ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 2759
Committed: Wed May 17 21:51:42 2006 UTC (18 years, 4 months ago) by tim
File size: 44448 byte(s)
Log Message:
Adding single precision capabilities to c++ side

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "UseTheForce/fCutoffPolicy.h"
57 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 #include "UseTheForce/doForces_interface.h"
61 #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 #include "utils/MemoryUtils.hpp"
64 #include "utils/simError.h"
65 #include "selection/SelectionManager.hpp"
66 #include "io/ForceFieldOptions.hpp"
67 #include "UseTheForce/ForceField.hpp"
68
69 #ifdef IS_MPI
70 #include "UseTheForce/mpiComponentPlan.h"
71 #include "UseTheForce/DarkSide/simParallel_interface.h"
72 #endif
73
74 namespace oopse {
75 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 std::map<int, std::set<int> >::iterator i = container.find(index);
77 std::set<int> result;
78 if (i != container.end()) {
79 result = i->second;
80 }
81
82 return result;
83 }
84
85 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 forceField_(ff), simParams_(simParams),
87 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
91 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
92 sman_(NULL), fortranInitialized_(false) {
93
94 MoleculeStamp* molStamp;
95 int nMolWithSameStamp;
96 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 int nGroups = 0; //total cutoff groups defined in meta-data file
98 CutoffGroupStamp* cgStamp;
99 RigidBodyStamp* rbStamp;
100 int nRigidAtoms = 0;
101 std::vector<Component*> components = simParams->getComponents();
102
103 for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 molStamp = (*i)->getMoleculeStamp();
105 nMolWithSameStamp = (*i)->getNMol();
106
107 addMoleculeStamp(molStamp, nMolWithSameStamp);
108
109 //calculate atoms in molecules
110 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
111
112 //calculate atoms in cutoff groups
113 int nAtomsInGroups = 0;
114 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115
116 for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 cgStamp = molStamp->getCutoffGroupStamp(j);
118 nAtomsInGroups += cgStamp->getNMembers();
119 }
120
121 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122
123 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
124
125 //calculate atoms in rigid bodies
126 int nAtomsInRigidBodies = 0;
127 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128
129 for (int j=0; j < nRigidBodiesInStamp; j++) {
130 rbStamp = molStamp->getRigidBodyStamp(j);
131 nAtomsInRigidBodies += rbStamp->getNMembers();
132 }
133
134 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
136
137 }
138
139 //every free atom (atom does not belong to cutoff groups) is a cutoff
140 //group therefore the total number of cutoff groups in the system is
141 //equal to the total number of atoms minus number of atoms belong to
142 //cutoff group defined in meta-data file plus the number of cutoff
143 //groups defined in meta-data file
144 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145
146 //every free atom (atom does not belong to rigid bodies) is an
147 //integrable object therefore the total number of integrable objects
148 //in the system is equal to the total number of atoms minus number of
149 //atoms belong to rigid body defined in meta-data file plus the number
150 //of rigid bodies defined in meta-data file
151 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
152 + nGlobalRigidBodies_;
153
154 nGlobalMols_ = molStampIds_.size();
155
156 #ifdef IS_MPI
157 molToProcMap_.resize(nGlobalMols_);
158 #endif
159
160 }
161
162 SimInfo::~SimInfo() {
163 std::map<int, Molecule*>::iterator i;
164 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 delete i->second;
166 }
167 molecules_.clear();
168
169 delete sman_;
170 delete simParams_;
171 delete forceField_;
172 }
173
174 int SimInfo::getNGlobalConstraints() {
175 int nGlobalConstraints;
176 #ifdef IS_MPI
177 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178 MPI_COMM_WORLD);
179 #else
180 nGlobalConstraints = nConstraints_;
181 #endif
182 return nGlobalConstraints;
183 }
184
185 bool SimInfo::addMolecule(Molecule* mol) {
186 MoleculeIterator i;
187
188 i = molecules_.find(mol->getGlobalIndex());
189 if (i == molecules_.end() ) {
190
191 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192
193 nAtoms_ += mol->getNAtoms();
194 nBonds_ += mol->getNBonds();
195 nBends_ += mol->getNBends();
196 nTorsions_ += mol->getNTorsions();
197 nRigidBodies_ += mol->getNRigidBodies();
198 nIntegrableObjects_ += mol->getNIntegrableObjects();
199 nCutoffGroups_ += mol->getNCutoffGroups();
200 nConstraints_ += mol->getNConstraintPairs();
201
202 addExcludePairs(mol);
203
204 return true;
205 } else {
206 return false;
207 }
208 }
209
210 bool SimInfo::removeMolecule(Molecule* mol) {
211 MoleculeIterator i;
212 i = molecules_.find(mol->getGlobalIndex());
213
214 if (i != molecules_.end() ) {
215
216 assert(mol == i->second);
217
218 nAtoms_ -= mol->getNAtoms();
219 nBonds_ -= mol->getNBonds();
220 nBends_ -= mol->getNBends();
221 nTorsions_ -= mol->getNTorsions();
222 nRigidBodies_ -= mol->getNRigidBodies();
223 nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 nCutoffGroups_ -= mol->getNCutoffGroups();
225 nConstraints_ -= mol->getNConstraintPairs();
226
227 removeExcludePairs(mol);
228 molecules_.erase(mol->getGlobalIndex());
229
230 delete mol;
231
232 return true;
233 } else {
234 return false;
235 }
236
237
238 }
239
240
241 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242 i = molecules_.begin();
243 return i == molecules_.end() ? NULL : i->second;
244 }
245
246 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247 ++i;
248 return i == molecules_.end() ? NULL : i->second;
249 }
250
251
252 void SimInfo::calcNdf() {
253 int ndf_local;
254 MoleculeIterator i;
255 std::vector<StuntDouble*>::iterator j;
256 Molecule* mol;
257 StuntDouble* integrableObject;
258
259 ndf_local = 0;
260
261 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 integrableObject = mol->nextIntegrableObject(j)) {
264
265 ndf_local += 3;
266
267 if (integrableObject->isDirectional()) {
268 if (integrableObject->isLinear()) {
269 ndf_local += 2;
270 } else {
271 ndf_local += 3;
272 }
273 }
274
275 }
276 }
277
278 // n_constraints is local, so subtract them on each processor
279 ndf_local -= nConstraints_;
280
281 #ifdef IS_MPI
282 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
283 #else
284 ndf_ = ndf_local;
285 #endif
286
287 // nZconstraints_ is global, as are the 3 COM translations for the
288 // entire system:
289 ndf_ = ndf_ - 3 - nZconstraint_;
290
291 }
292
293 int SimInfo::getFdf() {
294 #ifdef IS_MPI
295 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
296 #else
297 fdf_ = fdf_local;
298 #endif
299 return fdf_;
300 }
301
302 void SimInfo::calcNdfRaw() {
303 int ndfRaw_local;
304
305 MoleculeIterator i;
306 std::vector<StuntDouble*>::iterator j;
307 Molecule* mol;
308 StuntDouble* integrableObject;
309
310 // Raw degrees of freedom that we have to set
311 ndfRaw_local = 0;
312
313 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315 integrableObject = mol->nextIntegrableObject(j)) {
316
317 ndfRaw_local += 3;
318
319 if (integrableObject->isDirectional()) {
320 if (integrableObject->isLinear()) {
321 ndfRaw_local += 2;
322 } else {
323 ndfRaw_local += 3;
324 }
325 }
326
327 }
328 }
329
330 #ifdef IS_MPI
331 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
332 #else
333 ndfRaw_ = ndfRaw_local;
334 #endif
335 }
336
337 void SimInfo::calcNdfTrans() {
338 int ndfTrans_local;
339
340 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
341
342
343 #ifdef IS_MPI
344 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
345 #else
346 ndfTrans_ = ndfTrans_local;
347 #endif
348
349 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
350
351 }
352
353 void SimInfo::addExcludePairs(Molecule* mol) {
354 std::vector<Bond*>::iterator bondIter;
355 std::vector<Bend*>::iterator bendIter;
356 std::vector<Torsion*>::iterator torsionIter;
357 Bond* bond;
358 Bend* bend;
359 Torsion* torsion;
360 int a;
361 int b;
362 int c;
363 int d;
364
365 std::map<int, std::set<int> > atomGroups;
366
367 Molecule::RigidBodyIterator rbIter;
368 RigidBody* rb;
369 Molecule::IntegrableObjectIterator ii;
370 StuntDouble* integrableObject;
371
372 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
373 integrableObject = mol->nextIntegrableObject(ii)) {
374
375 if (integrableObject->isRigidBody()) {
376 rb = static_cast<RigidBody*>(integrableObject);
377 std::vector<Atom*> atoms = rb->getAtoms();
378 std::set<int> rigidAtoms;
379 for (int i = 0; i < atoms.size(); ++i) {
380 rigidAtoms.insert(atoms[i]->getGlobalIndex());
381 }
382 for (int i = 0; i < atoms.size(); ++i) {
383 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384 }
385 } else {
386 std::set<int> oneAtomSet;
387 oneAtomSet.insert(integrableObject->getGlobalIndex());
388 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
389 }
390 }
391
392
393
394 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
395 a = bond->getAtomA()->getGlobalIndex();
396 b = bond->getAtomB()->getGlobalIndex();
397 exclude_.addPair(a, b);
398 }
399
400 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
401 a = bend->getAtomA()->getGlobalIndex();
402 b = bend->getAtomB()->getGlobalIndex();
403 c = bend->getAtomC()->getGlobalIndex();
404 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407
408 exclude_.addPairs(rigidSetA, rigidSetB);
409 exclude_.addPairs(rigidSetA, rigidSetC);
410 exclude_.addPairs(rigidSetB, rigidSetC);
411
412 //exclude_.addPair(a, b);
413 //exclude_.addPair(a, c);
414 //exclude_.addPair(b, c);
415 }
416
417 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
418 a = torsion->getAtomA()->getGlobalIndex();
419 b = torsion->getAtomB()->getGlobalIndex();
420 c = torsion->getAtomC()->getGlobalIndex();
421 d = torsion->getAtomD()->getGlobalIndex();
422 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
426
427 exclude_.addPairs(rigidSetA, rigidSetB);
428 exclude_.addPairs(rigidSetA, rigidSetC);
429 exclude_.addPairs(rigidSetA, rigidSetD);
430 exclude_.addPairs(rigidSetB, rigidSetC);
431 exclude_.addPairs(rigidSetB, rigidSetD);
432 exclude_.addPairs(rigidSetC, rigidSetD);
433
434 /*
435 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
436 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
437 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
438 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
439 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
440 exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
441
442
443 exclude_.addPair(a, b);
444 exclude_.addPair(a, c);
445 exclude_.addPair(a, d);
446 exclude_.addPair(b, c);
447 exclude_.addPair(b, d);
448 exclude_.addPair(c, d);
449 */
450 }
451
452 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 std::vector<Atom*> atoms = rb->getAtoms();
454 for (int i = 0; i < atoms.size() -1 ; ++i) {
455 for (int j = i + 1; j < atoms.size(); ++j) {
456 a = atoms[i]->getGlobalIndex();
457 b = atoms[j]->getGlobalIndex();
458 exclude_.addPair(a, b);
459 }
460 }
461 }
462
463 }
464
465 void SimInfo::removeExcludePairs(Molecule* mol) {
466 std::vector<Bond*>::iterator bondIter;
467 std::vector<Bend*>::iterator bendIter;
468 std::vector<Torsion*>::iterator torsionIter;
469 Bond* bond;
470 Bend* bend;
471 Torsion* torsion;
472 int a;
473 int b;
474 int c;
475 int d;
476
477 std::map<int, std::set<int> > atomGroups;
478
479 Molecule::RigidBodyIterator rbIter;
480 RigidBody* rb;
481 Molecule::IntegrableObjectIterator ii;
482 StuntDouble* integrableObject;
483
484 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
485 integrableObject = mol->nextIntegrableObject(ii)) {
486
487 if (integrableObject->isRigidBody()) {
488 rb = static_cast<RigidBody*>(integrableObject);
489 std::vector<Atom*> atoms = rb->getAtoms();
490 std::set<int> rigidAtoms;
491 for (int i = 0; i < atoms.size(); ++i) {
492 rigidAtoms.insert(atoms[i]->getGlobalIndex());
493 }
494 for (int i = 0; i < atoms.size(); ++i) {
495 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
496 }
497 } else {
498 std::set<int> oneAtomSet;
499 oneAtomSet.insert(integrableObject->getGlobalIndex());
500 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
501 }
502 }
503
504
505 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
506 a = bond->getAtomA()->getGlobalIndex();
507 b = bond->getAtomB()->getGlobalIndex();
508 exclude_.removePair(a, b);
509 }
510
511 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
512 a = bend->getAtomA()->getGlobalIndex();
513 b = bend->getAtomB()->getGlobalIndex();
514 c = bend->getAtomC()->getGlobalIndex();
515
516 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519
520 exclude_.removePairs(rigidSetA, rigidSetB);
521 exclude_.removePairs(rigidSetA, rigidSetC);
522 exclude_.removePairs(rigidSetB, rigidSetC);
523
524 //exclude_.removePair(a, b);
525 //exclude_.removePair(a, c);
526 //exclude_.removePair(b, c);
527 }
528
529 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
530 a = torsion->getAtomA()->getGlobalIndex();
531 b = torsion->getAtomB()->getGlobalIndex();
532 c = torsion->getAtomC()->getGlobalIndex();
533 d = torsion->getAtomD()->getGlobalIndex();
534
535 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
536 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
537 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
538 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
539
540 exclude_.removePairs(rigidSetA, rigidSetB);
541 exclude_.removePairs(rigidSetA, rigidSetC);
542 exclude_.removePairs(rigidSetA, rigidSetD);
543 exclude_.removePairs(rigidSetB, rigidSetC);
544 exclude_.removePairs(rigidSetB, rigidSetD);
545 exclude_.removePairs(rigidSetC, rigidSetD);
546
547 /*
548 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
554
555
556 exclude_.removePair(a, b);
557 exclude_.removePair(a, c);
558 exclude_.removePair(a, d);
559 exclude_.removePair(b, c);
560 exclude_.removePair(b, d);
561 exclude_.removePair(c, d);
562 */
563 }
564
565 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
566 std::vector<Atom*> atoms = rb->getAtoms();
567 for (int i = 0; i < atoms.size() -1 ; ++i) {
568 for (int j = i + 1; j < atoms.size(); ++j) {
569 a = atoms[i]->getGlobalIndex();
570 b = atoms[j]->getGlobalIndex();
571 exclude_.removePair(a, b);
572 }
573 }
574 }
575
576 }
577
578
579 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
580 int curStampId;
581
582 //index from 0
583 curStampId = moleculeStamps_.size();
584
585 moleculeStamps_.push_back(molStamp);
586 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
587 }
588
589 void SimInfo::update() {
590
591 setupSimType();
592
593 #ifdef IS_MPI
594 setupFortranParallel();
595 #endif
596
597 setupFortranSim();
598
599 //setup fortran force field
600 /** @deprecate */
601 int isError = 0;
602
603 setupElectrostaticSummationMethod( isError );
604 setupSwitchingFunction();
605
606 if(isError){
607 sprintf( painCave.errMsg,
608 "ForceField error: There was an error initializing the forceField in fortran.\n" );
609 painCave.isFatal = 1;
610 simError();
611 }
612
613
614 setupCutoff();
615
616 calcNdf();
617 calcNdfRaw();
618 calcNdfTrans();
619
620 fortranInitialized_ = true;
621 }
622
623 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
624 SimInfo::MoleculeIterator mi;
625 Molecule* mol;
626 Molecule::AtomIterator ai;
627 Atom* atom;
628 std::set<AtomType*> atomTypes;
629
630 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
631
632 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
633 atomTypes.insert(atom->getAtomType());
634 }
635
636 }
637
638 return atomTypes;
639 }
640
641 void SimInfo::setupSimType() {
642 std::set<AtomType*>::iterator i;
643 std::set<AtomType*> atomTypes;
644 atomTypes = getUniqueAtomTypes();
645
646 int useLennardJones = 0;
647 int useElectrostatic = 0;
648 int useEAM = 0;
649 int useSC = 0;
650 int useCharge = 0;
651 int useDirectional = 0;
652 int useDipole = 0;
653 int useGayBerne = 0;
654 int useSticky = 0;
655 int useStickyPower = 0;
656 int useShape = 0;
657 int useFLARB = 0; //it is not in AtomType yet
658 int useDirectionalAtom = 0;
659 int useElectrostatics = 0;
660 //usePBC and useRF are from simParams
661 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
662 int useRF;
663 int useSF;
664 std::string myMethod;
665
666 // set the useRF logical
667 useRF = 0;
668 useSF = 0;
669
670
671 if (simParams_->haveElectrostaticSummationMethod()) {
672 std::string myMethod = simParams_->getElectrostaticSummationMethod();
673 toUpper(myMethod);
674 if (myMethod == "REACTION_FIELD") {
675 useRF=1;
676 } else {
677 if (myMethod == "SHIFTED_FORCE") {
678 useSF = 1;
679 }
680 }
681 }
682
683 //loop over all of the atom types
684 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
685 useLennardJones |= (*i)->isLennardJones();
686 useElectrostatic |= (*i)->isElectrostatic();
687 useEAM |= (*i)->isEAM();
688 useSC |= (*i)->isSC();
689 useCharge |= (*i)->isCharge();
690 useDirectional |= (*i)->isDirectional();
691 useDipole |= (*i)->isDipole();
692 useGayBerne |= (*i)->isGayBerne();
693 useSticky |= (*i)->isSticky();
694 useStickyPower |= (*i)->isStickyPower();
695 useShape |= (*i)->isShape();
696 }
697
698 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
699 useDirectionalAtom = 1;
700 }
701
702 if (useCharge || useDipole) {
703 useElectrostatics = 1;
704 }
705
706 #ifdef IS_MPI
707 int temp;
708
709 temp = usePBC;
710 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
711
712 temp = useDirectionalAtom;
713 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
714
715 temp = useLennardJones;
716 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
717
718 temp = useElectrostatics;
719 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
720
721 temp = useCharge;
722 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
723
724 temp = useDipole;
725 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
726
727 temp = useSticky;
728 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
729
730 temp = useStickyPower;
731 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
732
733 temp = useGayBerne;
734 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
735
736 temp = useEAM;
737 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
738
739 temp = useSC;
740 MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
741
742 temp = useShape;
743 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
744
745 temp = useFLARB;
746 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
747
748 temp = useRF;
749 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
750
751 temp = useSF;
752 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
753
754 #endif
755
756 fInfo_.SIM_uses_PBC = usePBC;
757 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
758 fInfo_.SIM_uses_LennardJones = useLennardJones;
759 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
760 fInfo_.SIM_uses_Charges = useCharge;
761 fInfo_.SIM_uses_Dipoles = useDipole;
762 fInfo_.SIM_uses_Sticky = useSticky;
763 fInfo_.SIM_uses_StickyPower = useStickyPower;
764 fInfo_.SIM_uses_GayBerne = useGayBerne;
765 fInfo_.SIM_uses_EAM = useEAM;
766 fInfo_.SIM_uses_SC = useSC;
767 fInfo_.SIM_uses_Shapes = useShape;
768 fInfo_.SIM_uses_FLARB = useFLARB;
769 fInfo_.SIM_uses_RF = useRF;
770 fInfo_.SIM_uses_SF = useSF;
771
772 if( myMethod == "REACTION_FIELD") {
773
774 if (simParams_->haveDielectric()) {
775 fInfo_.dielect = simParams_->getDielectric();
776 } else {
777 sprintf(painCave.errMsg,
778 "SimSetup Error: No Dielectric constant was set.\n"
779 "\tYou are trying to use Reaction Field without"
780 "\tsetting a dielectric constant!\n");
781 painCave.isFatal = 1;
782 simError();
783 }
784 }
785
786 }
787
788 void SimInfo::setupFortranSim() {
789 int isError;
790 int nExclude;
791 std::vector<int> fortranGlobalGroupMembership;
792
793 nExclude = exclude_.getSize();
794 isError = 0;
795
796 //globalGroupMembership_ is filled by SimCreator
797 for (int i = 0; i < nGlobalAtoms_; i++) {
798 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
799 }
800
801 //calculate mass ratio of cutoff group
802 std::vector<RealType> mfact;
803 SimInfo::MoleculeIterator mi;
804 Molecule* mol;
805 Molecule::CutoffGroupIterator ci;
806 CutoffGroup* cg;
807 Molecule::AtomIterator ai;
808 Atom* atom;
809 RealType totalMass;
810
811 //to avoid memory reallocation, reserve enough space for mfact
812 mfact.reserve(getNCutoffGroups());
813
814 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
815 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
816
817 totalMass = cg->getMass();
818 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
819 // Check for massless groups - set mfact to 1 if true
820 if (totalMass != 0)
821 mfact.push_back(atom->getMass()/totalMass);
822 else
823 mfact.push_back( 1.0 );
824 }
825
826 }
827 }
828
829 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
830 std::vector<int> identArray;
831
832 //to avoid memory reallocation, reserve enough space identArray
833 identArray.reserve(getNAtoms());
834
835 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
836 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
837 identArray.push_back(atom->getIdent());
838 }
839 }
840
841 //fill molMembershipArray
842 //molMembershipArray is filled by SimCreator
843 std::vector<int> molMembershipArray(nGlobalAtoms_);
844 for (int i = 0; i < nGlobalAtoms_; i++) {
845 molMembershipArray[i] = globalMolMembership_[i] + 1;
846 }
847
848 //setup fortran simulation
849 int nGlobalExcludes = 0;
850 int* globalExcludes = NULL;
851 int* excludeList = exclude_.getExcludeList();
852 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
853 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
854 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
855
856 if( isError ){
857
858 sprintf( painCave.errMsg,
859 "There was an error setting the simulation information in fortran.\n" );
860 painCave.isFatal = 1;
861 painCave.severity = OOPSE_ERROR;
862 simError();
863 }
864
865 #ifdef IS_MPI
866 sprintf( checkPointMsg,
867 "succesfully sent the simulation information to fortran.\n");
868 MPIcheckPoint();
869 #endif // is_mpi
870 }
871
872
873 #ifdef IS_MPI
874 void SimInfo::setupFortranParallel() {
875
876 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
877 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
878 std::vector<int> localToGlobalCutoffGroupIndex;
879 SimInfo::MoleculeIterator mi;
880 Molecule::AtomIterator ai;
881 Molecule::CutoffGroupIterator ci;
882 Molecule* mol;
883 Atom* atom;
884 CutoffGroup* cg;
885 mpiSimData parallelData;
886 int isError;
887
888 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
889
890 //local index(index in DataStorge) of atom is important
891 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
892 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
893 }
894
895 //local index of cutoff group is trivial, it only depends on the order of travesing
896 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
898 }
899
900 }
901
902 //fill up mpiSimData struct
903 parallelData.nMolGlobal = getNGlobalMolecules();
904 parallelData.nMolLocal = getNMolecules();
905 parallelData.nAtomsGlobal = getNGlobalAtoms();
906 parallelData.nAtomsLocal = getNAtoms();
907 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
908 parallelData.nGroupsLocal = getNCutoffGroups();
909 parallelData.myNode = worldRank;
910 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
911
912 //pass mpiSimData struct and index arrays to fortran
913 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
914 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
915 &localToGlobalCutoffGroupIndex[0], &isError);
916
917 if (isError) {
918 sprintf(painCave.errMsg,
919 "mpiRefresh errror: fortran didn't like something we gave it.\n");
920 painCave.isFatal = 1;
921 simError();
922 }
923
924 sprintf(checkPointMsg, " mpiRefresh successful.\n");
925 MPIcheckPoint();
926
927
928 }
929
930 #endif
931
932 void SimInfo::setupCutoff() {
933
934 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
935
936 // Check the cutoff policy
937 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
938
939 std::string myPolicy;
940 if (forceFieldOptions_.haveCutoffPolicy()){
941 myPolicy = forceFieldOptions_.getCutoffPolicy();
942 }else if (simParams_->haveCutoffPolicy()) {
943 myPolicy = simParams_->getCutoffPolicy();
944 }
945
946 if (!myPolicy.empty()){
947 toUpper(myPolicy);
948 if (myPolicy == "MIX") {
949 cp = MIX_CUTOFF_POLICY;
950 } else {
951 if (myPolicy == "MAX") {
952 cp = MAX_CUTOFF_POLICY;
953 } else {
954 if (myPolicy == "TRADITIONAL") {
955 cp = TRADITIONAL_CUTOFF_POLICY;
956 } else {
957 // throw error
958 sprintf( painCave.errMsg,
959 "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
960 painCave.isFatal = 1;
961 simError();
962 }
963 }
964 }
965 }
966 notifyFortranCutoffPolicy(&cp);
967
968 // Check the Skin Thickness for neighborlists
969 RealType skin;
970 if (simParams_->haveSkinThickness()) {
971 skin = simParams_->getSkinThickness();
972 notifyFortranSkinThickness(&skin);
973 }
974
975 // Check if the cutoff was set explicitly:
976 if (simParams_->haveCutoffRadius()) {
977 rcut_ = simParams_->getCutoffRadius();
978 if (simParams_->haveSwitchingRadius()) {
979 rsw_ = simParams_->getSwitchingRadius();
980 } else {
981 if (fInfo_.SIM_uses_Charges |
982 fInfo_.SIM_uses_Dipoles |
983 fInfo_.SIM_uses_RF) {
984
985 rsw_ = 0.85 * rcut_;
986 sprintf(painCave.errMsg,
987 "SimCreator Warning: No value was set for the switchingRadius.\n"
988 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
989 "\tswitchingRadius = %f. for this simulation\n", rsw_);
990 painCave.isFatal = 0;
991 simError();
992 } else {
993 rsw_ = rcut_;
994 sprintf(painCave.errMsg,
995 "SimCreator Warning: No value was set for the switchingRadius.\n"
996 "\tOOPSE will use the same value as the cutoffRadius.\n"
997 "\tswitchingRadius = %f. for this simulation\n", rsw_);
998 painCave.isFatal = 0;
999 simError();
1000 }
1001 }
1002
1003 notifyFortranCutoffs(&rcut_, &rsw_);
1004
1005 } else {
1006
1007 // For electrostatic atoms, we'll assume a large safe value:
1008 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1009 sprintf(painCave.errMsg,
1010 "SimCreator Warning: No value was set for the cutoffRadius.\n"
1011 "\tOOPSE will use a default value of 15.0 angstroms"
1012 "\tfor the cutoffRadius.\n");
1013 painCave.isFatal = 0;
1014 simError();
1015 rcut_ = 15.0;
1016
1017 if (simParams_->haveElectrostaticSummationMethod()) {
1018 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1019 toUpper(myMethod);
1020 if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1021 if (simParams_->haveSwitchingRadius()){
1022 sprintf(painCave.errMsg,
1023 "SimInfo Warning: A value was set for the switchingRadius\n"
1024 "\teven though the electrostaticSummationMethod was\n"
1025 "\tset to %s\n", myMethod.c_str());
1026 painCave.isFatal = 1;
1027 simError();
1028 }
1029 }
1030 }
1031
1032 if (simParams_->haveSwitchingRadius()){
1033 rsw_ = simParams_->getSwitchingRadius();
1034 } else {
1035 sprintf(painCave.errMsg,
1036 "SimCreator Warning: No value was set for switchingRadius.\n"
1037 "\tOOPSE will use a default value of\n"
1038 "\t0.85 * cutoffRadius for the switchingRadius\n");
1039 painCave.isFatal = 0;
1040 simError();
1041 rsw_ = 0.85 * rcut_;
1042 }
1043 notifyFortranCutoffs(&rcut_, &rsw_);
1044 } else {
1045 // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1046 // We'll punt and let fortran figure out the cutoffs later.
1047
1048 notifyFortranYouAreOnYourOwn();
1049
1050 }
1051 }
1052 }
1053
1054 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1055
1056 int errorOut;
1057 int esm = NONE;
1058 int sm = UNDAMPED;
1059 RealType alphaVal;
1060 RealType dielectric;
1061
1062 errorOut = isError;
1063 alphaVal = simParams_->getDampingAlpha();
1064 dielectric = simParams_->getDielectric();
1065
1066 if (simParams_->haveElectrostaticSummationMethod()) {
1067 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1068 toUpper(myMethod);
1069 if (myMethod == "NONE") {
1070 esm = NONE;
1071 } else {
1072 if (myMethod == "SWITCHING_FUNCTION") {
1073 esm = SWITCHING_FUNCTION;
1074 } else {
1075 if (myMethod == "SHIFTED_POTENTIAL") {
1076 esm = SHIFTED_POTENTIAL;
1077 } else {
1078 if (myMethod == "SHIFTED_FORCE") {
1079 esm = SHIFTED_FORCE;
1080 } else {
1081 if (myMethod == "REACTION_FIELD") {
1082 esm = REACTION_FIELD;
1083 } else {
1084 // throw error
1085 sprintf( painCave.errMsg,
1086 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1087 "\t(Input file specified %s .)\n"
1088 "\telectrostaticSummationMethod must be one of: \"none\",\n"
1089 "\t\"shifted_potential\", \"shifted_force\", or \n"
1090 "\t\"reaction_field\".\n", myMethod.c_str() );
1091 painCave.isFatal = 1;
1092 simError();
1093 }
1094 }
1095 }
1096 }
1097 }
1098 }
1099
1100 if (simParams_->haveElectrostaticScreeningMethod()) {
1101 std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1102 toUpper(myScreen);
1103 if (myScreen == "UNDAMPED") {
1104 sm = UNDAMPED;
1105 } else {
1106 if (myScreen == "DAMPED") {
1107 sm = DAMPED;
1108 if (!simParams_->haveDampingAlpha()) {
1109 //throw error
1110 sprintf( painCave.errMsg,
1111 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1112 "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1113 painCave.isFatal = 0;
1114 simError();
1115 }
1116 } else {
1117 // throw error
1118 sprintf( painCave.errMsg,
1119 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1120 "\t(Input file specified %s .)\n"
1121 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1122 "or \"damped\".\n", myScreen.c_str() );
1123 painCave.isFatal = 1;
1124 simError();
1125 }
1126 }
1127 }
1128
1129 // let's pass some summation method variables to fortran
1130 setElectrostaticSummationMethod( &esm );
1131 setFortranElectrostaticMethod( &esm );
1132 setScreeningMethod( &sm );
1133 setDampingAlpha( &alphaVal );
1134 setReactionFieldDielectric( &dielectric );
1135 initFortranFF( &errorOut );
1136 }
1137
1138 void SimInfo::setupSwitchingFunction() {
1139 int ft = CUBIC;
1140
1141 if (simParams_->haveSwitchingFunctionType()) {
1142 std::string funcType = simParams_->getSwitchingFunctionType();
1143 toUpper(funcType);
1144 if (funcType == "CUBIC") {
1145 ft = CUBIC;
1146 } else {
1147 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1148 ft = FIFTH_ORDER_POLY;
1149 } else {
1150 // throw error
1151 sprintf( painCave.errMsg,
1152 "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1153 painCave.isFatal = 1;
1154 simError();
1155 }
1156 }
1157 }
1158
1159 // send switching function notification to switcheroo
1160 setFunctionType(&ft);
1161
1162 }
1163
1164 void SimInfo::addProperty(GenericData* genData) {
1165 properties_.addProperty(genData);
1166 }
1167
1168 void SimInfo::removeProperty(const std::string& propName) {
1169 properties_.removeProperty(propName);
1170 }
1171
1172 void SimInfo::clearProperties() {
1173 properties_.clearProperties();
1174 }
1175
1176 std::vector<std::string> SimInfo::getPropertyNames() {
1177 return properties_.getPropertyNames();
1178 }
1179
1180 std::vector<GenericData*> SimInfo::getProperties() {
1181 return properties_.getProperties();
1182 }
1183
1184 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1185 return properties_.getPropertyByName(propName);
1186 }
1187
1188 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1189 if (sman_ == sman) {
1190 return;
1191 }
1192 delete sman_;
1193 sman_ = sman;
1194
1195 Molecule* mol;
1196 RigidBody* rb;
1197 Atom* atom;
1198 SimInfo::MoleculeIterator mi;
1199 Molecule::RigidBodyIterator rbIter;
1200 Molecule::AtomIterator atomIter;;
1201
1202 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1203
1204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1205 atom->setSnapshotManager(sman_);
1206 }
1207
1208 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1209 rb->setSnapshotManager(sman_);
1210 }
1211 }
1212
1213 }
1214
1215 Vector3d SimInfo::getComVel(){
1216 SimInfo::MoleculeIterator i;
1217 Molecule* mol;
1218
1219 Vector3d comVel(0.0);
1220 RealType totalMass = 0.0;
1221
1222
1223 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1224 RealType mass = mol->getMass();
1225 totalMass += mass;
1226 comVel += mass * mol->getComVel();
1227 }
1228
1229 #ifdef IS_MPI
1230 RealType tmpMass = totalMass;
1231 Vector3d tmpComVel(comVel);
1232 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1233 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1234 #endif
1235
1236 comVel /= totalMass;
1237
1238 return comVel;
1239 }
1240
1241 Vector3d SimInfo::getCom(){
1242 SimInfo::MoleculeIterator i;
1243 Molecule* mol;
1244
1245 Vector3d com(0.0);
1246 RealType totalMass = 0.0;
1247
1248 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1249 RealType mass = mol->getMass();
1250 totalMass += mass;
1251 com += mass * mol->getCom();
1252 }
1253
1254 #ifdef IS_MPI
1255 RealType tmpMass = totalMass;
1256 Vector3d tmpCom(com);
1257 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1258 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1259 #endif
1260
1261 com /= totalMass;
1262
1263 return com;
1264
1265 }
1266
1267 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1268
1269 return o;
1270 }
1271
1272
1273 /*
1274 Returns center of mass and center of mass velocity in one function call.
1275 */
1276
1277 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1278 SimInfo::MoleculeIterator i;
1279 Molecule* mol;
1280
1281
1282 RealType totalMass = 0.0;
1283
1284
1285 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1286 RealType mass = mol->getMass();
1287 totalMass += mass;
1288 com += mass * mol->getCom();
1289 comVel += mass * mol->getComVel();
1290 }
1291
1292 #ifdef IS_MPI
1293 RealType tmpMass = totalMass;
1294 Vector3d tmpCom(com);
1295 Vector3d tmpComVel(comVel);
1296 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1297 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1298 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1299 #endif
1300
1301 com /= totalMass;
1302 comVel /= totalMass;
1303 }
1304
1305 /*
1306 Return intertia tensor for entire system and angular momentum Vector.
1307
1308
1309 [ Ixx -Ixy -Ixz ]
1310 J =| -Iyx Iyy -Iyz |
1311 [ -Izx -Iyz Izz ]
1312 */
1313
1314 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1315
1316
1317 RealType xx = 0.0;
1318 RealType yy = 0.0;
1319 RealType zz = 0.0;
1320 RealType xy = 0.0;
1321 RealType xz = 0.0;
1322 RealType yz = 0.0;
1323 Vector3d com(0.0);
1324 Vector3d comVel(0.0);
1325
1326 getComAll(com, comVel);
1327
1328 SimInfo::MoleculeIterator i;
1329 Molecule* mol;
1330
1331 Vector3d thisq(0.0);
1332 Vector3d thisv(0.0);
1333
1334 RealType thisMass = 0.0;
1335
1336
1337
1338
1339 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1340
1341 thisq = mol->getCom()-com;
1342 thisv = mol->getComVel()-comVel;
1343 thisMass = mol->getMass();
1344 // Compute moment of intertia coefficients.
1345 xx += thisq[0]*thisq[0]*thisMass;
1346 yy += thisq[1]*thisq[1]*thisMass;
1347 zz += thisq[2]*thisq[2]*thisMass;
1348
1349 // compute products of intertia
1350 xy += thisq[0]*thisq[1]*thisMass;
1351 xz += thisq[0]*thisq[2]*thisMass;
1352 yz += thisq[1]*thisq[2]*thisMass;
1353
1354 angularMomentum += cross( thisq, thisv ) * thisMass;
1355
1356 }
1357
1358
1359 inertiaTensor(0,0) = yy + zz;
1360 inertiaTensor(0,1) = -xy;
1361 inertiaTensor(0,2) = -xz;
1362 inertiaTensor(1,0) = -xy;
1363 inertiaTensor(1,1) = xx + zz;
1364 inertiaTensor(1,2) = -yz;
1365 inertiaTensor(2,0) = -xz;
1366 inertiaTensor(2,1) = -yz;
1367 inertiaTensor(2,2) = xx + yy;
1368
1369 #ifdef IS_MPI
1370 Mat3x3d tmpI(inertiaTensor);
1371 Vector3d tmpAngMom;
1372 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1373 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1374 #endif
1375
1376 return;
1377 }
1378
1379 //Returns the angular momentum of the system
1380 Vector3d SimInfo::getAngularMomentum(){
1381
1382 Vector3d com(0.0);
1383 Vector3d comVel(0.0);
1384 Vector3d angularMomentum(0.0);
1385
1386 getComAll(com,comVel);
1387
1388 SimInfo::MoleculeIterator i;
1389 Molecule* mol;
1390
1391 Vector3d thisr(0.0);
1392 Vector3d thisp(0.0);
1393
1394 RealType thisMass;
1395
1396 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1397 thisMass = mol->getMass();
1398 thisr = mol->getCom()-com;
1399 thisp = (mol->getComVel()-comVel)*thisMass;
1400
1401 angularMomentum += cross( thisr, thisp );
1402
1403 }
1404
1405 #ifdef IS_MPI
1406 Vector3d tmpAngMom;
1407 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1408 #endif
1409
1410 return angularMomentum;
1411 }
1412
1413
1414 }//end namespace oopse
1415