ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/integrators/Integrator.cpp
Revision: 1777
Committed: Wed Nov 24 18:06:14 2004 UTC (19 years, 7 months ago) by chrisfen
File size: 19674 byte(s)
Log Message:
improved restraints

File Contents

# User Rev Content
1 gezelter 1490 #include <iostream>
2     #include <stdlib.h>
3     #include <math.h>
4     #ifdef IS_MPI
5 tim 1492 #include "brains/mpiSimulation.hpp"
6 gezelter 1490 #include <unistd.h>
7     #endif //is_mpi
8    
9     #ifdef PROFILE
10 tim 1492 #include "profiling/mdProfile.hpp"
11 gezelter 1490 #endif // profile
12    
13 tim 1492 #include "integrators/Integrator.hpp"
14     #include "utils/simError.h"
15 gezelter 1490
16    
17     template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
18     ForceFields* the_ff){
19     info = theInfo;
20     myFF = the_ff;
21     isFirst = 1;
22    
23     molecules = info->molecules;
24     nMols = info->n_mol;
25    
26     // give a little love back to the SimInfo object
27    
28     if (info->the_integrator != NULL){
29     delete info->the_integrator;
30     }
31    
32     nAtoms = info->n_atoms;
33     integrableObjects = info->integrableObjects;
34    
35    
36     // check for constraints
37    
38     constrainedA = NULL;
39     constrainedB = NULL;
40     constrainedDsqr = NULL;
41     moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45     nConstrained = 0;
46    
47     checkConstraints();
48    
49     }
50    
51     template<typename T> Integrator<T>::~Integrator(){
52    
53     if (nConstrained){
54     delete[] constrainedA;
55     delete[] constrainedB;
56     delete[] constrainedDsqr;
57     delete[] moving;
58     delete[] moved;
59     delete[] oldPos;
60     }
61    
62     }
63    
64    
65     template<typename T> void Integrator<T>::checkConstraints(void){
66     isConstrained = 0;
67    
68     Constraint* temp_con;
69     Constraint* dummy_plug;
70     temp_con = new Constraint[info->n_SRI];
71     nConstrained = 0;
72     int constrained = 0;
73    
74     SRI** theArray;
75     for (int i = 0; i < nMols; i++){
76    
77     theArray = (SRI * *) molecules[i].getMyBonds();
78     for (int j = 0; j < molecules[i].getNBonds(); j++){
79     constrained = theArray[j]->is_constrained();
80    
81     if (constrained){
82     dummy_plug = theArray[j]->get_constraint();
83     temp_con[nConstrained].set_a(dummy_plug->get_a());
84     temp_con[nConstrained].set_b(dummy_plug->get_b());
85     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86    
87     nConstrained++;
88     constrained = 0;
89     }
90     }
91    
92     theArray = (SRI * *) molecules[i].getMyBends();
93     for (int j = 0; j < molecules[i].getNBends(); j++){
94     constrained = theArray[j]->is_constrained();
95    
96     if (constrained){
97     dummy_plug = theArray[j]->get_constraint();
98     temp_con[nConstrained].set_a(dummy_plug->get_a());
99     temp_con[nConstrained].set_b(dummy_plug->get_b());
100     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101    
102     nConstrained++;
103     constrained = 0;
104     }
105     }
106    
107     theArray = (SRI * *) molecules[i].getMyTorsions();
108     for (int j = 0; j < molecules[i].getNTorsions(); j++){
109     constrained = theArray[j]->is_constrained();
110    
111     if (constrained){
112     dummy_plug = theArray[j]->get_constraint();
113     temp_con[nConstrained].set_a(dummy_plug->get_a());
114     temp_con[nConstrained].set_b(dummy_plug->get_b());
115     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116    
117     nConstrained++;
118     constrained = 0;
119     }
120     }
121     }
122    
123    
124     if (nConstrained > 0){
125     isConstrained = 1;
126    
127     if (constrainedA != NULL)
128     delete[] constrainedA;
129     if (constrainedB != NULL)
130     delete[] constrainedB;
131     if (constrainedDsqr != NULL)
132     delete[] constrainedDsqr;
133    
134     constrainedA = new int[nConstrained];
135     constrainedB = new int[nConstrained];
136     constrainedDsqr = new double[nConstrained];
137    
138     for (int i = 0; i < nConstrained; i++){
139     constrainedA[i] = temp_con[i].get_a();
140     constrainedB[i] = temp_con[i].get_b();
141     constrainedDsqr[i] = temp_con[i].get_dsqr();
142     }
143    
144    
145     // save oldAtoms to check for lode balancing later on.
146    
147     oldAtoms = nAtoms;
148    
149     moving = new int[nAtoms];
150     moved = new int[nAtoms];
151    
152     oldPos = new double[nAtoms * 3];
153     }
154    
155     delete[] temp_con;
156     }
157    
158    
159     template<typename T> void Integrator<T>::integrate(void){
160    
161     double runTime = info->run_time;
162     double sampleTime = info->sampleTime;
163     double statusTime = info->statusTime;
164     double thermalTime = info->thermalTime;
165     double resetTime = info->resetTime;
166    
167     double difference;
168     double currSample;
169     double currThermal;
170     double currStatus;
171     double currReset;
172    
173     int calcPot, calcStress;
174 chrisfen 1772 int i;
175     int localIndex;
176 gezelter 1490
177 chrisfen 1772 #ifdef IS_MPI
178     int which_node;
179     #endif // is_mpi
180    
181     vector<StuntDouble*> particles;
182     string inAngle;
183    
184 gezelter 1490 tStats = new Thermo(info);
185     statOut = new StatWriter(info);
186     dumpOut = new DumpWriter(info);
187    
188 chrisfen 1772 if (info->useSolidThermInt && !info->useLiquidThermInt) {
189     restOut = new RestraintWriter(info);
190     initRestraints = new RestraintReader(info);
191     }
192    
193 gezelter 1490 atoms = info->atoms;
194    
195     dt = info->dt;
196     dt2 = 0.5 * dt;
197    
198     readyCheck();
199    
200     // remove center of mass drift velocity (in case we passed in a configuration
201     // that was drifting
202     tStats->removeCOMdrift();
203    
204     // initialize the retraints if necessary
205     if (info->useSolidThermInt && !info->useLiquidThermInt) {
206 chrisfen 1772 initRestraints->zeroZangle();
207     inAngle = info->zAngleName + "_in";
208     initRestraints->readZangle(inAngle.c_str());
209     initRestraints->readIdealCrystal();
210 gezelter 1490 }
211    
212     // initialize the forces before the first step
213     calcForce(1, 1);
214    
215     //execute constraint algorithm to make sure at the very beginning the system is constrained
216     if(nConstrained){
217     preMove();
218     constrainA();
219     calcForce(1, 1);
220     constrainB();
221     }
222    
223     if (info->setTemp){
224     thermalize();
225     }
226    
227     calcPot = 0;
228     calcStress = 0;
229     currSample = sampleTime + info->getTime();
230     currThermal = thermalTime+ info->getTime();
231     currStatus = statusTime + info->getTime();
232     currReset = resetTime + info->getTime();
233    
234     dumpOut->writeDump(info->getTime());
235     statOut->writeStat(info->getTime());
236 chrisfen 1777 if (info->useSolidThermInt && !info->useLiquidThermInt)
237     restOut->writeZangle(info->getTime());
238 gezelter 1490
239     #ifdef IS_MPI
240     strcpy(checkPointMsg, "The integrator is ready to go.");
241     MPIcheckPoint();
242     #endif // is_mpi
243    
244     while (info->getTime() < runTime && !stopIntegrator()){
245     difference = info->getTime() + dt - currStatus;
246     if (difference > 0 || fabs(difference) < 1e-4 ){
247     calcPot = 1;
248     calcStress = 1;
249     }
250    
251     #ifdef PROFILE
252     startProfile( pro1 );
253     #endif
254    
255     integrateStep(calcPot, calcStress);
256    
257     #ifdef PROFILE
258     endProfile( pro1 );
259    
260     startProfile( pro2 );
261     #endif // profile
262    
263     info->incrTime(dt);
264    
265     if (info->setTemp){
266     if (info->getTime() >= currThermal){
267     thermalize();
268     currThermal += thermalTime;
269     }
270     }
271    
272     if (info->getTime() >= currSample){
273     dumpOut->writeDump(info->getTime());
274 chrisfen 1772 // write a zAng file to coincide with each dump or eor file
275     if (info->useSolidThermInt && !info->useLiquidThermInt)
276     restOut->writeZangle(info->getTime());
277 gezelter 1490 currSample += sampleTime;
278     }
279    
280     if (info->getTime() >= currStatus){
281     statOut->writeStat(info->getTime());
282     calcPot = 0;
283     calcStress = 0;
284     currStatus += statusTime;
285     }
286    
287     if (info->resetIntegrator){
288     if (info->getTime() >= currReset){
289     this->resetIntegrator();
290     currReset += resetTime;
291     }
292     }
293    
294     #ifdef PROFILE
295     endProfile( pro2 );
296     #endif //profile
297    
298     #ifdef IS_MPI
299     strcpy(checkPointMsg, "successfully took a time step.");
300     MPIcheckPoint();
301     #endif // is_mpi
302     }
303    
304     dumpOut->writeFinal(info->getTime());
305    
306 chrisfen 1772 // write the file containing the omega values of the final configuration
307     if (info->useSolidThermInt && !info->useLiquidThermInt){
308     restOut->writeZangle(info->getTime());
309     restOut->writeZangle(info->getTime(), inAngle.c_str());
310     }
311 gezelter 1490
312     delete dumpOut;
313     delete statOut;
314     }
315    
316     template<typename T> void Integrator<T>::integrateStep(int calcPot,
317     int calcStress){
318     // Position full step, and velocity half step
319    
320     #ifdef PROFILE
321     startProfile(pro3);
322     #endif //profile
323    
324     //save old state (position, velocity etc)
325     preMove();
326     #ifdef PROFILE
327     endProfile(pro3);
328    
329     startProfile(pro4);
330     #endif // profile
331    
332     moveA();
333    
334     #ifdef PROFILE
335     endProfile(pro4);
336    
337     startProfile(pro5);
338     #endif//profile
339    
340    
341     #ifdef IS_MPI
342     strcpy(checkPointMsg, "Succesful moveA\n");
343     MPIcheckPoint();
344     #endif // is_mpi
345    
346     // calc forces
347     calcForce(calcPot, calcStress);
348    
349     #ifdef IS_MPI
350     strcpy(checkPointMsg, "Succesful doForces\n");
351     MPIcheckPoint();
352     #endif // is_mpi
353    
354     #ifdef PROFILE
355     endProfile( pro5 );
356    
357     startProfile( pro6 );
358     #endif //profile
359    
360     // finish the velocity half step
361    
362     moveB();
363    
364     #ifdef PROFILE
365     endProfile(pro6);
366     #endif // profile
367    
368     #ifdef IS_MPI
369     strcpy(checkPointMsg, "Succesful moveB\n");
370     MPIcheckPoint();
371     #endif // is_mpi
372     }
373    
374    
375     template<typename T> void Integrator<T>::moveA(void){
376     size_t i, j;
377     DirectionalAtom* dAtom;
378     double Tb[3], ji[3];
379     double vel[3], pos[3], frc[3];
380     double mass;
381     double omega;
382    
383     for (i = 0; i < integrableObjects.size() ; i++){
384     integrableObjects[i]->getVel(vel);
385     integrableObjects[i]->getPos(pos);
386     integrableObjects[i]->getFrc(frc);
387 chrisfen 1730 // std::cerr << "f = " << frc[0] << "\t" << frc[1] << "\t" << frc[2] << "\n";
388 gezelter 1490
389     mass = integrableObjects[i]->getMass();
390    
391     for (j = 0; j < 3; j++){
392     // velocity half step
393     vel[j] += (dt2 * frc[j] / mass) * eConvert;
394     // position whole step
395     pos[j] += dt * vel[j];
396     }
397    
398     integrableObjects[i]->setVel(vel);
399     integrableObjects[i]->setPos(pos);
400    
401 gezelter 1708
402 gezelter 1490 if (integrableObjects[i]->isDirectional()){
403    
404     // get and convert the torque to body frame
405    
406     integrableObjects[i]->getTrq(Tb);
407 gezelter 1708
408 chrisfen 1730 // std::cerr << "t = " << Tb[0] << "\t" << Tb[1] << "\t" << Tb[2] << "\n";
409 gezelter 1490 integrableObjects[i]->lab2Body(Tb);
410    
411     // get the angular momentum, and propagate a half step
412    
413     integrableObjects[i]->getJ(ji);
414    
415     for (j = 0; j < 3; j++)
416     ji[j] += (dt2 * Tb[j]) * eConvert;
417    
418     this->rotationPropagation( integrableObjects[i], ji );
419    
420     integrableObjects[i]->setJ(ji);
421     }
422     }
423    
424     if(nConstrained)
425     constrainA();
426     }
427    
428    
429     template<typename T> void Integrator<T>::moveB(void){
430     int i, j;
431     double Tb[3], ji[3];
432     double vel[3], frc[3];
433     double mass;
434    
435     for (i = 0; i < integrableObjects.size(); i++){
436     integrableObjects[i]->getVel(vel);
437     integrableObjects[i]->getFrc(frc);
438    
439     mass = integrableObjects[i]->getMass();
440    
441     // velocity half step
442     for (j = 0; j < 3; j++)
443     vel[j] += (dt2 * frc[j] / mass) * eConvert;
444    
445     integrableObjects[i]->setVel(vel);
446    
447     if (integrableObjects[i]->isDirectional()){
448    
449     // get and convert the torque to body frame
450    
451     integrableObjects[i]->getTrq(Tb);
452     integrableObjects[i]->lab2Body(Tb);
453    
454     // get the angular momentum, and propagate a half step
455    
456     integrableObjects[i]->getJ(ji);
457    
458     for (j = 0; j < 3; j++)
459     ji[j] += (dt2 * Tb[j]) * eConvert;
460    
461    
462     integrableObjects[i]->setJ(ji);
463     }
464     }
465    
466     if(nConstrained)
467     constrainB();
468     }
469    
470    
471     template<typename T> void Integrator<T>::preMove(void){
472     int i, j;
473     double pos[3];
474    
475     if (nConstrained){
476     for (i = 0; i < nAtoms; i++){
477     atoms[i]->getPos(pos);
478    
479     for (j = 0; j < 3; j++){
480     oldPos[3 * i + j] = pos[j];
481     }
482     }
483     }
484     }
485    
486     template<typename T> void Integrator<T>::constrainA(){
487     int i, j;
488     int done;
489     double posA[3], posB[3];
490     double velA[3], velB[3];
491     double pab[3];
492     double rab[3];
493     int a, b, ax, ay, az, bx, by, bz;
494     double rma, rmb;
495     double dx, dy, dz;
496     double rpab;
497     double rabsq, pabsq, rpabsq;
498     double diffsq;
499     double gab;
500     int iteration;
501    
502     for (i = 0; i < nAtoms; i++){
503     moving[i] = 0;
504     moved[i] = 1;
505     }
506    
507     iteration = 0;
508     done = 0;
509     while (!done && (iteration < maxIteration)){
510     done = 1;
511     for (i = 0; i < nConstrained; i++){
512     a = constrainedA[i];
513     b = constrainedB[i];
514    
515     ax = (a * 3) + 0;
516     ay = (a * 3) + 1;
517     az = (a * 3) + 2;
518    
519     bx = (b * 3) + 0;
520     by = (b * 3) + 1;
521     bz = (b * 3) + 2;
522    
523     if (moved[a] || moved[b]){
524     atoms[a]->getPos(posA);
525     atoms[b]->getPos(posB);
526    
527     for (j = 0; j < 3; j++)
528     pab[j] = posA[j] - posB[j];
529    
530     //periodic boundary condition
531    
532     info->wrapVector(pab);
533    
534     pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
535    
536     rabsq = constrainedDsqr[i];
537     diffsq = rabsq - pabsq;
538    
539     // the original rattle code from alan tidesley
540     if (fabs(diffsq) > (tol * rabsq * 2)){
541     rab[0] = oldPos[ax] - oldPos[bx];
542     rab[1] = oldPos[ay] - oldPos[by];
543     rab[2] = oldPos[az] - oldPos[bz];
544    
545     info->wrapVector(rab);
546    
547     rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
548    
549     rpabsq = rpab * rpab;
550    
551    
552     if (rpabsq < (rabsq * -diffsq)){
553     #ifdef IS_MPI
554     a = atoms[a]->getGlobalIndex();
555     b = atoms[b]->getGlobalIndex();
556     #endif //is_mpi
557     sprintf(painCave.errMsg,
558     "Constraint failure in constrainA at atom %d and %d.\n", a,
559     b);
560     painCave.isFatal = 1;
561     simError();
562     }
563    
564     rma = 1.0 / atoms[a]->getMass();
565     rmb = 1.0 / atoms[b]->getMass();
566    
567     gab = diffsq / (2.0 * (rma + rmb) * rpab);
568    
569     dx = rab[0] * gab;
570     dy = rab[1] * gab;
571     dz = rab[2] * gab;
572    
573     posA[0] += rma * dx;
574     posA[1] += rma * dy;
575     posA[2] += rma * dz;
576    
577     atoms[a]->setPos(posA);
578    
579     posB[0] -= rmb * dx;
580     posB[1] -= rmb * dy;
581     posB[2] -= rmb * dz;
582    
583     atoms[b]->setPos(posB);
584    
585     dx = dx / dt;
586     dy = dy / dt;
587     dz = dz / dt;
588    
589     atoms[a]->getVel(velA);
590    
591     velA[0] += rma * dx;
592     velA[1] += rma * dy;
593     velA[2] += rma * dz;
594    
595     atoms[a]->setVel(velA);
596    
597     atoms[b]->getVel(velB);
598    
599     velB[0] -= rmb * dx;
600     velB[1] -= rmb * dy;
601     velB[2] -= rmb * dz;
602    
603     atoms[b]->setVel(velB);
604    
605     moving[a] = 1;
606     moving[b] = 1;
607     done = 0;
608     }
609     }
610     }
611    
612     for (i = 0; i < nAtoms; i++){
613     moved[i] = moving[i];
614     moving[i] = 0;
615     }
616    
617     iteration++;
618     }
619    
620     if (!done){
621     sprintf(painCave.errMsg,
622     "Constraint failure in constrainA, too many iterations: %d\n",
623     iteration);
624     painCave.isFatal = 1;
625     simError();
626     }
627    
628     }
629    
630     template<typename T> void Integrator<T>::constrainB(void){
631     int i, j;
632     int done;
633     double posA[3], posB[3];
634     double velA[3], velB[3];
635     double vxab, vyab, vzab;
636     double rab[3];
637     int a, b, ax, ay, az, bx, by, bz;
638     double rma, rmb;
639     double dx, dy, dz;
640     double rvab;
641     double gab;
642     int iteration;
643    
644     for (i = 0; i < nAtoms; i++){
645     moving[i] = 0;
646     moved[i] = 1;
647     }
648    
649     done = 0;
650     iteration = 0;
651     while (!done && (iteration < maxIteration)){
652     done = 1;
653    
654     for (i = 0; i < nConstrained; i++){
655     a = constrainedA[i];
656     b = constrainedB[i];
657    
658     ax = (a * 3) + 0;
659     ay = (a * 3) + 1;
660     az = (a * 3) + 2;
661    
662     bx = (b * 3) + 0;
663     by = (b * 3) + 1;
664     bz = (b * 3) + 2;
665    
666     if (moved[a] || moved[b]){
667     atoms[a]->getVel(velA);
668     atoms[b]->getVel(velB);
669    
670     vxab = velA[0] - velB[0];
671     vyab = velA[1] - velB[1];
672     vzab = velA[2] - velB[2];
673    
674     atoms[a]->getPos(posA);
675     atoms[b]->getPos(posB);
676    
677     for (j = 0; j < 3; j++)
678     rab[j] = posA[j] - posB[j];
679    
680     info->wrapVector(rab);
681    
682     rma = 1.0 / atoms[a]->getMass();
683     rmb = 1.0 / atoms[b]->getMass();
684    
685     rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
686    
687     gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
688    
689     if (fabs(gab) > tol){
690     dx = rab[0] * gab;
691     dy = rab[1] * gab;
692     dz = rab[2] * gab;
693    
694     velA[0] += rma * dx;
695     velA[1] += rma * dy;
696     velA[2] += rma * dz;
697    
698     atoms[a]->setVel(velA);
699    
700     velB[0] -= rmb * dx;
701     velB[1] -= rmb * dy;
702     velB[2] -= rmb * dz;
703    
704     atoms[b]->setVel(velB);
705    
706     moving[a] = 1;
707     moving[b] = 1;
708     done = 0;
709     }
710     }
711     }
712    
713     for (i = 0; i < nAtoms; i++){
714     moved[i] = moving[i];
715     moving[i] = 0;
716     }
717    
718     iteration++;
719     }
720    
721     if (!done){
722     sprintf(painCave.errMsg,
723     "Constraint failure in constrainB, too many iterations: %d\n",
724     iteration);
725     painCave.isFatal = 1;
726     simError();
727     }
728     }
729    
730     template<typename T> void Integrator<T>::rotationPropagation
731     ( StuntDouble* sd, double ji[3] ){
732    
733     double angle;
734     double A[3][3], I[3][3];
735     int i, j, k;
736    
737     // use the angular velocities to propagate the rotation matrix a
738     // full time step
739    
740     sd->getA(A);
741     sd->getI(I);
742    
743     if (sd->isLinear()) {
744 gezelter 1708
745 gezelter 1490 i = sd->linearAxis();
746     j = (i+1)%3;
747     k = (i+2)%3;
748 gezelter 1708
749 gezelter 1490 angle = dt2 * ji[j] / I[j][j];
750     this->rotate( k, i, angle, ji, A );
751    
752     angle = dt * ji[k] / I[k][k];
753     this->rotate( i, j, angle, ji, A);
754    
755     angle = dt2 * ji[j] / I[j][j];
756     this->rotate( k, i, angle, ji, A );
757    
758     } else {
759     // rotate about the x-axis
760     angle = dt2 * ji[0] / I[0][0];
761     this->rotate( 1, 2, angle, ji, A );
762    
763     // rotate about the y-axis
764     angle = dt2 * ji[1] / I[1][1];
765     this->rotate( 2, 0, angle, ji, A );
766    
767     // rotate about the z-axis
768     angle = dt * ji[2] / I[2][2];
769     sd->addZangle(angle);
770     this->rotate( 0, 1, angle, ji, A);
771    
772     // rotate about the y-axis
773     angle = dt2 * ji[1] / I[1][1];
774     this->rotate( 2, 0, angle, ji, A );
775    
776     // rotate about the x-axis
777     angle = dt2 * ji[0] / I[0][0];
778     this->rotate( 1, 2, angle, ji, A );
779    
780     }
781     sd->setA( A );
782     }
783    
784     template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
785     double angle, double ji[3],
786     double A[3][3]){
787     int i, j, k;
788     double sinAngle;
789     double cosAngle;
790     double angleSqr;
791     double angleSqrOver4;
792     double top, bottom;
793     double rot[3][3];
794     double tempA[3][3];
795     double tempJ[3];
796    
797     // initialize the tempA
798    
799     for (i = 0; i < 3; i++){
800     for (j = 0; j < 3; j++){
801     tempA[j][i] = A[i][j];
802     }
803     }
804    
805     // initialize the tempJ
806    
807     for (i = 0; i < 3; i++)
808     tempJ[i] = ji[i];
809    
810     // initalize rot as a unit matrix
811    
812     rot[0][0] = 1.0;
813     rot[0][1] = 0.0;
814     rot[0][2] = 0.0;
815    
816     rot[1][0] = 0.0;
817     rot[1][1] = 1.0;
818     rot[1][2] = 0.0;
819    
820     rot[2][0] = 0.0;
821     rot[2][1] = 0.0;
822     rot[2][2] = 1.0;
823    
824     // use a small angle aproximation for sin and cosine
825    
826     angleSqr = angle * angle;
827     angleSqrOver4 = angleSqr / 4.0;
828     top = 1.0 - angleSqrOver4;
829     bottom = 1.0 + angleSqrOver4;
830    
831     cosAngle = top / bottom;
832     sinAngle = angle / bottom;
833    
834     rot[axes1][axes1] = cosAngle;
835     rot[axes2][axes2] = cosAngle;
836    
837     rot[axes1][axes2] = sinAngle;
838     rot[axes2][axes1] = -sinAngle;
839    
840     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
841    
842     for (i = 0; i < 3; i++){
843     ji[i] = 0.0;
844     for (k = 0; k < 3; k++){
845     ji[i] += rot[i][k] * tempJ[k];
846     }
847     }
848    
849     // rotate the Rotation matrix acording to:
850     // A[][] = A[][] * transpose(rot[][])
851    
852    
853     // NOte for as yet unknown reason, we are performing the
854     // calculation as:
855     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
856    
857     for (i = 0; i < 3; i++){
858     for (j = 0; j < 3; j++){
859     A[j][i] = 0.0;
860     for (k = 0; k < 3; k++){
861     A[j][i] += tempA[i][k] * rot[j][k];
862     }
863     }
864     }
865     }
866    
867     template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
868     myFF->doForces(calcPot, calcStress);
869     }
870    
871     template<typename T> void Integrator<T>::thermalize(){
872     tStats->velocitize();
873     }
874    
875     template<typename T> double Integrator<T>::getConservedQuantity(void){
876     return tStats->getTotalE();
877     }
878     template<typename T> string Integrator<T>::getAdditionalParameters(void){
879     //By default, return a null string
880     //The reason we use string instead of char* is that if we use char*, we will
881     //return a pointer point to local variable which might cause problem
882     return string();
883     }