ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.hpp
Revision: 3100
Committed: Fri Dec 29 20:21:53 2006 UTC (17 years, 6 months ago) by chuckv
File size: 20491 byte(s)
Log Message:
Added function to calculate volume based on ellipsoid definded by radius of gyration.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.hpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #ifndef BRAINS_SIMMODEL_HPP
50 #define BRAINS_SIMMODEL_HPP
51
52 #include <iostream>
53 #include <set>
54 #include <utility>
55 #include <vector>
56
57 #include "brains/Exclude.hpp"
58 #include "io/Globals.hpp"
59 #include "math/Vector3.hpp"
60 #include "math/SquareMatrix3.hpp"
61 #include "types/MoleculeStamp.hpp"
62 #include "UseTheForce/ForceField.hpp"
63 #include "utils/PropertyMap.hpp"
64 #include "utils/LocalIndexManager.hpp"
65
66 //another nonsense macro declaration
67 #define __C
68 #include "brains/fSimulation.h"
69
70 namespace oopse{
71
72 //forward decalration
73 class SnapshotManager;
74 class Molecule;
75 class SelectionManager;
76 class StuntDouble;
77 /**
78 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
79 * @brief One of the heavy weight classes of OOPSE, SimInfo maintains a list of molecules.
80 * The Molecule class maintains all of the concrete objects
81 * (atoms, bond, bend, torsions, rigid bodies, cutoff groups, constrains).
82 * In both the single and parallel versions, atoms and
83 * rigid bodies have both global and local indices. The local index is
84 * not relevant to molecules or cutoff groups.
85 */
86 class SimInfo {
87 public:
88 typedef std::map<int, Molecule*>::iterator MoleculeIterator;
89
90 /**
91 * Constructor of SimInfo
92 * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
93 * second element is the total number of molecules with the same molecule stamp in the system
94 * @param ff pointer of a concrete ForceField instance
95 * @param simParams
96 * @note
97 */
98 SimInfo(ForceField* ff, Globals* simParams);
99 virtual ~SimInfo();
100
101 /**
102 * Adds a molecule
103 * @return return true if adding successfully, return false if the molecule is already in SimInfo
104 * @param mol molecule to be added
105 */
106 bool addMolecule(Molecule* mol);
107
108 /**
109 * Removes a molecule from SimInfo
110 * @return true if removing successfully, return false if molecule is not in this SimInfo
111 */
112 bool removeMolecule(Molecule* mol);
113
114 /** Returns the total number of molecules in the system. */
115 int getNGlobalMolecules() {
116 return nGlobalMols_;
117 }
118
119 /** Returns the total number of atoms in the system. */
120 int getNGlobalAtoms() {
121 return nGlobalAtoms_;
122 }
123
124 /** Returns the total number of cutoff groups in the system. */
125 int getNGlobalCutoffGroups() {
126 return nGlobalCutoffGroups_;
127 }
128
129 /**
130 * Returns the total number of integrable objects (total number of rigid bodies plus the total number
131 * of atoms which do not belong to the rigid bodies) in the system
132 */
133 int getNGlobalIntegrableObjects() {
134 return nGlobalIntegrableObjects_;
135 }
136
137 /**
138 * Returns the total number of integrable objects (total number of rigid bodies plus the total number
139 * of atoms which do not belong to the rigid bodies) in the system
140 */
141 int getNGlobalRigidBodies() {
142 return nGlobalRigidBodies_;
143 }
144
145 int getNGlobalConstraints();
146 /**
147 * Returns the number of local molecules.
148 * @return the number of local molecules
149 */
150 int getNMolecules() {
151 return molecules_.size();
152 }
153
154 /** Returns the number of local atoms */
155 unsigned int getNAtoms() {
156 return nAtoms_;
157 }
158
159 /** Returns the number of local bonds */
160 unsigned int getNBonds(){
161 return nBonds_;
162 }
163
164 /** Returns the number of local bends */
165 unsigned int getNBends() {
166 return nBends_;
167 }
168
169 /** Returns the number of local torsions */
170 unsigned int getNTorsions() {
171 return nTorsions_;
172 }
173
174 /** Returns the number of local rigid bodies */
175 unsigned int getNRigidBodies() {
176 return nRigidBodies_;
177 }
178
179 /** Returns the number of local integrable objects */
180 unsigned int getNIntegrableObjects() {
181 return nIntegrableObjects_;
182 }
183
184 /** Returns the number of local cutoff groups */
185 unsigned int getNCutoffGroups() {
186 return nCutoffGroups_;
187 }
188
189 /** Returns the total number of constraints in this SimInfo */
190 unsigned int getNConstraints() {
191 return nConstraints_;
192 }
193
194 /**
195 * Returns the first molecule in this SimInfo and intialize the iterator.
196 * @return the first molecule, return NULL if there is not molecule in this SimInfo
197 * @param i the iterator of molecule array (user shouldn't change it)
198 */
199 Molecule* beginMolecule(MoleculeIterator& i);
200
201 /**
202 * Returns the next avaliable Molecule based on the iterator.
203 * @return the next avaliable molecule, return NULL if reaching the end of the array
204 * @param i the iterator of molecule array
205 */
206 Molecule* nextMolecule(MoleculeIterator& i);
207
208 /** Returns the number of degrees of freedom */
209 int getNdf() {
210 return ndf_ - getFdf();
211 }
212
213 /** Returns the number of raw degrees of freedom */
214 int getNdfRaw() {
215 return ndfRaw_;
216 }
217
218 /** Returns the number of translational degrees of freedom */
219 int getNdfTrans() {
220 return ndfTrans_;
221 }
222
223 /** sets the current number of frozen degrees of freedom */
224 void setFdf(int fdf) {
225 fdf_local = fdf;
226 }
227
228 int getFdf();
229
230 //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
231
232 /** Returns the total number of z-constraint molecules in the system */
233 int getNZconstraint() {
234 return nZconstraint_;
235 }
236
237 /**
238 * Sets the number of z-constraint molecules in the system.
239 */
240 void setNZconstraint(int nZconstraint) {
241 nZconstraint_ = nZconstraint;
242 }
243
244 /** Returns the snapshot manager. */
245 SnapshotManager* getSnapshotManager() {
246 return sman_;
247 }
248
249 /** Sets the snapshot manager. */
250 void setSnapshotManager(SnapshotManager* sman);
251
252 /** Returns the force field */
253 ForceField* getForceField() {
254 return forceField_;
255 }
256
257 Globals* getSimParams() {
258 return simParams_;
259 }
260
261 /** Returns the velocity of center of mass of the whole system.*/
262 Vector3d getComVel();
263
264 /** Returns the center of the mass of the whole system.*/
265 Vector3d getCom();
266 /** Returns the center of the mass and Center of Mass velocity of the whole system.*/
267 void getComAll(Vector3d& com,Vector3d& comVel);
268
269 /** Returns intertia tensor for the entire system and system Angular Momentum.*/
270 void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
271
272 /** Returns system angular momentum */
273 Vector3d getAngularMomentum();
274
275 /** Returns volume of system as estimated by an ellipsoid defined by the radii of gyration*/
276 void getGyrationalVolume(RealType &vol);
277 /** Overloaded version of gyrational volume that also returns det(I) so dV/dr can be calculated*/
278 void getGyrationalVolume(RealType &vol, RealType &detI);
279 /** main driver function to interact with fortran during the initialization and molecule migration */
280 void update();
281
282 /** Returns the local index manager */
283 LocalIndexManager* getLocalIndexManager() {
284 return &localIndexMan_;
285 }
286
287 int getMoleculeStampId(int globalIndex) {
288 //assert(globalIndex < molStampIds_.size())
289 return molStampIds_[globalIndex];
290 }
291
292 /** Returns the molecule stamp */
293 MoleculeStamp* getMoleculeStamp(int id) {
294 return moleculeStamps_[id];
295 }
296
297 /** Return the total number of the molecule stamps */
298 int getNMoleculeStamp() {
299 return moleculeStamps_.size();
300 }
301 /**
302 * Finds a molecule with a specified global index
303 * @return a pointer point to found molecule
304 * @param index
305 */
306 Molecule* getMoleculeByGlobalIndex(int index) {
307 MoleculeIterator i;
308 i = molecules_.find(index);
309
310 return i != molecules_.end() ? i->second : NULL;
311 }
312
313 RealType getRcut() {
314 return rcut_;
315 }
316
317 RealType getRsw() {
318 return rsw_;
319 }
320
321 RealType getList() {
322 return rlist_;
323 }
324
325 std::string getFinalConfigFileName() {
326 return finalConfigFileName_;
327 }
328
329 void setFinalConfigFileName(const std::string& fileName) {
330 finalConfigFileName_ = fileName;
331 }
332
333 std::string getRawMetaData() {
334 return rawMetaData_;
335 }
336 void setRawMetaData(const std::string& rawMetaData) {
337 rawMetaData_ = rawMetaData;
338 }
339
340 std::string getDumpFileName() {
341 return dumpFileName_;
342 }
343
344 void setDumpFileName(const std::string& fileName) {
345 dumpFileName_ = fileName;
346 }
347
348 std::string getStatFileName() {
349 return statFileName_;
350 }
351
352 void setStatFileName(const std::string& fileName) {
353 statFileName_ = fileName;
354 }
355
356 std::string getRestFileName() {
357 return restFileName_;
358 }
359
360 void setRestFileName(const std::string& fileName) {
361 restFileName_ = fileName;
362 }
363
364 /**
365 * Sets GlobalGroupMembership
366 * @see #SimCreator::setGlobalIndex
367 */
368 void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
369 assert(globalGroupMembership.size() == nGlobalAtoms_);
370 globalGroupMembership_ = globalGroupMembership;
371 }
372
373 /**
374 * Sets GlobalMolMembership
375 * @see #SimCreator::setGlobalIndex
376 */
377 void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
378 assert(globalMolMembership.size() == nGlobalAtoms_);
379 globalMolMembership_ = globalMolMembership;
380 }
381
382
383 bool isFortranInitialized() {
384 return fortranInitialized_;
385 }
386
387 bool getCalcBoxDipole() {
388 return calcBoxDipole_;
389 }
390
391 //below functions are just forward functions
392 //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
393 //the other hand, has-a relation need composing.
394 /**
395 * Adds property into property map
396 * @param genData GenericData to be added into PropertyMap
397 */
398 void addProperty(GenericData* genData);
399
400 /**
401 * Removes property from PropertyMap by name
402 * @param propName the name of property to be removed
403 */
404 void removeProperty(const std::string& propName);
405
406 /**
407 * clear all of the properties
408 */
409 void clearProperties();
410
411 /**
412 * Returns all names of properties
413 * @return all names of properties
414 */
415 std::vector<std::string> getPropertyNames();
416
417 /**
418 * Returns all of the properties in PropertyMap
419 * @return all of the properties in PropertyMap
420 */
421 std::vector<GenericData*> getProperties();
422
423 /**
424 * Returns property
425 * @param propName name of property
426 * @return a pointer point to property with propName. If no property named propName
427 * exists, return NULL
428 */
429 GenericData* getPropertyByName(const std::string& propName);
430
431 /**
432 * add all exclude pairs of a molecule into exclude list.
433 */
434 void addExcludePairs(Molecule* mol);
435
436 /**
437 * remove all exclude pairs which belong to a molecule from exclude list
438 */
439
440 void removeExcludePairs(Molecule* mol);
441
442
443 /** Returns the unique atom types of local processor in an array */
444 std::set<AtomType*> getUniqueAtomTypes();
445
446 friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
447
448 void getCutoff(RealType& rcut, RealType& rsw);
449
450 private:
451
452 /** fill up the simtype struct*/
453 void setupSimType();
454
455 /**
456 * Setup Fortran Simulation
457 * @see #setupFortranParallel
458 */
459 void setupFortranSim();
460
461 /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
462 void setupCutoff();
463
464 /** Figure out which coulombic correction method to use and pass to fortran */
465 void setupElectrostaticSummationMethod( int isError );
466
467 /** Figure out which polynomial type to use for the switching function */
468 void setupSwitchingFunction();
469
470 /** Determine if we need to accumulate the simulation box dipole */
471 void setupAccumulateBoxDipole();
472
473 /** Calculates the number of degress of freedom in the whole system */
474 void calcNdf();
475 void calcNdfRaw();
476 void calcNdfTrans();
477
478 ForceField* forceField_;
479 Globals* simParams_;
480
481 std::map<int, Molecule*> molecules_; /**< Molecule array */
482
483 /**
484 * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
485 * system.
486 */
487 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
488
489 //degress of freedom
490 int ndf_; /**< number of degress of freedom (excludes constraints), ndf_ is local */
491 int fdf_local; /**< number of frozen degrees of freedom */
492 int fdf_; /**< number of frozen degrees of freedom */
493 int ndfRaw_; /**< number of degress of freedom (includes constraints), ndfRaw_ is local */
494 int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
495 int nZconstraint_; /** number of z-constraint molecules, nZconstraint_ is global */
496
497 //number of global objects
498 int nGlobalMols_; /**< number of molecules in the system */
499 int nGlobalAtoms_; /**< number of atoms in the system */
500 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
501 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
502 int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
503 /**
504 * the size of globalGroupMembership_ is nGlobalAtoms. Its index is global index of an atom, and the
505 * corresponding content is the global index of cutoff group this atom belong to.
506 * It is filled by SimCreator once and only once, since it never changed during the simulation.
507 */
508 std::vector<int> globalGroupMembership_;
509
510 /**
511 * the size of globalGroupMembership_ is nGlobalAtoms. Its index is global index of an atom, and the
512 * corresponding content is the global index of molecule this atom belong to.
513 * It is filled by SimCreator once and only once, since it is never changed during the simulation.
514 */
515 std::vector<int> globalMolMembership_;
516
517
518 std::vector<int> molStampIds_; /**< stamp id array of all molecules in the system */
519 std::vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
520
521 //number of local objects
522 int nAtoms_; /**< number of atoms in local processor */
523 int nBonds_; /**< number of bonds in local processor */
524 int nBends_; /**< number of bends in local processor */
525 int nTorsions_; /**< number of torsions in local processor */
526 int nRigidBodies_; /**< number of rigid bodies in local processor */
527 int nIntegrableObjects_; /**< number of integrable objects in local processor */
528 int nCutoffGroups_; /**< number of cutoff groups in local processor */
529 int nConstraints_; /**< number of constraints in local processors */
530
531 simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
532 Exclude exclude_;
533 PropertyMap properties_; /**< Generic Property */
534 SnapshotManager* sman_; /**< SnapshotManager */
535
536 /**
537 * The reason to have a local index manager is that when molecule is migrating to other processors,
538 * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
539 * information of molecule migrating to current processor, Migrator class can query the LocalIndexManager
540 * to make a efficient data moving plan.
541 */
542 LocalIndexManager localIndexMan_;
543
544 // unparsed MetaData block for storing in Dump and EOR files:
545 std::string rawMetaData_;
546
547 //file names
548 std::string finalConfigFileName_;
549 std::string dumpFileName_;
550 std::string statFileName_;
551 std::string restFileName_;
552
553 RealType rcut_; /**< cutoff radius*/
554 RealType rsw_; /**< radius of switching function*/
555 RealType rlist_; /**< neighbor list radius */
556
557 bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
558
559 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate the simulation box dipole moment */
560
561 public:
562 /**
563 * return an integral objects by its global index. In MPI version, if the StuntDouble with specified
564 * global index does not belong to local processor, a NULL will be return.
565 */
566 StuntDouble* getIOIndexToIntegrableObject(int index);
567 void setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v);
568 private:
569 std::vector<StuntDouble*> IOIndexToIntegrableObject;
570 //public:
571 //void setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v);
572 /**
573 * return a StuntDouble by its global index. In MPI version, if the StuntDouble with specified
574 * global index does not belong to local processor, a NULL will be return.
575 */
576 //StuntDouble* getStuntDoubleFromGlobalIndex(int index);
577 //private:
578 //std::vector<StuntDouble*> sdByGlobalIndex_;
579
580 #ifdef IS_MPI
581 //in Parallel version, we need MolToProc
582 public:
583
584 /**
585 * Finds the processor where a molecule resides
586 * @return the id of the processor which contains the molecule
587 * @param globalIndex global Index of the molecule
588 */
589 int getMolToProc(int globalIndex) {
590 //assert(globalIndex < molToProcMap_.size());
591 return molToProcMap_[globalIndex];
592 }
593
594 /**
595 * Set MolToProcMap array
596 * @see #SimCreator::divideMolecules
597 */
598 void setMolToProcMap(const std::vector<int>& molToProcMap) {
599 molToProcMap_ = molToProcMap;
600 }
601
602
603
604 private:
605
606 void setupFortranParallel();
607
608 /**
609 * The size of molToProcMap_ is equal to total number of molecules in the system.
610 * It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
611 * once.
612 */
613 std::vector<int> molToProcMap_;
614
615 #endif
616
617 };
618
619 } //namespace oopse
620 #endif //BRAINS_SIMMODEL_HPP
621