MPI
73     #include "UseTheForce/mpiComponentPlan.h"
74     #include "UseTheForce/DarkSide/simParallel_interface.h"
75     #endif
76 gezelter 1490
77 gezelter 1930 namespace oopse {
78 tim 2448 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79     std::map<int, std::set<int> >::iterator i = container.find(index);
80     std::set<int> result;
81     if (i != container.end()) {
82     result = i->second;
83     }
84 gezelter 1490
85 tim 2448 return result;
86     }
87    
88 tim 2469 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89     forceField_(ff), simParams_(simParams),
90 gezelter 2733 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 gezelter 2204 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
94     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
95 gezelter 3126 sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
96     useAtomicVirial_(true) {
97 gezelter 1490
98 gezelter 2204 MoleculeStamp* molStamp;
99     int nMolWithSameStamp;
100     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
101 chrisfen 2344 int nGroups = 0; //total cutoff groups defined in meta-data file
102 gezelter 2204 CutoffGroupStamp* cgStamp;
103     RigidBodyStamp* rbStamp;
104     int nRigidAtoms = 0;
105 tim 2469 std::vector<Component*> components = simParams->getComponents();
106    
107     for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
108     molStamp = (*i)->getMoleculeStamp();
109     nMolWithSameStamp = (*i)->getNMol();
110 gezelter 1930
111     addMoleculeStamp(molStamp, nMolWithSameStamp);
112 gezelter 1490
113 gezelter 1930 //calculate atoms in molecules
114     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
115 gezelter 1490
116 gezelter 1930 //calculate atoms in cutoff groups
117     int nAtomsInGroups = 0;
118     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119    
120     for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 tim 2469 cgStamp = molStamp->getCutoffGroupStamp(j);
122 gezelter 2204 nAtomsInGroups += cgStamp->getNMembers();
123 gezelter 1930 }
124 gezelter 1490
125 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 chrisfen 2344
127 gezelter 1930 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
128 gezelter 1490
129 gezelter 1930 //calculate atoms in rigid bodies
130     int nAtomsInRigidBodies = 0;
131 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 gezelter 1930
133     for (int j=0; j < nRigidBodiesInStamp; j++) {
134 tim 2469 rbStamp = molStamp->getRigidBodyStamp(j);
135 gezelter 2204 nAtomsInRigidBodies += rbStamp->getNMembers();
136 gezelter 1930 }
137 gezelter 1490
138 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
140    
141 gezelter 2204 }
142 chrisfen 1636
143 chrisfen 2344 //every free atom (atom does not belong to cutoff groups) is a cutoff
144     //group therefore the total number of cutoff groups in the system is
145     //equal to the total number of atoms minus number of atoms belong to
146     //cutoff group defined in meta-data file plus the number of cutoff
147     //groups defined in meta-data file
148 gezelter 2204 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149 gezelter 1490
150 chrisfen 2344 //every free atom (atom does not belong to rigid bodies) is an
151     //integrable object therefore the total number of integrable objects
152     //in the system is equal to the total number of atoms minus number of
153     //atoms belong to rigid body defined in meta-data file plus the number
154     //of rigid bodies defined in meta-data file
155     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156     + nGlobalRigidBodies_;
157    
158 gezelter 2204 nGlobalMols_ = molStampIds_.size();
159 gezelter 1490
160 gezelter 1930 #ifdef IS_MPI
161 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
162 gezelter 1930 #endif
163 tim 1976
164 gezelter 2204 }
165 gezelter 1490
166 gezelter 2204 SimInfo::~SimInfo() {
167 tim 2082 std::map<int, Molecule*>::iterator i;
168     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
169 gezelter 2204 delete i->second;
170 tim 2082 }
171     molecules_.clear();
172 tim 2187
173 gezelter 1930 delete sman_;
174     delete simParams_;
175     delete forceField_;
176 gezelter 2204 }
177 gezelter 1490
178 gezelter 2204 int SimInfo::getNGlobalConstraints() {
179 gezelter 1930 int nGlobalConstraints;
180     #ifdef IS_MPI
181     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
182     MPI_COMM_WORLD);
183     #else
184     nGlobalConstraints = nConstraints_;
185     #endif
186     return nGlobalConstraints;
187 gezelter 2204 }
188 gezelter 1490
189 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
190 gezelter 1930 MoleculeIterator i;
191 gezelter 1490
192 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
193     if (i == molecules_.end() ) {
194 gezelter 1490
195 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
196 gezelter 1930
197 gezelter 2204 nAtoms_ += mol->getNAtoms();
198     nBonds_ += mol->getNBonds();
199     nBends_ += mol->getNBends();
200     nTorsions_ += mol->getNTorsions();
201     nRigidBodies_ += mol->getNRigidBodies();
202     nIntegrableObjects_ += mol->getNIntegrableObjects();
203     nCutoffGroups_ += mol->getNCutoffGroups();
204     nConstraints_ += mol->getNConstraintPairs();
205 gezelter 1490
206 gezelter 2204 addExcludePairs(mol);
207 gezelter 1930
208 gezelter 2204 return true;
209 gezelter 1930 } else {
210 gezelter 2204 return false;
211 gezelter 1930 }
212 gezelter 2204 }
213 gezelter 1490
214 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
215 gezelter 1930 MoleculeIterator i;
216     i = molecules_.find(mol->getGlobalIndex());
217 gezelter 1490
218 gezelter 1930 if (i != molecules_.end() ) {
219 gezelter 1490
220 gezelter 2204 assert(mol == i->second);
221 gezelter 1930
222 gezelter 2204 nAtoms_ -= mol->getNAtoms();
223     nBonds_ -= mol->getNBonds();
224     nBends_ -= mol->getNBends();
225     nTorsions_ -= mol->getNTorsions();
226     nRigidBodies_ -= mol->getNRigidBodies();
227     nIntegrableObjects_ -= mol->getNIntegrableObjects();
228     nCutoffGroups_ -= mol->getNCutoffGroups();
229     nConstraints_ -= mol->getNConstraintPairs();
230 gezelter 1490
231 gezelter 2204 removeExcludePairs(mol);
232     molecules_.erase(mol->getGlobalIndex());
233 gezelter 1490
234 gezelter 2204 delete mol;
235 gezelter 1930
236 gezelter 2204 return true;
237 gezelter 1930 } else {
238 gezelter 2204 return false;
239 gezelter 1930 }
240    
241    
242 gezelter 2204 }
243 gezelter 1930
244    
245 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246 gezelter 1930 i = molecules_.begin();
247     return i == molecules_.end() ? NULL : i->second;
248 gezelter 2204 }
249 gezelter 1930
250 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251 gezelter 1930 ++i;
252     return i == molecules_.end() ? NULL : i->second;
253 gezelter 2204 }
254 gezelter 1490
255    
256 gezelter 2204 void SimInfo::calcNdf() {
257 gezelter 1930 int ndf_local;
258     MoleculeIterator i;
259     std::vector<StuntDouble*>::iterator j;
260     Molecule* mol;
261     StuntDouble* integrableObject;
262 gezelter 1490
263 gezelter 1930 ndf_local = 0;
264    
265     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267     integrableObject = mol->nextIntegrableObject(j)) {
268 gezelter 1490
269 gezelter 2204 ndf_local += 3;
270 gezelter 1490
271 gezelter 2204 if (integrableObject->isDirectional()) {
272     if (integrableObject->isLinear()) {
273     ndf_local += 2;
274     } else {
275     ndf_local += 3;
276     }
277     }
278 gezelter 1930
279 tim 2469 }
280     }
281 gezelter 1930
282     // n_constraints is local, so subtract them on each processor
283     ndf_local -= nConstraints_;
284    
285     #ifdef IS_MPI
286     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287     #else
288     ndf_ = ndf_local;
289     #endif
290    
291     // nZconstraints_ is global, as are the 3 COM translations for the
292     // entire system:
293     ndf_ = ndf_ - 3 - nZconstraint_;
294    
295 gezelter 2204 }
296 gezelter 1490
297 gezelter 2733 int SimInfo::getFdf() {
298     #ifdef IS_MPI
299     MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300     #else
301     fdf_ = fdf_local;
302     #endif
303     return fdf_;
304     }
305    
306 gezelter 2204 void SimInfo::calcNdfRaw() {
307 gezelter 1930 int ndfRaw_local;
308 gezelter 1490
309 gezelter 1930 MoleculeIterator i;
310     std::vector<StuntDouble*>::iterator j;
311     Molecule* mol;
312     StuntDouble* integrableObject;
313    
314     // Raw degrees of freedom that we have to set
315     ndfRaw_local = 0;
316    
317     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319     integrableObject = mol->nextIntegrableObject(j)) {
320 gezelter 1930
321 gezelter 2204 ndfRaw_local += 3;
322 gezelter 1930
323 gezelter 2204 if (integrableObject->isDirectional()) {
324     if (integrableObject->isLinear()) {
325     ndfRaw_local += 2;
326     } else {
327     ndfRaw_local += 3;
328     }
329     }
330 gezelter 1930
331 gezelter 2204 }
332 gezelter 1930 }
333    
334     #ifdef IS_MPI
335     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336     #else
337     ndfRaw_ = ndfRaw_local;
338     #endif
339 gezelter 2204 }
340 gezelter 1490
341 gezelter 2204 void SimInfo::calcNdfTrans() {
342 gezelter 1930 int ndfTrans_local;
343 gezelter 1490
344 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
345 gezelter 1490
346    
347 gezelter 1930 #ifdef IS_MPI
348     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
349     #else
350     ndfTrans_ = ndfTrans_local;
351     #endif
352 gezelter 1490
353 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354    
355 gezelter 2204 }
356 gezelter 1490
357 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
358 gezelter 1930 std::vector<Bond*>::iterator bondIter;
359     std::vector<Bend*>::iterator bendIter;
360     std::vector<Torsion*>::iterator torsionIter;
361     Bond* bond;
362     Bend* bend;
363     Torsion* torsion;
364     int a;
365     int b;
366     int c;
367     int d;
368 tim 2448
369     std::map<int, std::set<int> > atomGroups;
370    
371     Molecule::RigidBodyIterator rbIter;
372     RigidBody* rb;
373     Molecule::IntegrableObjectIterator ii;
374     StuntDouble* integrableObject;
375 gezelter 1930
376 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
377     integrableObject = mol->nextIntegrableObject(ii)) {
378    
379     if (integrableObject->isRigidBody()) {
380     rb = static_cast<RigidBody*>(integrableObject);
381     std::vector<Atom*> atoms = rb->getAtoms();
382     std::set<int> rigidAtoms;
383     for (int i = 0; i < atoms.size(); ++i) {
384     rigidAtoms.insert(atoms[i]->getGlobalIndex());
385     }
386     for (int i = 0; i < atoms.size(); ++i) {
387     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
388     }
389     } else {
390     std::set<int> oneAtomSet;
391     oneAtomSet.insert(integrableObject->getGlobalIndex());
392     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
393     }
394     }
395    
396    
397    
398 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
399 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
400     b = bond->getAtomB()->getGlobalIndex();
401     exclude_.addPair(a, b);
402 gezelter 1930 }
403 gezelter 1490
404 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
405 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
406     b = bend->getAtomB()->getGlobalIndex();
407     c = bend->getAtomC()->getGlobalIndex();
408 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
409     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
410     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
411 gezelter 1490
412 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
413     exclude_.addPairs(rigidSetA, rigidSetC);
414     exclude_.addPairs(rigidSetB, rigidSetC);
415    
416     //exclude_.addPair(a, b);
417     //exclude_.addPair(a, c);
418     //exclude_.addPair(b, c);
419 gezelter 1930 }
420 gezelter 1490
421 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
422 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
423     b = torsion->getAtomB()->getGlobalIndex();
424     c = torsion->getAtomC()->getGlobalIndex();
425     d = torsion->getAtomD()->getGlobalIndex();
426 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
427     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
428     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
429     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
430 gezelter 1490
431 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
432     exclude_.addPairs(rigidSetA, rigidSetC);
433     exclude_.addPairs(rigidSetA, rigidSetD);
434     exclude_.addPairs(rigidSetB, rigidSetC);
435     exclude_.addPairs(rigidSetB, rigidSetD);
436     exclude_.addPairs(rigidSetC, rigidSetD);
437    
438     /*
439     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
440     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
441     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
442     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
443     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
444     exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
445    
446    
447 gezelter 2204 exclude_.addPair(a, b);
448     exclude_.addPair(a, c);
449     exclude_.addPair(a, d);
450     exclude_.addPair(b, c);
451     exclude_.addPair(b, d);
452     exclude_.addPair(c, d);
453 tim 2448 */
454 gezelter 1490 }
455    
456 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
457 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
458     for (int i = 0; i < atoms.size() -1 ; ++i) {
459     for (int j = i + 1; j < atoms.size(); ++j) {
460     a = atoms[i]->getGlobalIndex();
461     b = atoms[j]->getGlobalIndex();
462     exclude_.addPair(a, b);
463     }
464     }
465 tim 2114 }
466    
467 gezelter 2204 }
468 gezelter 1930
469 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
470 gezelter 1930 std::vector<Bond*>::iterator bondIter;
471     std::vector<Bend*>::iterator bendIter;
472     std::vector<Torsion*>::iterator torsionIter;
473     Bond* bond;
474     Bend* bend;
475     Torsion* torsion;
476     int a;
477     int b;
478     int c;
479     int d;
480 tim 2448
481     std::map<int, std::set<int> > atomGroups;
482    
483     Molecule::RigidBodyIterator rbIter;
484     RigidBody* rb;
485     Molecule::IntegrableObjectIterator ii;
486     StuntDouble* integrableObject;
487 gezelter 1930
488 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
489     integrableObject = mol->nextIntegrableObject(ii)) {
490    
491     if (integrableObject->isRigidBody()) {
492     rb = static_cast<RigidBody*>(integrableObject);
493     std::vector<Atom*> atoms = rb->getAtoms();
494     std::set<int> rigidAtoms;
495     for (int i = 0; i < atoms.size(); ++i) {
496     rigidAtoms.insert(atoms[i]->getGlobalIndex());
497     }
498     for (int i = 0; i < atoms.size(); ++i) {
499     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
500     }
501     } else {
502     std::set<int> oneAtomSet;
503     oneAtomSet.insert(integrableObject->getGlobalIndex());
504     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
505     }
506     }
507    
508    
509 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
510 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
511     b = bond->getAtomB()->getGlobalIndex();
512     exclude_.removePair(a, b);
513 gezelter 1490 }
514 gezelter 1930
515     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
516 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
517     b = bend->getAtomB()->getGlobalIndex();
518     c = bend->getAtomC()->getGlobalIndex();
519 gezelter 1930
520 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
521     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
522     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
523    
524     exclude_.removePairs(rigidSetA, rigidSetB);
525     exclude_.removePairs(rigidSetA, rigidSetC);
526     exclude_.removePairs(rigidSetB, rigidSetC);
527    
528     //exclude_.removePair(a, b);
529     //exclude_.removePair(a, c);
530     //exclude_.removePair(b, c);
531 gezelter 1490 }
532 gezelter 1930
533     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
534 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
535     b = torsion->getAtomB()->getGlobalIndex();
536     c = torsion->getAtomC()->getGlobalIndex();
537     d = torsion->getAtomD()->getGlobalIndex();
538 gezelter 1930
539 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
540     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
541     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
542     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
543    
544     exclude_.removePairs(rigidSetA, rigidSetB);
545     exclude_.removePairs(rigidSetA, rigidSetC);
546     exclude_.removePairs(rigidSetA, rigidSetD);
547     exclude_.removePairs(rigidSetB, rigidSetC);
548     exclude_.removePairs(rigidSetB, rigidSetD);
549     exclude_.removePairs(rigidSetC, rigidSetD);
550    
551     /*
552     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
553     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
554     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
555     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
556     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
557     exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
558    
559    
560 gezelter 2204 exclude_.removePair(a, b);
561     exclude_.removePair(a, c);
562     exclude_.removePair(a, d);
563     exclude_.removePair(b, c);
564     exclude_.removePair(b, d);
565     exclude_.removePair(c, d);
566 tim 2448 */
567 gezelter 1930 }
568    
569 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
570 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
571     for (int i = 0; i < atoms.size() -1 ; ++i) {
572     for (int j = i + 1; j < atoms.size(); ++j) {
573     a = atoms[i]->getGlobalIndex();
574     b = atoms[j]->getGlobalIndex();
575     exclude_.removePair(a, b);
576     }
577     }
578 tim 2114 }
579    
580 gezelter 2204 }
581 gezelter 1490
582    
583 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
584 gezelter 1930 int curStampId;
585 gezelter 1490
586 gezelter 1930 //index from 0
587     curStampId = moleculeStamps_.size();
588 gezelter 1490
589 gezelter 1930 moleculeStamps_.push_back(molStamp);
590     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
591 gezelter 2204 }
592 gezelter 1490
593 gezelter 2204 void SimInfo::update() {
594 gezelter 1490
595 gezelter 1930 setupSimType();
596 gezelter 1490
597 gezelter 1930 #ifdef IS_MPI
598     setupFortranParallel();
599     #endif
600 gezelter 1490
601 gezelter 1930 setupFortranSim();
602 gezelter 1490
603 gezelter 1930 //setup fortran force field
604     /** @deprecate */
605     int isError = 0;
606 chrisfen 2297
607 chrisfen 3013 setupCutoff();
608    
609 chrisfen 2302 setupElectrostaticSummationMethod( isError );
610 chrisfen 2425 setupSwitchingFunction();
611 chrisfen 2917 setupAccumulateBoxDipole();
612 chrisfen 2297
613 gezelter 1930 if(isError){
614 gezelter 2204 sprintf( painCave.errMsg,
615     "ForceField error: There was an error initializing the forceField in fortran.\n" );
616     painCave.isFatal = 1;
617     simError();
618 gezelter 1930 }
619 gezelter 1490
620 gezelter 1930 calcNdf();
621     calcNdfRaw();
622     calcNdfTrans();
623    
624     fortranInitialized_ = true;
625 gezelter 2204 }
626 gezelter 1490
627 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
628 gezelter 1930 SimInfo::MoleculeIterator mi;
629     Molecule* mol;
630     Molecule::AtomIterator ai;
631     Atom* atom;
632     std::set<AtomType*> atomTypes;
633 gezelter 1490
634 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
635 gezelter 1490
636 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
637     atomTypes.insert(atom->getAtomType());
638     }
639 gezelter 1930
640     }
641 gezelter 1490
642 gezelter 1930 return atomTypes;
643 gezelter 2204 }
644 gezelter 1490
645 gezelter 2204 void SimInfo::setupSimType() {
646 gezelter 1930 std::set<AtomType*>::iterator i;
647     std::set<AtomType*> atomTypes;
648     atomTypes = getUniqueAtomTypes();
649 gezelter 1490
650 gezelter 1930 int useLennardJones = 0;
651     int useElectrostatic = 0;
652     int useEAM = 0;
653 chuckv 2433 int useSC = 0;
654 gezelter 1930 int useCharge = 0;
655     int useDirectional = 0;
656     int useDipole = 0;
657     int useGayBerne = 0;
658     int useSticky = 0;
659 chrisfen 2220 int useStickyPower = 0;
660 gezelter 1930 int useShape = 0;
661     int useFLARB = 0; //it is not in AtomType yet
662     int useDirectionalAtom = 0;
663     int useElectrostatics = 0;
664     //usePBC and useRF are from simParams
665 tim 2364 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
666 chrisfen 2310 int useRF;
667 chrisfen 2419 int useSF;
668 chrisfen 2917 int useSP;
669     int useBoxDipole;
670 gezelter 3126
671 tim 2364 std::string myMethod;
672 gezelter 1490
673 chrisfen 2310 // set the useRF logical
674 tim 2364 useRF = 0;
675 chrisfen 2419 useSF = 0;
676 gezelter 3054 useSP = 0;
677 chrisfen 2390
678    
679 tim 2364 if (simParams_->haveElectrostaticSummationMethod()) {
680 chrisfen 2390 std::string myMethod = simParams_->getElectrostaticSummationMethod();
681     toUpper(myMethod);
682 chrisfen 2917 if (myMethod == "REACTION_FIELD"){
683 gezelter 3054 useRF = 1;
684 chrisfen 2917 } else if (myMethod == "SHIFTED_FORCE"){
685     useSF = 1;
686     } else if (myMethod == "SHIFTED_POTENTIAL"){
687     useSP = 1;
688 chrisfen 2390 }
689 tim 2364 }
690 chrisfen 2917
691     if (simParams_->haveAccumulateBoxDipole())
692     if (simParams_->getAccumulateBoxDipole())
693     useBoxDipole = 1;
694 chrisfen 2310
695 gezelter 3126 useAtomicVirial_ = simParams_->getUseAtomicVirial();
696    
697 gezelter 1930 //loop over all of the atom types
698     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
699 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
700     useElectrostatic |= (*i)->isElectrostatic();
701     useEAM |= (*i)->isEAM();
702 chuckv 2433 useSC |= (*i)->isSC();
703 gezelter 2204 useCharge |= (*i)->isCharge();
704     useDirectional |= (*i)->isDirectional();
705     useDipole |= (*i)->isDipole();
706     useGayBerne |= (*i)->isGayBerne();
707     useSticky |= (*i)->isSticky();
708 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
709 gezelter 2204 useShape |= (*i)->isShape();
710 gezelter 1930 }
711 gezelter 1490
712 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
713 gezelter 2204 useDirectionalAtom = 1;
714 gezelter 1930 }
715 gezelter 1490
716 gezelter 1930 if (useCharge || useDipole) {
717 gezelter 2204 useElectrostatics = 1;
718 gezelter 1930 }
719 gezelter 1490
720 gezelter 1930 #ifdef IS_MPI
721     int temp;
722 gezelter 1490
723 gezelter 1930 temp = usePBC;
724     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
725 gezelter 1490
726 gezelter 1930 temp = useDirectionalAtom;
727     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
728 gezelter 1490
729 gezelter 1930 temp = useLennardJones;
730     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
731 gezelter 1490
732 gezelter 1930 temp = useElectrostatics;
733     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
734 gezelter 1490
735 gezelter 1930 temp = useCharge;
736     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
737 gezelter 1490
738 gezelter 1930 temp = useDipole;
739     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
740 gezelter 1490
741 gezelter 1930 temp = useSticky;
742     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
743 gezelter 1490
744 chrisfen 2220 temp = useStickyPower;
745     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
746    
747 gezelter 1930 temp = useGayBerne;
748     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
749 gezelter 1490
750 gezelter 1930 temp = useEAM;
751     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
752 gezelter 1490
753 chuckv 2433 temp = useSC;
754     MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
755    
756 gezelter 1930 temp = useShape;
757     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
758    
759     temp = useFLARB;
760     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
761    
762 chrisfen 2310 temp = useRF;
763     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
764    
765 chrisfen 2419 temp = useSF;
766 chrisfen 2917 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
767 chrisfen 2404
768 chrisfen 2917 temp = useSP;
769     MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
770    
771     temp = useBoxDipole;
772     MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773    
774 gezelter 3126 temp = useAtomicVirial_;
775     MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
776    
777 gezelter 1490 #endif
778    
779 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
780     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
781     fInfo_.SIM_uses_LennardJones = useLennardJones;
782     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
783     fInfo_.SIM_uses_Charges = useCharge;
784     fInfo_.SIM_uses_Dipoles = useDipole;
785     fInfo_.SIM_uses_Sticky = useSticky;
786 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
787 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
788     fInfo_.SIM_uses_EAM = useEAM;
789 chuckv 2433 fInfo_.SIM_uses_SC = useSC;
790 gezelter 1930 fInfo_.SIM_uses_Shapes = useShape;
791     fInfo_.SIM_uses_FLARB = useFLARB;
792 chrisfen 2310 fInfo_.SIM_uses_RF = useRF;
793 chrisfen 2419 fInfo_.SIM_uses_SF = useSF;
794 chrisfen 2917 fInfo_.SIM_uses_SP = useSP;
795     fInfo_.SIM_uses_BoxDipole = useBoxDipole;
796 gezelter 3126 fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
797 gezelter 2204 }
798 gezelter 1490
799 gezelter 2204 void SimInfo::setupFortranSim() {
800 gezelter 1930 int isError;
801     int nExclude;
802     std::vector<int> fortranGlobalGroupMembership;
803    
804     nExclude = exclude_.getSize();
805     isError = 0;
806 gezelter 1490
807 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
808     for (int i = 0; i < nGlobalAtoms_; i++) {
809 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
810 gezelter 1930 }
811 gezelter 1490
812 gezelter 1930 //calculate mass ratio of cutoff group
813 tim 2759 std::vector<RealType> mfact;
814 gezelter 1930 SimInfo::MoleculeIterator mi;
815     Molecule* mol;
816     Molecule::CutoffGroupIterator ci;
817     CutoffGroup* cg;
818     Molecule::AtomIterator ai;
819     Atom* atom;
820 tim 2759 RealType totalMass;
821 gezelter 1930
822     //to avoid memory reallocation, reserve enough space for mfact
823     mfact.reserve(getNCutoffGroups());
824 gezelter 1490
825 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
826 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
827 gezelter 1490
828 gezelter 2204 totalMass = cg->getMass();
829     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
830 chrisfen 2344 // Check for massless groups - set mfact to 1 if true
831     if (totalMass != 0)
832     mfact.push_back(atom->getMass()/totalMass);
833     else
834     mfact.push_back( 1.0 );
835 gezelter 2204 }
836 gezelter 1490
837 gezelter 2204 }
838 gezelter 1930 }
839 gezelter 1490
840 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
841     std::vector<int> identArray;
842 gezelter 1490
843 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
844     identArray.reserve(getNAtoms());
845    
846     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
847 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848     identArray.push_back(atom->getIdent());
849     }
850 gezelter 1930 }
851 gezelter 1490
852 gezelter 1930 //fill molMembershipArray
853     //molMembershipArray is filled by SimCreator
854     std::vector<int> molMembershipArray(nGlobalAtoms_);
855     for (int i = 0; i < nGlobalAtoms_; i++) {
856 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
857 gezelter 1930 }
858    
859     //setup fortran simulation
860     int nGlobalExcludes = 0;
861     int* globalExcludes = NULL;
862     int* excludeList = exclude_.getExcludeList();
863     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
864 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
865     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
866 gezelter 1490
867 gezelter 1930 if( isError ){
868 gezelter 1490
869 gezelter 2204 sprintf( painCave.errMsg,
870     "There was an error setting the simulation information in fortran.\n" );
871     painCave.isFatal = 1;
872     painCave.severity = OOPSE_ERROR;
873     simError();
874 gezelter 1930 }
875    
876     #ifdef IS_MPI
877     sprintf( checkPointMsg,
878 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
879 gezelter 1930 MPIcheckPoint();
880     #endif // is_mpi
881 chuckv 3080
882     // Setup number of neighbors in neighbor list if present
883     if (simParams_->haveNeighborListNeighbors()) {
884 chuckv 3121 int nlistNeighbors = simParams_->getNeighborListNeighbors();
885     setNeighbors(&nlistNeighbors);
886 chuckv 3080 }
887    
888    
889 gezelter 2204 }
890 gezelter 1490
891    
892 gezelter 1930 #ifdef IS_MPI
893 gezelter 2204 void SimInfo::setupFortranParallel() {
894 gezelter 1930
895     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
896     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
897     std::vector<int> localToGlobalCutoffGroupIndex;
898     SimInfo::MoleculeIterator mi;
899     Molecule::AtomIterator ai;
900     Molecule::CutoffGroupIterator ci;
901     Molecule* mol;
902     Atom* atom;
903     CutoffGroup* cg;
904     mpiSimData parallelData;
905     int isError;
906 gezelter 1490
907 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
908 gezelter 1490
909 gezelter 2204 //local index(index in DataStorge) of atom is important
910     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
911     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
912     }
913 gezelter 1490
914 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
915     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
916     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
917     }
918 gezelter 1930
919     }
920 gezelter 1490
921 gezelter 1930 //fill up mpiSimData struct
922     parallelData.nMolGlobal = getNGlobalMolecules();
923     parallelData.nMolLocal = getNMolecules();
924     parallelData.nAtomsGlobal = getNGlobalAtoms();
925     parallelData.nAtomsLocal = getNAtoms();
926     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
927     parallelData.nGroupsLocal = getNCutoffGroups();
928     parallelData.myNode = worldRank;
929     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
930 gezelter 1490
931 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
932     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
933     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
934     &localToGlobalCutoffGroupIndex[0], &isError);
935 gezelter 1490
936 gezelter 1930 if (isError) {
937 gezelter 2204 sprintf(painCave.errMsg,
938     "mpiRefresh errror: fortran didn't like something we gave it.\n");
939     painCave.isFatal = 1;
940     simError();
941 gezelter 1930 }
942 gezelter 1490
943 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
944     MPIcheckPoint();
945 gezelter 1490
946    
947 gezelter 2204 }
948 chrisfen 1636
949 gezelter 1930 #endif
950 chrisfen 1636
951 gezelter 2463 void SimInfo::setupCutoff() {
952 gezelter 1490
953 chuckv 2533 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
954    
955 gezelter 2463 // Check the cutoff policy
956 chuckv 2533 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
957    
958 chrisfen 3129 // Set LJ shifting bools to false
959     ljsp_ = false;
960     ljsf_ = false;
961    
962 chuckv 2533 std::string myPolicy;
963     if (forceFieldOptions_.haveCutoffPolicy()){
964     myPolicy = forceFieldOptions_.getCutoffPolicy();
965     }else if (simParams_->haveCutoffPolicy()) {
966     myPolicy = simParams_->getCutoffPolicy();
967     }
968    
969     if (!myPolicy.empty()){
970 tim 2364 toUpper(myPolicy);
971 gezelter 2285 if (myPolicy == "MIX") {
972     cp = MIX_CUTOFF_POLICY;
973     } else {
974     if (myPolicy == "MAX") {
975     cp = MAX_CUTOFF_POLICY;
976     } else {
977     if (myPolicy == "TRADITIONAL") {
978     cp = TRADITIONAL_CUTOFF_POLICY;
979     } else {
980     // throw error
981     sprintf( painCave.errMsg,
982     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
983     painCave.isFatal = 1;
984     simError();
985     }
986     }
987     }
988 gezelter 2463 }
989     notifyFortranCutoffPolicy(&cp);
990 chuckv 2328
991 gezelter 2463 // Check the Skin Thickness for neighborlists
992 tim 2759 RealType skin;
993 gezelter 2463 if (simParams_->haveSkinThickness()) {
994     skin = simParams_->getSkinThickness();
995     notifyFortranSkinThickness(&skin);
996     }
997    
998     // Check if the cutoff was set explicitly:
999     if (simParams_->haveCutoffRadius()) {
1000     rcut_ = simParams_->getCutoffRadius();
1001     if (simParams_->haveSwitchingRadius()) {
1002     rsw_ = simParams_->getSwitchingRadius();
1003     } else {
1004 chrisfen 2578 if (fInfo_.SIM_uses_Charges |
1005     fInfo_.SIM_uses_Dipoles |
1006     fInfo_.SIM_uses_RF) {
1007    
1008     rsw_ = 0.85 * rcut_;
1009     sprintf(painCave.errMsg,
1010     "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 chrisfen 2579 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1012 chrisfen 2578 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013     painCave.isFatal = 0;
1014     simError();
1015     } else {
1016     rsw_ = rcut_;
1017     sprintf(painCave.errMsg,
1018     "SimCreator Warning: No value was set for the switchingRadius.\n"
1019     "\tOOPSE will use the same value as the cutoffRadius.\n"
1020     "\tswitchingRadius = %f. for this simulation\n", rsw_);
1021     painCave.isFatal = 0;
1022     simError();
1023     }
1024 chrisfen 2579 }
1025 chrisfen 3129
1026     if (simParams_->haveElectrostaticSummationMethod()) {
1027     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1028     toUpper(myMethod);
1029    
1030     if (myMethod == "SHIFTED_POTENTIAL") {
1031     ljsp_ = true;
1032     } else if (myMethod == "SHIFTED_FORCE") {
1033     ljsf_ = true;
1034     }
1035     }
1036     notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1037 chrisfen 2579
1038 gezelter 2463 } else {
1039    
1040     // For electrostatic atoms, we'll assume a large safe value:
1041     if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1042     sprintf(painCave.errMsg,
1043     "SimCreator Warning: No value was set for the cutoffRadius.\n"
1044     "\tOOPSE will use a default value of 15.0 angstroms"
1045     "\tfor the cutoffRadius.\n");
1046     painCave.isFatal = 0;
1047     simError();
1048     rcut_ = 15.0;
1049    
1050     if (simParams_->haveElectrostaticSummationMethod()) {
1051     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1052     toUpper(myMethod);
1053 chrisfen 3129
1054     // For the time being, we're tethering the LJ shifted behavior to the
1055     // electrostaticSummationMethod keyword options
1056     if (myMethod == "SHIFTED_POTENTIAL") {
1057     ljsp_ = true;
1058     } else if (myMethod == "SHIFTED_FORCE") {
1059     ljsf_ = true;
1060     }
1061     if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1062 gezelter 2463 if (simParams_->haveSwitchingRadius()){
1063     sprintf(painCave.errMsg,
1064     "SimInfo Warning: A value was set for the switchingRadius\n"
1065     "\teven though the electrostaticSummationMethod was\n"
1066     "\tset to %s\n", myMethod.c_str());
1067     painCave.isFatal = 1;
1068     simError();
1069     }
1070     }
1071     }
1072    
1073     if (simParams_->haveSwitchingRadius()){
1074     rsw_ = simParams_->getSwitchingRadius();
1075     } else {
1076     sprintf(painCave.errMsg,
1077     "SimCreator Warning: No value was set for switchingRadius.\n"
1078     "\tOOPSE will use a default value of\n"
1079     "\t0.85 * cutoffRadius for the switchingRadius\n");
1080     painCave.isFatal = 0;
1081     simError();
1082     rsw_ = 0.85 * rcut_;
1083     }
1084 chrisfen 3129
1085     notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1086    
1087 gezelter 2463 } else {
1088     // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1089     // We'll punt and let fortran figure out the cutoffs later.
1090    
1091     notifyFortranYouAreOnYourOwn();
1092 chuckv 2328
1093 gezelter 2463 }
1094 chuckv 2328 }
1095 gezelter 2204 }
1096 gezelter 1490
1097 chrisfen 2302 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1098 chrisfen 2297
1099     int errorOut;
1100 chrisfen 2302 int esm = NONE;
1101 chrisfen 2408 int sm = UNDAMPED;
1102 tim 2759 RealType alphaVal;
1103     RealType dielectric;
1104 chrisfen 3013
1105 chrisfen 2297 errorOut = isError;
1106    
1107 chrisfen 2302 if (simParams_->haveElectrostaticSummationMethod()) {
1108 chrisfen 2303 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1109 tim 2364 toUpper(myMethod);
1110 chrisfen 2302 if (myMethod == "NONE") {
1111     esm = NONE;
1112 chrisfen 2297 } else {
1113 chrisfen 2408 if (myMethod == "SWITCHING_FUNCTION") {
1114     esm = SWITCHING_FUNCTION;
1115 chrisfen 2297 } else {
1116 chrisfen 2408 if (myMethod == "SHIFTED_POTENTIAL") {
1117     esm = SHIFTED_POTENTIAL;
1118     } else {
1119     if (myMethod == "SHIFTED_FORCE") {
1120     esm = SHIFTED_FORCE;
1121 chrisfen 2297 } else {
1122 chrisfen 3020 if (myMethod == "REACTION_FIELD") {
1123 chrisfen 2408 esm = REACTION_FIELD;
1124 chrisfen 3020 dielectric = simParams_->getDielectric();
1125     if (!simParams_->haveDielectric()) {
1126     // throw warning
1127     sprintf( painCave.errMsg,
1128     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1129     "\tA default value of %f will be used for the dielectric.\n", dielectric);
1130     painCave.isFatal = 0;
1131     simError();
1132     }
1133 chrisfen 2408 } else {
1134     // throw error
1135     sprintf( painCave.errMsg,
1136 gezelter 2463 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1137     "\t(Input file specified %s .)\n"
1138     "\telectrostaticSummationMethod must be one of: \"none\",\n"
1139     "\t\"shifted_potential\", \"shifted_force\", or \n"
1140     "\t\"reaction_field\".\n", myMethod.c_str() );
1141 chrisfen 2408 painCave.isFatal = 1;
1142     simError();
1143     }
1144     }
1145     }
1146 chrisfen 2297 }
1147     }
1148     }
1149 chrisfen 2408
1150 chrisfen 2415 if (simParams_->haveElectrostaticScreeningMethod()) {
1151     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1152 chrisfen 2408 toUpper(myScreen);
1153     if (myScreen == "UNDAMPED") {
1154     sm = UNDAMPED;
1155     } else {
1156     if (myScreen == "DAMPED") {
1157     sm = DAMPED;
1158     if (!simParams_->haveDampingAlpha()) {
1159 chrisfen 3013 // first set a cutoff dependent alpha value
1160     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1161     alphaVal = 0.5125 - rcut_* 0.025;
1162     // for values rcut > 20.5, alpha is zero
1163     if (alphaVal < 0) alphaVal = 0;
1164    
1165     // throw warning
1166 chrisfen 2408 sprintf( painCave.errMsg,
1167 gezelter 2463 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1168 chrisfen 3013 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1169 chrisfen 2408 painCave.isFatal = 0;
1170     simError();
1171 chrisfen 3072 } else {
1172     alphaVal = simParams_->getDampingAlpha();
1173 chrisfen 2408 }
1174 chrisfen 3072
1175 chrisfen 2415 } else {
1176     // throw error
1177     sprintf( painCave.errMsg,
1178 gezelter 2463 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1179     "\t(Input file specified %s .)\n"
1180     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1181     "or \"damped\".\n", myScreen.c_str() );
1182 chrisfen 2415 painCave.isFatal = 1;
1183     simError();
1184 chrisfen 2408 }
1185     }
1186     }
1187 chrisfen 2415
1188 chrisfen 2309 // let's pass some summation method variables to fortran
1189 chrisfen 2552 setElectrostaticSummationMethod( &esm );
1190 gezelter 2508 setFortranElectrostaticMethod( &esm );
1191 chrisfen 2408 setScreeningMethod( &sm );
1192     setDampingAlpha( &alphaVal );
1193 chrisfen 2309 setReactionFieldDielectric( &dielectric );
1194 gezelter 2463 initFortranFF( &errorOut );
1195 chrisfen 2297 }
1196    
1197 chrisfen 2425 void SimInfo::setupSwitchingFunction() {
1198     int ft = CUBIC;
1199    
1200     if (simParams_->haveSwitchingFunctionType()) {
1201     std::string funcType = simParams_->getSwitchingFunctionType();
1202     toUpper(funcType);
1203     if (funcType == "CUBIC") {
1204     ft = CUBIC;
1205     } else {
1206     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1207     ft = FIFTH_ORDER_POLY;
1208     } else {
1209     // throw error
1210     sprintf( painCave.errMsg,
1211     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1212     painCave.isFatal = 1;
1213     simError();
1214     }
1215     }
1216     }
1217    
1218     // send switching function notification to switcheroo
1219     setFunctionType(&ft);
1220    
1221     }
1222    
1223 chrisfen 2917 void SimInfo::setupAccumulateBoxDipole() {
1224    
1225     // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1226     if ( simParams_->haveAccumulateBoxDipole() )
1227     if ( simParams_->getAccumulateBoxDipole() ) {
1228     setAccumulateBoxDipole();
1229     calcBoxDipole_ = true;
1230     }
1231    
1232     }
1233    
1234 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
1235 gezelter 1930 properties_.addProperty(genData);
1236 gezelter 2204 }
1237 gezelter 1490
1238 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
1239 gezelter 1930 properties_.removeProperty(propName);
1240 gezelter 2204 }
1241 gezelter 1490
1242 gezelter 2204 void SimInfo::clearProperties() {
1243 gezelter 1930 properties_.clearProperties();
1244 gezelter 2204 }
1245 gezelter 1490
1246 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
1247 gezelter 1930 return properties_.getPropertyNames();
1248 gezelter 2204 }
1249 gezelter 1930
1250 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
1251 gezelter 1930 return properties_.getProperties();
1252 gezelter 2204 }
1253 gezelter 1490
1254 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1255 gezelter 1930 return properties_.getPropertyByName(propName);
1256 gezelter 2204 }
1257 gezelter 1490
1258 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1259 tim 2116 if (sman_ == sman) {
1260 gezelter 2204 return;
1261 tim 2116 }
1262     delete sman_;
1263 gezelter 1930 sman_ = sman;
1264 gezelter 1490
1265 gezelter 1930 Molecule* mol;
1266     RigidBody* rb;
1267     Atom* atom;
1268     SimInfo::MoleculeIterator mi;
1269     Molecule::RigidBodyIterator rbIter;
1270     Molecule::AtomIterator atomIter;;
1271    
1272     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1273    
1274 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1275     atom->setSnapshotManager(sman_);
1276     }
1277 gezelter 1930
1278 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1279     rb->setSnapshotManager(sman_);
1280     }
1281 gezelter 1930 }
1282 gezelter 1490
1283 gezelter 2204 }
1284 gezelter 1490
1285 gezelter 2204 Vector3d SimInfo::getComVel(){
1286 gezelter 1930 SimInfo::MoleculeIterator i;
1287     Molecule* mol;
1288 gezelter 1490
1289 gezelter 1930 Vector3d comVel(0.0);
1290 tim 2759 RealType totalMass = 0.0;
1291 gezelter 1490
1292 gezelter 1930
1293     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1294 tim 2759 RealType mass = mol->getMass();
1295 gezelter 2204 totalMass += mass;
1296     comVel += mass * mol->getComVel();
1297 gezelter 1930 }
1298 gezelter 1490
1299 gezelter 1930 #ifdef IS_MPI
1300 tim 2759 RealType tmpMass = totalMass;
1301 gezelter 1930 Vector3d tmpComVel(comVel);
1302 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1303     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1304 gezelter 1930 #endif
1305    
1306     comVel /= totalMass;
1307    
1308     return comVel;
1309 gezelter 2204 }
1310 gezelter 1490
1311 gezelter 2204 Vector3d SimInfo::getCom(){
1312 gezelter 1930 SimInfo::MoleculeIterator i;
1313     Molecule* mol;
1314 gezelter 1490
1315 gezelter 1930 Vector3d com(0.0);
1316 tim 2759 RealType totalMass = 0.0;
1317 gezelter 1930
1318     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1319 tim 2759 RealType mass = mol->getMass();
1320 gezelter 2204 totalMass += mass;
1321     com += mass * mol->getCom();
1322 gezelter 1930 }
1323 gezelter 1490
1324     #ifdef IS_MPI
1325 tim 2759 RealType tmpMass = totalMass;
1326 gezelter 1930 Vector3d tmpCom(com);
1327 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1328     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1329 gezelter 1490 #endif
1330    
1331 gezelter 1930 com /= totalMass;
1332 gezelter 1490
1333 gezelter 1930 return com;
1334 gezelter 1490
1335 gezelter 2204 }
1336 gezelter 1930
1337 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1338 gezelter 1930
1339     return o;
1340 gezelter 2204 }
1341 chuckv 2252
1342    
1343     /*
1344     Returns center of mass and center of mass velocity in one function call.
1345     */
1346    
1347     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1348     SimInfo::MoleculeIterator i;
1349     Molecule* mol;
1350    
1351    
1352 tim 2759 RealType totalMass = 0.0;
1353 chuckv 2252
1354 gezelter 1930
1355 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1356 tim 2759 RealType mass = mol->getMass();
1357 chuckv 2252 totalMass += mass;
1358     com += mass * mol->getCom();
1359     comVel += mass * mol->getComVel();
1360     }
1361    
1362     #ifdef IS_MPI
1363 tim 2759 RealType tmpMass = totalMass;
1364 chuckv 2252 Vector3d tmpCom(com);
1365     Vector3d tmpComVel(comVel);
1366 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1367     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1368     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1369 chuckv 2252 #endif
1370    
1371     com /= totalMass;
1372     comVel /= totalMass;
1373     }
1374    
1375     /*
1376     Return intertia tensor for entire system and angular momentum Vector.
1377 chuckv 2256
1378    
1379     [ Ixx -Ixy -Ixz ]
1380     J =| -Iyx Iyy -Iyz |
1381     [ -Izx -Iyz Izz ]
1382 chuckv 2252 */
1383    
1384     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1385    
1386    
1387 tim 2759 RealType xx = 0.0;
1388     RealType yy = 0.0;
1389     RealType zz = 0.0;
1390     RealType xy = 0.0;
1391     RealType xz = 0.0;
1392     RealType yz = 0.0;
1393 chuckv 2252 Vector3d com(0.0);
1394     Vector3d comVel(0.0);
1395    
1396     getComAll(com, comVel);
1397    
1398     SimInfo::MoleculeIterator i;
1399     Molecule* mol;
1400    
1401     Vector3d thisq(0.0);
1402     Vector3d thisv(0.0);
1403    
1404 tim 2759 RealType thisMass = 0.0;
1405 chuckv 2252
1406    
1407    
1408    
1409     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1410    
1411     thisq = mol->getCom()-com;
1412     thisv = mol->getComVel()-comVel;
1413     thisMass = mol->getMass();
1414     // Compute moment of intertia coefficients.
1415     xx += thisq[0]*thisq[0]*thisMass;
1416     yy += thisq[1]*thisq[1]*thisMass;
1417     zz += thisq[2]*thisq[2]*thisMass;
1418    
1419     // compute products of intertia
1420     xy += thisq[0]*thisq[1]*thisMass;
1421     xz += thisq[0]*thisq[2]*thisMass;
1422     yz += thisq[1]*thisq[2]*thisMass;
1423    
1424     angularMomentum += cross( thisq, thisv ) * thisMass;
1425    
1426     }
1427    
1428    
1429     inertiaTensor(0,0) = yy + zz;
1430     inertiaTensor(0,1) = -xy;
1431     inertiaTensor(0,2) = -xz;
1432     inertiaTensor(1,0) = -xy;
1433 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1434 chuckv 2252 inertiaTensor(1,2) = -yz;
1435     inertiaTensor(2,0) = -xz;
1436     inertiaTensor(2,1) = -yz;
1437     inertiaTensor(2,2) = xx + yy;
1438    
1439     #ifdef IS_MPI
1440     Mat3x3d tmpI(inertiaTensor);
1441     Vector3d tmpAngMom;
1442 tim 2759 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1443     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1444 chuckv 2252 #endif
1445    
1446     return;
1447     }
1448    
1449     //Returns the angular momentum of the system
1450     Vector3d SimInfo::getAngularMomentum(){
1451    
1452     Vector3d com(0.0);
1453     Vector3d comVel(0.0);
1454     Vector3d angularMomentum(0.0);
1455    
1456     getComAll(com,comVel);
1457    
1458     SimInfo::MoleculeIterator i;
1459     Molecule* mol;
1460    
1461 chuckv 2256 Vector3d thisr(0.0);
1462     Vector3d thisp(0.0);
1463 chuckv 2252
1464 tim 2759 RealType thisMass;
1465 chuckv 2252
1466     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1467 chuckv 2256 thisMass = mol->getMass();
1468     thisr = mol->getCom()-com;
1469     thisp = (mol->getComVel()-comVel)*thisMass;
1470 chuckv 2252
1471 chuckv 2256 angularMomentum += cross( thisr, thisp );
1472    
1473 chuckv 2252 }
1474    
1475     #ifdef IS_MPI
1476     Vector3d tmpAngMom;
1477 tim 2759 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1478 chuckv 2252 #endif
1479    
1480     return angularMomentum;
1481     }
1482    
1483 tim 2982 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1484     return IOIndexToIntegrableObject.at(index);
1485     }
1486    
1487     void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1488     IOIndexToIntegrableObject= v;
1489     }
1490    
1491 chuckv 3100 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1492     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1493     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1494     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1495     */
1496     void SimInfo::getGyrationalVolume(RealType &volume){
1497     Mat3x3d intTensor;
1498     RealType det;
1499     Vector3d dummyAngMom;
1500     RealType sysconstants;
1501     RealType geomCnst;
1502    
1503     geomCnst = 3.0/2.0;
1504     /* Get the inertial tensor and angular momentum for free*/
1505     getInertiaTensor(intTensor,dummyAngMom);
1506    
1507     det = intTensor.determinant();
1508     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1509     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1510     return;
1511     }
1512    
1513     void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1514     Mat3x3d intTensor;
1515     Vector3d dummyAngMom;
1516     RealType sysconstants;
1517     RealType geomCnst;
1518    
1519     geomCnst = 3.0/2.0;
1520     /* Get the inertial tensor and angular momentum for free*/
1521     getInertiaTensor(intTensor,dummyAngMom);
1522    
1523     detI = intTensor.determinant();
1524     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1525     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1526     return;
1527     }
1528 tim 2982 /*
1529     void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1530     assert( v.size() == nAtoms_ + nRigidBodies_);
1531     sdByGlobalIndex_ = v;
1532     }
1533    
1534     StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1535     //assert(index < nAtoms_ + nRigidBodies_);
1536     return sdByGlobalIndex_.at(index);
1537     }
1538     */
1539 gezelter 1930 }//end namespace oopse
1540