ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 1976
Committed: Fri Feb 4 22:44:15 2005 UTC (19 years, 4 months ago) by tim
File size: 28487 byte(s)
Log Message:
adding SelectionManager into SimInfo

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51
52 #include "brains/SimInfo.hpp"
53 #include "math/Vector3.hpp"
54 #include "primitives/Molecule.hpp"
55 #include "UseTheForce/doForces_interface.h"
56 #include "UseTheForce/notifyCutoffs_interface.h"
57 #include "utils/MemoryUtils.hpp"
58 #include "utils/simError.h"
59
60 #ifdef IS_MPI
61 #include "UseTheForce/mpiComponentPlan.h"
62 #include "UseTheForce/DarkSide/simParallel_interface.h"
63 #endif
64
65 namespace oopse {
66
67 SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
68 ForceField* ff, Globals* simParams) :
69 forceField_(ff), simParams_(simParams),
70 ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
71 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
72 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
73 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
74 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
75 sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
76
77
78 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
79 MoleculeStamp* molStamp;
80 int nMolWithSameStamp;
81 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
82 int nGroups = 0; //total cutoff groups defined in meta-data file
83 CutoffGroupStamp* cgStamp;
84 RigidBodyStamp* rbStamp;
85 int nRigidAtoms = 0;
86
87 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
88 molStamp = i->first;
89 nMolWithSameStamp = i->second;
90
91 addMoleculeStamp(molStamp, nMolWithSameStamp);
92
93 //calculate atoms in molecules
94 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
95
96
97 //calculate atoms in cutoff groups
98 int nAtomsInGroups = 0;
99 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
100
101 for (int j=0; j < nCutoffGroupsInStamp; j++) {
102 cgStamp = molStamp->getCutoffGroup(j);
103 nAtomsInGroups += cgStamp->getNMembers();
104 }
105
106 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
107 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
108
109 //calculate atoms in rigid bodies
110 int nAtomsInRigidBodies = 0;
111 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112
113 for (int j=0; j < nRigidBodiesInStamp; j++) {
114 rbStamp = molStamp->getRigidBody(j);
115 nAtomsInRigidBodies += rbStamp->getNMembers();
116 }
117
118 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
120
121 }
122
123 //every free atom (atom does not belong to cutoff groups) is a cutoff group
124 //therefore the total number of cutoff groups in the system is equal to
125 //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
126 //file plus the number of cutoff groups defined in meta-data file
127 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
128
129 //every free atom (atom does not belong to rigid bodies) is an integrable object
130 //therefore the total number of integrable objects in the system is equal to
131 //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
132 //file plus the number of rigid bodies defined in meta-data file
133 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
134
135 nGlobalMols_ = molStampIds_.size();
136
137 #ifdef IS_MPI
138 molToProcMap_.resize(nGlobalMols_);
139 #endif
140
141 selectMan_ = new SelectionManager(nGlobalAtoms_ + nGlobalRigidBodies_);
142 selectMan_->selectAll();
143 }
144
145 SimInfo::~SimInfo() {
146 //MemoryUtils::deleteVectorOfPointer(molecules_);
147
148 MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
149
150 delete sman_;
151 delete simParams_;
152 delete forceField_;
153 delete selectMan_;
154 }
155
156 int SimInfo::getNGlobalConstraints() {
157 int nGlobalConstraints;
158 #ifdef IS_MPI
159 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
160 MPI_COMM_WORLD);
161 #else
162 nGlobalConstraints = nConstraints_;
163 #endif
164 return nGlobalConstraints;
165 }
166
167 bool SimInfo::addMolecule(Molecule* mol) {
168 MoleculeIterator i;
169
170 i = molecules_.find(mol->getGlobalIndex());
171 if (i == molecules_.end() ) {
172
173 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
174
175 nAtoms_ += mol->getNAtoms();
176 nBonds_ += mol->getNBonds();
177 nBends_ += mol->getNBends();
178 nTorsions_ += mol->getNTorsions();
179 nRigidBodies_ += mol->getNRigidBodies();
180 nIntegrableObjects_ += mol->getNIntegrableObjects();
181 nCutoffGroups_ += mol->getNCutoffGroups();
182 nConstraints_ += mol->getNConstraintPairs();
183
184 addExcludePairs(mol);
185
186 return true;
187 } else {
188 return false;
189 }
190 }
191
192 bool SimInfo::removeMolecule(Molecule* mol) {
193 MoleculeIterator i;
194 i = molecules_.find(mol->getGlobalIndex());
195
196 if (i != molecules_.end() ) {
197
198 assert(mol == i->second);
199
200 nAtoms_ -= mol->getNAtoms();
201 nBonds_ -= mol->getNBonds();
202 nBends_ -= mol->getNBends();
203 nTorsions_ -= mol->getNTorsions();
204 nRigidBodies_ -= mol->getNRigidBodies();
205 nIntegrableObjects_ -= mol->getNIntegrableObjects();
206 nCutoffGroups_ -= mol->getNCutoffGroups();
207 nConstraints_ -= mol->getNConstraintPairs();
208
209 removeExcludePairs(mol);
210 molecules_.erase(mol->getGlobalIndex());
211
212 delete mol;
213
214 return true;
215 } else {
216 return false;
217 }
218
219
220 }
221
222
223 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
224 i = molecules_.begin();
225 return i == molecules_.end() ? NULL : i->second;
226 }
227
228 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
229 ++i;
230 return i == molecules_.end() ? NULL : i->second;
231 }
232
233
234 void SimInfo::calcNdf() {
235 int ndf_local;
236 MoleculeIterator i;
237 std::vector<StuntDouble*>::iterator j;
238 Molecule* mol;
239 StuntDouble* integrableObject;
240
241 ndf_local = 0;
242
243 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
244 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
245 integrableObject = mol->nextIntegrableObject(j)) {
246
247 ndf_local += 3;
248
249 if (integrableObject->isDirectional()) {
250 if (integrableObject->isLinear()) {
251 ndf_local += 2;
252 } else {
253 ndf_local += 3;
254 }
255 }
256
257 }//end for (integrableObject)
258 }// end for (mol)
259
260 // n_constraints is local, so subtract them on each processor
261 ndf_local -= nConstraints_;
262
263 #ifdef IS_MPI
264 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
265 #else
266 ndf_ = ndf_local;
267 #endif
268
269 // nZconstraints_ is global, as are the 3 COM translations for the
270 // entire system:
271 ndf_ = ndf_ - 3 - nZconstraint_;
272
273 }
274
275 void SimInfo::calcNdfRaw() {
276 int ndfRaw_local;
277
278 MoleculeIterator i;
279 std::vector<StuntDouble*>::iterator j;
280 Molecule* mol;
281 StuntDouble* integrableObject;
282
283 // Raw degrees of freedom that we have to set
284 ndfRaw_local = 0;
285
286 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
287 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
288 integrableObject = mol->nextIntegrableObject(j)) {
289
290 ndfRaw_local += 3;
291
292 if (integrableObject->isDirectional()) {
293 if (integrableObject->isLinear()) {
294 ndfRaw_local += 2;
295 } else {
296 ndfRaw_local += 3;
297 }
298 }
299
300 }
301 }
302
303 #ifdef IS_MPI
304 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
305 #else
306 ndfRaw_ = ndfRaw_local;
307 #endif
308 }
309
310 void SimInfo::calcNdfTrans() {
311 int ndfTrans_local;
312
313 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
314
315
316 #ifdef IS_MPI
317 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
318 #else
319 ndfTrans_ = ndfTrans_local;
320 #endif
321
322 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
323
324 }
325
326 void SimInfo::addExcludePairs(Molecule* mol) {
327 std::vector<Bond*>::iterator bondIter;
328 std::vector<Bend*>::iterator bendIter;
329 std::vector<Torsion*>::iterator torsionIter;
330 Bond* bond;
331 Bend* bend;
332 Torsion* torsion;
333 int a;
334 int b;
335 int c;
336 int d;
337
338 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
339 a = bond->getAtomA()->getGlobalIndex();
340 b = bond->getAtomB()->getGlobalIndex();
341 exclude_.addPair(a, b);
342 }
343
344 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
345 a = bend->getAtomA()->getGlobalIndex();
346 b = bend->getAtomB()->getGlobalIndex();
347 c = bend->getAtomC()->getGlobalIndex();
348
349 exclude_.addPair(a, b);
350 exclude_.addPair(a, c);
351 exclude_.addPair(b, c);
352 }
353
354 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
355 a = torsion->getAtomA()->getGlobalIndex();
356 b = torsion->getAtomB()->getGlobalIndex();
357 c = torsion->getAtomC()->getGlobalIndex();
358 d = torsion->getAtomD()->getGlobalIndex();
359
360 exclude_.addPair(a, b);
361 exclude_.addPair(a, c);
362 exclude_.addPair(a, d);
363 exclude_.addPair(b, c);
364 exclude_.addPair(b, d);
365 exclude_.addPair(c, d);
366 }
367
368
369 }
370
371 void SimInfo::removeExcludePairs(Molecule* mol) {
372 std::vector<Bond*>::iterator bondIter;
373 std::vector<Bend*>::iterator bendIter;
374 std::vector<Torsion*>::iterator torsionIter;
375 Bond* bond;
376 Bend* bend;
377 Torsion* torsion;
378 int a;
379 int b;
380 int c;
381 int d;
382
383 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
384 a = bond->getAtomA()->getGlobalIndex();
385 b = bond->getAtomB()->getGlobalIndex();
386 exclude_.removePair(a, b);
387 }
388
389 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
390 a = bend->getAtomA()->getGlobalIndex();
391 b = bend->getAtomB()->getGlobalIndex();
392 c = bend->getAtomC()->getGlobalIndex();
393
394 exclude_.removePair(a, b);
395 exclude_.removePair(a, c);
396 exclude_.removePair(b, c);
397 }
398
399 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
400 a = torsion->getAtomA()->getGlobalIndex();
401 b = torsion->getAtomB()->getGlobalIndex();
402 c = torsion->getAtomC()->getGlobalIndex();
403 d = torsion->getAtomD()->getGlobalIndex();
404
405 exclude_.removePair(a, b);
406 exclude_.removePair(a, c);
407 exclude_.removePair(a, d);
408 exclude_.removePair(b, c);
409 exclude_.removePair(b, d);
410 exclude_.removePair(c, d);
411 }
412
413 }
414
415
416 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
417 int curStampId;
418
419 //index from 0
420 curStampId = moleculeStamps_.size();
421
422 moleculeStamps_.push_back(molStamp);
423 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
424 }
425
426 void SimInfo::update() {
427
428 setupSimType();
429
430 #ifdef IS_MPI
431 setupFortranParallel();
432 #endif
433
434 setupFortranSim();
435
436 //setup fortran force field
437 /** @deprecate */
438 int isError = 0;
439 initFortranFF( &fInfo_.SIM_uses_RF , &isError );
440 if(isError){
441 sprintf( painCave.errMsg,
442 "ForceField error: There was an error initializing the forceField in fortran.\n" );
443 painCave.isFatal = 1;
444 simError();
445 }
446
447
448 setupCutoff();
449
450 calcNdf();
451 calcNdfRaw();
452 calcNdfTrans();
453
454 fortranInitialized_ = true;
455 }
456
457 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
458 SimInfo::MoleculeIterator mi;
459 Molecule* mol;
460 Molecule::AtomIterator ai;
461 Atom* atom;
462 std::set<AtomType*> atomTypes;
463
464 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
465
466 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
467 atomTypes.insert(atom->getAtomType());
468 }
469
470 }
471
472 return atomTypes;
473 }
474
475 void SimInfo::setupSimType() {
476 std::set<AtomType*>::iterator i;
477 std::set<AtomType*> atomTypes;
478 atomTypes = getUniqueAtomTypes();
479
480 int useLennardJones = 0;
481 int useElectrostatic = 0;
482 int useEAM = 0;
483 int useCharge = 0;
484 int useDirectional = 0;
485 int useDipole = 0;
486 int useGayBerne = 0;
487 int useSticky = 0;
488 int useShape = 0;
489 int useFLARB = 0; //it is not in AtomType yet
490 int useDirectionalAtom = 0;
491 int useElectrostatics = 0;
492 //usePBC and useRF are from simParams
493 int usePBC = simParams_->getPBC();
494 int useRF = simParams_->getUseRF();
495
496 //loop over all of the atom types
497 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
498 useLennardJones |= (*i)->isLennardJones();
499 useElectrostatic |= (*i)->isElectrostatic();
500 useEAM |= (*i)->isEAM();
501 useCharge |= (*i)->isCharge();
502 useDirectional |= (*i)->isDirectional();
503 useDipole |= (*i)->isDipole();
504 useGayBerne |= (*i)->isGayBerne();
505 useSticky |= (*i)->isSticky();
506 useShape |= (*i)->isShape();
507 }
508
509 if (useSticky || useDipole || useGayBerne || useShape) {
510 useDirectionalAtom = 1;
511 }
512
513 if (useCharge || useDipole) {
514 useElectrostatics = 1;
515 }
516
517 #ifdef IS_MPI
518 int temp;
519
520 temp = usePBC;
521 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
522
523 temp = useDirectionalAtom;
524 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
525
526 temp = useLennardJones;
527 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
528
529 temp = useElectrostatics;
530 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
531
532 temp = useCharge;
533 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
534
535 temp = useDipole;
536 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
537
538 temp = useSticky;
539 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
540
541 temp = useGayBerne;
542 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
543
544 temp = useEAM;
545 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
546
547 temp = useShape;
548 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
549
550 temp = useFLARB;
551 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
552
553 temp = useRF;
554 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
555
556 #endif
557
558 fInfo_.SIM_uses_PBC = usePBC;
559 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
560 fInfo_.SIM_uses_LennardJones = useLennardJones;
561 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
562 fInfo_.SIM_uses_Charges = useCharge;
563 fInfo_.SIM_uses_Dipoles = useDipole;
564 fInfo_.SIM_uses_Sticky = useSticky;
565 fInfo_.SIM_uses_GayBerne = useGayBerne;
566 fInfo_.SIM_uses_EAM = useEAM;
567 fInfo_.SIM_uses_Shapes = useShape;
568 fInfo_.SIM_uses_FLARB = useFLARB;
569 fInfo_.SIM_uses_RF = useRF;
570
571 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
572
573 if (simParams_->haveDielectric()) {
574 fInfo_.dielect = simParams_->getDielectric();
575 } else {
576 sprintf(painCave.errMsg,
577 "SimSetup Error: No Dielectric constant was set.\n"
578 "\tYou are trying to use Reaction Field without"
579 "\tsetting a dielectric constant!\n");
580 painCave.isFatal = 1;
581 simError();
582 }
583
584 } else {
585 fInfo_.dielect = 0.0;
586 }
587
588 }
589
590 void SimInfo::setupFortranSim() {
591 int isError;
592 int nExclude;
593 std::vector<int> fortranGlobalGroupMembership;
594
595 nExclude = exclude_.getSize();
596 isError = 0;
597
598 //globalGroupMembership_ is filled by SimCreator
599 for (int i = 0; i < nGlobalAtoms_; i++) {
600 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
601 }
602
603 //calculate mass ratio of cutoff group
604 std::vector<double> mfact;
605 SimInfo::MoleculeIterator mi;
606 Molecule* mol;
607 Molecule::CutoffGroupIterator ci;
608 CutoffGroup* cg;
609 Molecule::AtomIterator ai;
610 Atom* atom;
611 double totalMass;
612
613 //to avoid memory reallocation, reserve enough space for mfact
614 mfact.reserve(getNCutoffGroups());
615
616 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
617 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
618
619 totalMass = cg->getMass();
620 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
621 mfact.push_back(atom->getMass()/totalMass);
622 }
623
624 }
625 }
626
627 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
628 std::vector<int> identArray;
629
630 //to avoid memory reallocation, reserve enough space identArray
631 identArray.reserve(getNAtoms());
632
633 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
634 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
635 identArray.push_back(atom->getIdent());
636 }
637 }
638
639 //fill molMembershipArray
640 //molMembershipArray is filled by SimCreator
641 std::vector<int> molMembershipArray(nGlobalAtoms_);
642 for (int i = 0; i < nGlobalAtoms_; i++) {
643 molMembershipArray[i] = globalMolMembership_[i] + 1;
644 }
645
646 //setup fortran simulation
647 //gloalExcludes and molMembershipArray should go away (They are never used)
648 //why the hell fortran need to know molecule?
649 //OOPSE = Object-Obfuscated Parallel Simulation Engine
650 int nGlobalExcludes = 0;
651 int* globalExcludes = NULL;
652 int* excludeList = exclude_.getExcludeList();
653 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
654 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
655 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
656
657 if( isError ){
658
659 sprintf( painCave.errMsg,
660 "There was an error setting the simulation information in fortran.\n" );
661 painCave.isFatal = 1;
662 painCave.severity = OOPSE_ERROR;
663 simError();
664 }
665
666 #ifdef IS_MPI
667 sprintf( checkPointMsg,
668 "succesfully sent the simulation information to fortran.\n");
669 MPIcheckPoint();
670 #endif // is_mpi
671 }
672
673
674 #ifdef IS_MPI
675 void SimInfo::setupFortranParallel() {
676
677 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
678 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
679 std::vector<int> localToGlobalCutoffGroupIndex;
680 SimInfo::MoleculeIterator mi;
681 Molecule::AtomIterator ai;
682 Molecule::CutoffGroupIterator ci;
683 Molecule* mol;
684 Atom* atom;
685 CutoffGroup* cg;
686 mpiSimData parallelData;
687 int isError;
688
689 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
690
691 //local index(index in DataStorge) of atom is important
692 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
693 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
694 }
695
696 //local index of cutoff group is trivial, it only depends on the order of travesing
697 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
698 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
699 }
700
701 }
702
703 //fill up mpiSimData struct
704 parallelData.nMolGlobal = getNGlobalMolecules();
705 parallelData.nMolLocal = getNMolecules();
706 parallelData.nAtomsGlobal = getNGlobalAtoms();
707 parallelData.nAtomsLocal = getNAtoms();
708 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
709 parallelData.nGroupsLocal = getNCutoffGroups();
710 parallelData.myNode = worldRank;
711 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
712
713 //pass mpiSimData struct and index arrays to fortran
714 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
715 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
716 &localToGlobalCutoffGroupIndex[0], &isError);
717
718 if (isError) {
719 sprintf(painCave.errMsg,
720 "mpiRefresh errror: fortran didn't like something we gave it.\n");
721 painCave.isFatal = 1;
722 simError();
723 }
724
725 sprintf(checkPointMsg, " mpiRefresh successful.\n");
726 MPIcheckPoint();
727
728
729 }
730
731 #endif
732
733 double SimInfo::calcMaxCutoffRadius() {
734
735
736 std::set<AtomType*> atomTypes;
737 std::set<AtomType*>::iterator i;
738 std::vector<double> cutoffRadius;
739
740 //get the unique atom types
741 atomTypes = getUniqueAtomTypes();
742
743 //query the max cutoff radius among these atom types
744 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
745 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
746 }
747
748 double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
749 #ifdef IS_MPI
750 //pick the max cutoff radius among the processors
751 #endif
752
753 return maxCutoffRadius;
754 }
755
756 void SimInfo::setupCutoff() {
757 double rcut_; //cutoff radius
758 double rsw_; //switching radius
759
760 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
761
762 if (!simParams_->haveRcut()){
763 sprintf(painCave.errMsg,
764 "SimCreator Warning: No value was set for the cutoffRadius.\n"
765 "\tOOPSE will use a default value of 15.0 angstroms"
766 "\tfor the cutoffRadius.\n");
767 painCave.isFatal = 0;
768 simError();
769 rcut_ = 15.0;
770 } else{
771 rcut_ = simParams_->getRcut();
772 }
773
774 if (!simParams_->haveRsw()){
775 sprintf(painCave.errMsg,
776 "SimCreator Warning: No value was set for switchingRadius.\n"
777 "\tOOPSE will use a default value of\n"
778 "\t0.95 * cutoffRadius for the switchingRadius\n");
779 painCave.isFatal = 0;
780 simError();
781 rsw_ = 0.95 * rcut_;
782 } else{
783 rsw_ = simParams_->getRsw();
784 }
785
786 } else {
787 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
788 //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
789
790 if (simParams_->haveRcut()) {
791 rcut_ = simParams_->getRcut();
792 } else {
793 //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 rcut_ = calcMaxCutoffRadius();
795 }
796
797 if (simParams_->haveRsw()) {
798 rsw_ = simParams_->getRsw();
799 } else {
800 rsw_ = rcut_;
801 }
802
803 }
804
805 double rnblist = rcut_ + 1; // skin of neighbor list
806
807 //Pass these cutoff radius etc. to fortran. This function should be called once and only once
808 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
809 }
810
811 void SimInfo::addProperty(GenericData* genData) {
812 properties_.addProperty(genData);
813 }
814
815 void SimInfo::removeProperty(const std::string& propName) {
816 properties_.removeProperty(propName);
817 }
818
819 void SimInfo::clearProperties() {
820 properties_.clearProperties();
821 }
822
823 std::vector<std::string> SimInfo::getPropertyNames() {
824 return properties_.getPropertyNames();
825 }
826
827 std::vector<GenericData*> SimInfo::getProperties() {
828 return properties_.getProperties();
829 }
830
831 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
832 return properties_.getPropertyByName(propName);
833 }
834
835 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
836 sman_ = sman;
837
838 Molecule* mol;
839 RigidBody* rb;
840 Atom* atom;
841 SimInfo::MoleculeIterator mi;
842 Molecule::RigidBodyIterator rbIter;
843 Molecule::AtomIterator atomIter;;
844
845 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
846
847 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
848 atom->setSnapshotManager(sman_);
849 }
850
851 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
852 rb->setSnapshotManager(sman_);
853 }
854 }
855
856 }
857
858 Vector3d SimInfo::getComVel(){
859 SimInfo::MoleculeIterator i;
860 Molecule* mol;
861
862 Vector3d comVel(0.0);
863 double totalMass = 0.0;
864
865
866 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
867 double mass = mol->getMass();
868 totalMass += mass;
869 comVel += mass * mol->getComVel();
870 }
871
872 #ifdef IS_MPI
873 double tmpMass = totalMass;
874 Vector3d tmpComVel(comVel);
875 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
876 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
877 #endif
878
879 comVel /= totalMass;
880
881 return comVel;
882 }
883
884 Vector3d SimInfo::getCom(){
885 SimInfo::MoleculeIterator i;
886 Molecule* mol;
887
888 Vector3d com(0.0);
889 double totalMass = 0.0;
890
891 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
892 double mass = mol->getMass();
893 totalMass += mass;
894 com += mass * mol->getCom();
895 }
896
897 #ifdef IS_MPI
898 double tmpMass = totalMass;
899 Vector3d tmpCom(com);
900 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
901 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
902 #endif
903
904 com /= totalMass;
905
906 return com;
907
908 }
909
910 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
911
912 return o;
913 }
914
915 }//end namespace oopse
916