ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 2119
Committed: Fri Mar 11 15:55:17 2005 UTC (19 years, 4 months ago) by tim
File size: 29333 byte(s)
Log Message:
pairs inside cutoff group should not be excluded

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51
52 #include "brains/SimInfo.hpp"
53 #include "math/Vector3.hpp"
54 #include "primitives/Molecule.hpp"
55 #include "UseTheForce/doForces_interface.h"
56 #include "UseTheForce/notifyCutoffs_interface.h"
57 #include "utils/MemoryUtils.hpp"
58 #include "utils/simError.h"
59 #include "selection/SelectionManager.hpp"
60
61 #ifdef IS_MPI
62 #include "UseTheForce/mpiComponentPlan.h"
63 #include "UseTheForce/DarkSide/simParallel_interface.h"
64 #endif
65
66 namespace oopse {
67
68 SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69 ForceField* ff, Globals* simParams) :
70 forceField_(ff), simParams_(simParams),
71 ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
75 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
76 sman_(NULL), fortranInitialized_(false) {
77
78
79 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 MoleculeStamp* molStamp;
81 int nMolWithSameStamp;
82 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 int nGroups = 0; //total cutoff groups defined in meta-data file
84 CutoffGroupStamp* cgStamp;
85 RigidBodyStamp* rbStamp;
86 int nRigidAtoms = 0;
87
88 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 molStamp = i->first;
90 nMolWithSameStamp = i->second;
91
92 addMoleculeStamp(molStamp, nMolWithSameStamp);
93
94 //calculate atoms in molecules
95 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
96
97
98 //calculate atoms in cutoff groups
99 int nAtomsInGroups = 0;
100 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101
102 for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 cgStamp = molStamp->getCutoffGroup(j);
104 nAtomsInGroups += cgStamp->getNMembers();
105 }
106
107 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
109
110 //calculate atoms in rigid bodies
111 int nAtomsInRigidBodies = 0;
112 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113
114 for (int j=0; j < nRigidBodiesInStamp; j++) {
115 rbStamp = molStamp->getRigidBody(j);
116 nAtomsInRigidBodies += rbStamp->getNMembers();
117 }
118
119 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
121
122 }
123
124 //every free atom (atom does not belong to cutoff groups) is a cutoff group
125 //therefore the total number of cutoff groups in the system is equal to
126 //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127 //file plus the number of cutoff groups defined in meta-data file
128 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129
130 //every free atom (atom does not belong to rigid bodies) is an integrable object
131 //therefore the total number of integrable objects in the system is equal to
132 //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
133 //file plus the number of rigid bodies defined in meta-data file
134 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135
136 nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI
139 molToProcMap_.resize(nGlobalMols_);
140 #endif
141
142 }
143
144 SimInfo::~SimInfo() {
145 std::map<int, Molecule*>::iterator i;
146 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
147 delete i->second;
148 }
149 molecules_.clear();
150
151 MemoryUtils::deletePointers(moleculeStamps_);
152
153 delete sman_;
154 delete simParams_;
155 delete forceField_;
156 }
157
158 int SimInfo::getNGlobalConstraints() {
159 int nGlobalConstraints;
160 #ifdef IS_MPI
161 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162 MPI_COMM_WORLD);
163 #else
164 nGlobalConstraints = nConstraints_;
165 #endif
166 return nGlobalConstraints;
167 }
168
169 bool SimInfo::addMolecule(Molecule* mol) {
170 MoleculeIterator i;
171
172 i = molecules_.find(mol->getGlobalIndex());
173 if (i == molecules_.end() ) {
174
175 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
176
177 nAtoms_ += mol->getNAtoms();
178 nBonds_ += mol->getNBonds();
179 nBends_ += mol->getNBends();
180 nTorsions_ += mol->getNTorsions();
181 nRigidBodies_ += mol->getNRigidBodies();
182 nIntegrableObjects_ += mol->getNIntegrableObjects();
183 nCutoffGroups_ += mol->getNCutoffGroups();
184 nConstraints_ += mol->getNConstraintPairs();
185
186 addExcludePairs(mol);
187
188 return true;
189 } else {
190 return false;
191 }
192 }
193
194 bool SimInfo::removeMolecule(Molecule* mol) {
195 MoleculeIterator i;
196 i = molecules_.find(mol->getGlobalIndex());
197
198 if (i != molecules_.end() ) {
199
200 assert(mol == i->second);
201
202 nAtoms_ -= mol->getNAtoms();
203 nBonds_ -= mol->getNBonds();
204 nBends_ -= mol->getNBends();
205 nTorsions_ -= mol->getNTorsions();
206 nRigidBodies_ -= mol->getNRigidBodies();
207 nIntegrableObjects_ -= mol->getNIntegrableObjects();
208 nCutoffGroups_ -= mol->getNCutoffGroups();
209 nConstraints_ -= mol->getNConstraintPairs();
210
211 removeExcludePairs(mol);
212 molecules_.erase(mol->getGlobalIndex());
213
214 delete mol;
215
216 return true;
217 } else {
218 return false;
219 }
220
221
222 }
223
224
225 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
226 i = molecules_.begin();
227 return i == molecules_.end() ? NULL : i->second;
228 }
229
230 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
231 ++i;
232 return i == molecules_.end() ? NULL : i->second;
233 }
234
235
236 void SimInfo::calcNdf() {
237 int ndf_local;
238 MoleculeIterator i;
239 std::vector<StuntDouble*>::iterator j;
240 Molecule* mol;
241 StuntDouble* integrableObject;
242
243 ndf_local = 0;
244
245 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
246 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
247 integrableObject = mol->nextIntegrableObject(j)) {
248
249 ndf_local += 3;
250
251 if (integrableObject->isDirectional()) {
252 if (integrableObject->isLinear()) {
253 ndf_local += 2;
254 } else {
255 ndf_local += 3;
256 }
257 }
258
259 }//end for (integrableObject)
260 }// end for (mol)
261
262 // n_constraints is local, so subtract them on each processor
263 ndf_local -= nConstraints_;
264
265 #ifdef IS_MPI
266 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267 #else
268 ndf_ = ndf_local;
269 #endif
270
271 // nZconstraints_ is global, as are the 3 COM translations for the
272 // entire system:
273 ndf_ = ndf_ - 3 - nZconstraint_;
274
275 }
276
277 void SimInfo::calcNdfRaw() {
278 int ndfRaw_local;
279
280 MoleculeIterator i;
281 std::vector<StuntDouble*>::iterator j;
282 Molecule* mol;
283 StuntDouble* integrableObject;
284
285 // Raw degrees of freedom that we have to set
286 ndfRaw_local = 0;
287
288 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
289 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
290 integrableObject = mol->nextIntegrableObject(j)) {
291
292 ndfRaw_local += 3;
293
294 if (integrableObject->isDirectional()) {
295 if (integrableObject->isLinear()) {
296 ndfRaw_local += 2;
297 } else {
298 ndfRaw_local += 3;
299 }
300 }
301
302 }
303 }
304
305 #ifdef IS_MPI
306 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
307 #else
308 ndfRaw_ = ndfRaw_local;
309 #endif
310 }
311
312 void SimInfo::calcNdfTrans() {
313 int ndfTrans_local;
314
315 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
316
317
318 #ifdef IS_MPI
319 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
320 #else
321 ndfTrans_ = ndfTrans_local;
322 #endif
323
324 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
325
326 }
327
328 void SimInfo::addExcludePairs(Molecule* mol) {
329 std::vector<Bond*>::iterator bondIter;
330 std::vector<Bend*>::iterator bendIter;
331 std::vector<Torsion*>::iterator torsionIter;
332 Bond* bond;
333 Bend* bend;
334 Torsion* torsion;
335 int a;
336 int b;
337 int c;
338 int d;
339
340 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
341 a = bond->getAtomA()->getGlobalIndex();
342 b = bond->getAtomB()->getGlobalIndex();
343 exclude_.addPair(a, b);
344 }
345
346 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
347 a = bend->getAtomA()->getGlobalIndex();
348 b = bend->getAtomB()->getGlobalIndex();
349 c = bend->getAtomC()->getGlobalIndex();
350
351 exclude_.addPair(a, b);
352 exclude_.addPair(a, c);
353 exclude_.addPair(b, c);
354 }
355
356 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
357 a = torsion->getAtomA()->getGlobalIndex();
358 b = torsion->getAtomB()->getGlobalIndex();
359 c = torsion->getAtomC()->getGlobalIndex();
360 d = torsion->getAtomD()->getGlobalIndex();
361
362 exclude_.addPair(a, b);
363 exclude_.addPair(a, c);
364 exclude_.addPair(a, d);
365 exclude_.addPair(b, c);
366 exclude_.addPair(b, d);
367 exclude_.addPair(c, d);
368 }
369
370 Molecule::RigidBodyIterator rbIter;
371 RigidBody* rb;
372 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
373 std::vector<Atom*> atoms = rb->getAtoms();
374 for (int i = 0; i < atoms.size() -1 ; ++i) {
375 for (int j = i + 1; j < atoms.size(); ++j) {
376 a = atoms[i]->getGlobalIndex();
377 b = atoms[j]->getGlobalIndex();
378 exclude_.addPair(a, b);
379 }
380 }
381 }
382
383 }
384
385 void SimInfo::removeExcludePairs(Molecule* mol) {
386 std::vector<Bond*>::iterator bondIter;
387 std::vector<Bend*>::iterator bendIter;
388 std::vector<Torsion*>::iterator torsionIter;
389 Bond* bond;
390 Bend* bend;
391 Torsion* torsion;
392 int a;
393 int b;
394 int c;
395 int d;
396
397 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
398 a = bond->getAtomA()->getGlobalIndex();
399 b = bond->getAtomB()->getGlobalIndex();
400 exclude_.removePair(a, b);
401 }
402
403 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
404 a = bend->getAtomA()->getGlobalIndex();
405 b = bend->getAtomB()->getGlobalIndex();
406 c = bend->getAtomC()->getGlobalIndex();
407
408 exclude_.removePair(a, b);
409 exclude_.removePair(a, c);
410 exclude_.removePair(b, c);
411 }
412
413 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
414 a = torsion->getAtomA()->getGlobalIndex();
415 b = torsion->getAtomB()->getGlobalIndex();
416 c = torsion->getAtomC()->getGlobalIndex();
417 d = torsion->getAtomD()->getGlobalIndex();
418
419 exclude_.removePair(a, b);
420 exclude_.removePair(a, c);
421 exclude_.removePair(a, d);
422 exclude_.removePair(b, c);
423 exclude_.removePair(b, d);
424 exclude_.removePair(c, d);
425 }
426
427 Molecule::RigidBodyIterator rbIter;
428 RigidBody* rb;
429 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
430 std::vector<Atom*> atoms = rb->getAtoms();
431 for (int i = 0; i < atoms.size() -1 ; ++i) {
432 for (int j = i + 1; j < atoms.size(); ++j) {
433 a = atoms[i]->getGlobalIndex();
434 b = atoms[j]->getGlobalIndex();
435 exclude_.removePair(a, b);
436 }
437 }
438 }
439
440 }
441
442
443 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
444 int curStampId;
445
446 //index from 0
447 curStampId = moleculeStamps_.size();
448
449 moleculeStamps_.push_back(molStamp);
450 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
451 }
452
453 void SimInfo::update() {
454
455 setupSimType();
456
457 #ifdef IS_MPI
458 setupFortranParallel();
459 #endif
460
461 setupFortranSim();
462
463 //setup fortran force field
464 /** @deprecate */
465 int isError = 0;
466 initFortranFF( &fInfo_.SIM_uses_RF , &isError );
467 if(isError){
468 sprintf( painCave.errMsg,
469 "ForceField error: There was an error initializing the forceField in fortran.\n" );
470 painCave.isFatal = 1;
471 simError();
472 }
473
474
475 setupCutoff();
476
477 calcNdf();
478 calcNdfRaw();
479 calcNdfTrans();
480
481 fortranInitialized_ = true;
482 }
483
484 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
485 SimInfo::MoleculeIterator mi;
486 Molecule* mol;
487 Molecule::AtomIterator ai;
488 Atom* atom;
489 std::set<AtomType*> atomTypes;
490
491 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
492
493 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
494 atomTypes.insert(atom->getAtomType());
495 }
496
497 }
498
499 return atomTypes;
500 }
501
502 void SimInfo::setupSimType() {
503 std::set<AtomType*>::iterator i;
504 std::set<AtomType*> atomTypes;
505 atomTypes = getUniqueAtomTypes();
506
507 int useLennardJones = 0;
508 int useElectrostatic = 0;
509 int useEAM = 0;
510 int useCharge = 0;
511 int useDirectional = 0;
512 int useDipole = 0;
513 int useGayBerne = 0;
514 int useSticky = 0;
515 int useShape = 0;
516 int useFLARB = 0; //it is not in AtomType yet
517 int useDirectionalAtom = 0;
518 int useElectrostatics = 0;
519 //usePBC and useRF are from simParams
520 int usePBC = simParams_->getPBC();
521 int useRF = simParams_->getUseRF();
522
523 //loop over all of the atom types
524 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
525 useLennardJones |= (*i)->isLennardJones();
526 useElectrostatic |= (*i)->isElectrostatic();
527 useEAM |= (*i)->isEAM();
528 useCharge |= (*i)->isCharge();
529 useDirectional |= (*i)->isDirectional();
530 useDipole |= (*i)->isDipole();
531 useGayBerne |= (*i)->isGayBerne();
532 useSticky |= (*i)->isSticky();
533 useShape |= (*i)->isShape();
534 }
535
536 if (useSticky || useDipole || useGayBerne || useShape) {
537 useDirectionalAtom = 1;
538 }
539
540 if (useCharge || useDipole) {
541 useElectrostatics = 1;
542 }
543
544 #ifdef IS_MPI
545 int temp;
546
547 temp = usePBC;
548 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
549
550 temp = useDirectionalAtom;
551 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
552
553 temp = useLennardJones;
554 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
555
556 temp = useElectrostatics;
557 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
558
559 temp = useCharge;
560 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
561
562 temp = useDipole;
563 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
564
565 temp = useSticky;
566 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
567
568 temp = useGayBerne;
569 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
570
571 temp = useEAM;
572 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
573
574 temp = useShape;
575 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
576
577 temp = useFLARB;
578 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
579
580 temp = useRF;
581 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
582
583 #endif
584
585 fInfo_.SIM_uses_PBC = usePBC;
586 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
587 fInfo_.SIM_uses_LennardJones = useLennardJones;
588 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
589 fInfo_.SIM_uses_Charges = useCharge;
590 fInfo_.SIM_uses_Dipoles = useDipole;
591 fInfo_.SIM_uses_Sticky = useSticky;
592 fInfo_.SIM_uses_GayBerne = useGayBerne;
593 fInfo_.SIM_uses_EAM = useEAM;
594 fInfo_.SIM_uses_Shapes = useShape;
595 fInfo_.SIM_uses_FLARB = useFLARB;
596 fInfo_.SIM_uses_RF = useRF;
597
598 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
599
600 if (simParams_->haveDielectric()) {
601 fInfo_.dielect = simParams_->getDielectric();
602 } else {
603 sprintf(painCave.errMsg,
604 "SimSetup Error: No Dielectric constant was set.\n"
605 "\tYou are trying to use Reaction Field without"
606 "\tsetting a dielectric constant!\n");
607 painCave.isFatal = 1;
608 simError();
609 }
610
611 } else {
612 fInfo_.dielect = 0.0;
613 }
614
615 }
616
617 void SimInfo::setupFortranSim() {
618 int isError;
619 int nExclude;
620 std::vector<int> fortranGlobalGroupMembership;
621
622 nExclude = exclude_.getSize();
623 isError = 0;
624
625 //globalGroupMembership_ is filled by SimCreator
626 for (int i = 0; i < nGlobalAtoms_; i++) {
627 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
628 }
629
630 //calculate mass ratio of cutoff group
631 std::vector<double> mfact;
632 SimInfo::MoleculeIterator mi;
633 Molecule* mol;
634 Molecule::CutoffGroupIterator ci;
635 CutoffGroup* cg;
636 Molecule::AtomIterator ai;
637 Atom* atom;
638 double totalMass;
639
640 //to avoid memory reallocation, reserve enough space for mfact
641 mfact.reserve(getNCutoffGroups());
642
643 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
644 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
645
646 totalMass = cg->getMass();
647 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
648 mfact.push_back(atom->getMass()/totalMass);
649 }
650
651 }
652 }
653
654 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
655 std::vector<int> identArray;
656
657 //to avoid memory reallocation, reserve enough space identArray
658 identArray.reserve(getNAtoms());
659
660 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
661 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
662 identArray.push_back(atom->getIdent());
663 }
664 }
665
666 //fill molMembershipArray
667 //molMembershipArray is filled by SimCreator
668 std::vector<int> molMembershipArray(nGlobalAtoms_);
669 for (int i = 0; i < nGlobalAtoms_; i++) {
670 molMembershipArray[i] = globalMolMembership_[i] + 1;
671 }
672
673 //setup fortran simulation
674 int nGlobalExcludes = 0;
675 int* globalExcludes = NULL;
676 int* excludeList = exclude_.getExcludeList();
677 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
678 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
679 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
680
681 if( isError ){
682
683 sprintf( painCave.errMsg,
684 "There was an error setting the simulation information in fortran.\n" );
685 painCave.isFatal = 1;
686 painCave.severity = OOPSE_ERROR;
687 simError();
688 }
689
690 #ifdef IS_MPI
691 sprintf( checkPointMsg,
692 "succesfully sent the simulation information to fortran.\n");
693 MPIcheckPoint();
694 #endif // is_mpi
695 }
696
697
698 #ifdef IS_MPI
699 void SimInfo::setupFortranParallel() {
700
701 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
702 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
703 std::vector<int> localToGlobalCutoffGroupIndex;
704 SimInfo::MoleculeIterator mi;
705 Molecule::AtomIterator ai;
706 Molecule::CutoffGroupIterator ci;
707 Molecule* mol;
708 Atom* atom;
709 CutoffGroup* cg;
710 mpiSimData parallelData;
711 int isError;
712
713 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
714
715 //local index(index in DataStorge) of atom is important
716 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
717 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
718 }
719
720 //local index of cutoff group is trivial, it only depends on the order of travesing
721 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
722 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
723 }
724
725 }
726
727 //fill up mpiSimData struct
728 parallelData.nMolGlobal = getNGlobalMolecules();
729 parallelData.nMolLocal = getNMolecules();
730 parallelData.nAtomsGlobal = getNGlobalAtoms();
731 parallelData.nAtomsLocal = getNAtoms();
732 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
733 parallelData.nGroupsLocal = getNCutoffGroups();
734 parallelData.myNode = worldRank;
735 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
736
737 //pass mpiSimData struct and index arrays to fortran
738 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
739 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
740 &localToGlobalCutoffGroupIndex[0], &isError);
741
742 if (isError) {
743 sprintf(painCave.errMsg,
744 "mpiRefresh errror: fortran didn't like something we gave it.\n");
745 painCave.isFatal = 1;
746 simError();
747 }
748
749 sprintf(checkPointMsg, " mpiRefresh successful.\n");
750 MPIcheckPoint();
751
752
753 }
754
755 #endif
756
757 double SimInfo::calcMaxCutoffRadius() {
758
759
760 std::set<AtomType*> atomTypes;
761 std::set<AtomType*>::iterator i;
762 std::vector<double> cutoffRadius;
763
764 //get the unique atom types
765 atomTypes = getUniqueAtomTypes();
766
767 //query the max cutoff radius among these atom types
768 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
769 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
770 }
771
772 double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
773 #ifdef IS_MPI
774 //pick the max cutoff radius among the processors
775 #endif
776
777 return maxCutoffRadius;
778 }
779
780 void SimInfo::getCutoff(double& rcut, double& rsw) {
781
782 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
783
784 if (!simParams_->haveRcut()){
785 sprintf(painCave.errMsg,
786 "SimCreator Warning: No value was set for the cutoffRadius.\n"
787 "\tOOPSE will use a default value of 15.0 angstroms"
788 "\tfor the cutoffRadius.\n");
789 painCave.isFatal = 0;
790 simError();
791 rcut = 15.0;
792 } else{
793 rcut = simParams_->getRcut();
794 }
795
796 if (!simParams_->haveRsw()){
797 sprintf(painCave.errMsg,
798 "SimCreator Warning: No value was set for switchingRadius.\n"
799 "\tOOPSE will use a default value of\n"
800 "\t0.95 * cutoffRadius for the switchingRadius\n");
801 painCave.isFatal = 0;
802 simError();
803 rsw = 0.95 * rcut;
804 } else{
805 rsw = simParams_->getRsw();
806 }
807
808 } else {
809 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
810 //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
811
812 if (simParams_->haveRcut()) {
813 rcut = simParams_->getRcut();
814 } else {
815 //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
816 rcut = calcMaxCutoffRadius();
817 }
818
819 if (simParams_->haveRsw()) {
820 rsw = simParams_->getRsw();
821 } else {
822 rsw = rcut;
823 }
824
825 }
826 }
827
828 void SimInfo::setupCutoff() {
829 getCutoff(rcut_, rsw_);
830 double rnblist = rcut_ + 1; // skin of neighbor list
831
832 //Pass these cutoff radius etc. to fortran. This function should be called once and only once
833 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
834 }
835
836 void SimInfo::addProperty(GenericData* genData) {
837 properties_.addProperty(genData);
838 }
839
840 void SimInfo::removeProperty(const std::string& propName) {
841 properties_.removeProperty(propName);
842 }
843
844 void SimInfo::clearProperties() {
845 properties_.clearProperties();
846 }
847
848 std::vector<std::string> SimInfo::getPropertyNames() {
849 return properties_.getPropertyNames();
850 }
851
852 std::vector<GenericData*> SimInfo::getProperties() {
853 return properties_.getProperties();
854 }
855
856 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
857 return properties_.getPropertyByName(propName);
858 }
859
860 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
861 if (sman_ == sman) {
862 return;
863 }
864 delete sman_;
865 sman_ = sman;
866
867 Molecule* mol;
868 RigidBody* rb;
869 Atom* atom;
870 SimInfo::MoleculeIterator mi;
871 Molecule::RigidBodyIterator rbIter;
872 Molecule::AtomIterator atomIter;;
873
874 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
875
876 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
877 atom->setSnapshotManager(sman_);
878 }
879
880 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
881 rb->setSnapshotManager(sman_);
882 }
883 }
884
885 }
886
887 Vector3d SimInfo::getComVel(){
888 SimInfo::MoleculeIterator i;
889 Molecule* mol;
890
891 Vector3d comVel(0.0);
892 double totalMass = 0.0;
893
894
895 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
896 double mass = mol->getMass();
897 totalMass += mass;
898 comVel += mass * mol->getComVel();
899 }
900
901 #ifdef IS_MPI
902 double tmpMass = totalMass;
903 Vector3d tmpComVel(comVel);
904 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
905 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
906 #endif
907
908 comVel /= totalMass;
909
910 return comVel;
911 }
912
913 Vector3d SimInfo::getCom(){
914 SimInfo::MoleculeIterator i;
915 Molecule* mol;
916
917 Vector3d com(0.0);
918 double totalMass = 0.0;
919
920 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
921 double mass = mol->getMass();
922 totalMass += mass;
923 com += mass * mol->getCom();
924 }
925
926 #ifdef IS_MPI
927 double tmpMass = totalMass;
928 Vector3d tmpCom(com);
929 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
930 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
931 #endif
932
933 com /= totalMass;
934
935 return com;
936
937 }
938
939 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
940
941 return o;
942 }
943
944 }//end namespace oopse
945