ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/integrators/Integrator.cpp
(Generate patch)

Comparing trunk/OOPSE-4/src/integrators/Integrator.cpp (file contents):
Revision 1772 by chrisfen, Tue Nov 23 22:48:31 2004 UTC vs.
Revision 2204 by gezelter, Fri Apr 15 22:04:00 2005 UTC

# Line 1 | Line 1
1 < #include <iostream>
2 < #include <stdlib.h>
3 < #include <math.h>
4 < #ifdef IS_MPI
5 < #include "brains/mpiSimulation.hpp"
6 < #include <unistd.h>
7 < #endif //is_mpi
8 <
9 < #ifdef PROFILE
10 < #include "profiling/mdProfile.hpp"
11 < #endif // profile
12 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > #include "brains/Snapshot.hpp"
43   #include "integrators/Integrator.hpp"
44   #include "utils/simError.h"
45 + namespace oopse {
46 +  Integrator::Integrator(SimInfo* info)
47 +    : info_(info), forceMan_(NULL) , needPotential(false), needStress(false), velocitizer_(NULL),
48 +      needVelocityScaling(false), dumpWriter(NULL), statWriter(NULL), thermo(info),
49 +      currentSnapshot_(info->getSnapshotManager()->getCurrentSnapshot()) {
50  
51 +      simParams = info->getSimParams();
52  
53 < template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
54 <                                               ForceFields* the_ff){
55 <  info = theInfo;
56 <  myFF = the_ff;
57 <  isFirst = 1;
58 <
59 <  molecules = info->molecules;
24 <  nMols = info->n_mol;
25 <
26 <  // give a little love back to the SimInfo object
27 <
28 <  if (info->the_integrator != NULL){
29 <    delete info->the_integrator;
30 <  }
31 <
32 <  nAtoms = info->n_atoms;
33 <  integrableObjects = info->integrableObjects;
34 <
35 <
36 <  // check for constraints
37 <
38 <  constrainedA = NULL;
39 <  constrainedB = NULL;
40 <  constrainedDsqr = NULL;
41 <  moving = NULL;
42 <  moved = NULL;
43 <  oldPos = NULL;
44 <
45 <  nConstrained = 0;
46 <
47 <  checkConstraints();
48 <
49 < }
50 <
51 < template<typename T> Integrator<T>::~Integrator(){
52 <
53 <  if (nConstrained){
54 <    delete[] constrainedA;
55 <    delete[] constrainedB;
56 <    delete[] constrainedDsqr;
57 <    delete[] moving;
58 <    delete[] moved;
59 <    delete[] oldPos;
60 <  }
61 <
62 < }
63 <
64 <
65 < template<typename T> void Integrator<T>::checkConstraints(void){
66 <  isConstrained = 0;
67 <
68 <  Constraint* temp_con;
69 <  Constraint* dummy_plug;
70 <  temp_con = new Constraint[info->n_SRI];
71 <  nConstrained = 0;
72 <  int constrained = 0;
73 <
74 <  SRI** theArray;
75 <  for (int i = 0; i < nMols; i++){
76 <
77 <          theArray = (SRI * *) molecules[i].getMyBonds();
78 <    for (int j = 0; j < molecules[i].getNBonds(); j++){
79 <      constrained = theArray[j]->is_constrained();
80 <
81 <      if (constrained){
82 <        dummy_plug = theArray[j]->get_constraint();
83 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
84 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
85 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86 <
87 <        nConstrained++;
88 <        constrained = 0;
53 >      if (simParams->haveDt()) {
54 >        dt = simParams->getDt();
55 >      } else {
56 >        sprintf(painCave.errMsg,
57 >                "Integrator Error: dt is not set\n");
58 >        painCave.isFatal = 1;
59 >        simError();
60        }
61 <    }
61 >    
62 >      if (simParams->haveRunTime()) {
63 >        runTime = simParams->getRunTime();
64 >      } else {
65 >        sprintf(painCave.errMsg,
66 >                "Integrator Error: runTime is not set\n");
67 >        painCave.isFatal = 1;
68 >        simError();
69 >      }
70 >      // set the status, sample, and thermal kick times
71 >      if (simParams->haveSampleTime()){
72 >        sampleTime = simParams->getSampleTime();
73 >        statusTime = sampleTime;
74 >      } else{
75 >        sampleTime = simParams->getRunTime();
76 >        statusTime = sampleTime;
77 >      }
78  
79 <    theArray = (SRI * *) molecules[i].getMyBends();
80 <    for (int j = 0; j < molecules[i].getNBends(); j++){
94 <      constrained = theArray[j]->is_constrained();
95 <
96 <      if (constrained){
97 <        dummy_plug = theArray[j]->get_constraint();
98 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
99 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
100 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101 <
102 <        nConstrained++;
103 <        constrained = 0;
79 >      if (simParams->haveStatusTime()){
80 >        statusTime = simParams->getStatusTime();
81        }
105    }
82  
83 <    theArray = (SRI * *) molecules[i].getMyTorsions();
84 <    for (int j = 0; j < molecules[i].getNTorsions(); j++){
85 <      constrained = theArray[j]->is_constrained();
86 <
111 <      if (constrained){
112 <        dummy_plug = theArray[j]->get_constraint();
113 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
114 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
115 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116 <
117 <        nConstrained++;
118 <        constrained = 0;
83 >      if (simParams->haveThermalTime()){
84 >        thermalTime = simParams->getThermalTime();
85 >      } else {
86 >        thermalTime = simParams->getRunTime();
87        }
120    }
121  }
88  
89 <
90 <  if (nConstrained > 0){
91 <    isConstrained = 1;
126 <
127 <    if (constrainedA != NULL)
128 <      delete[] constrainedA;
129 <    if (constrainedB != NULL)
130 <      delete[] constrainedB;
131 <    if (constrainedDsqr != NULL)
132 <      delete[] constrainedDsqr;
133 <
134 <    constrainedA = new int[nConstrained];
135 <    constrainedB = new int[nConstrained];
136 <    constrainedDsqr = new double[nConstrained];
137 <
138 <    for (int i = 0; i < nConstrained; i++){
139 <      constrainedA[i] = temp_con[i].get_a();
140 <      constrainedB[i] = temp_con[i].get_b();
141 <      constrainedDsqr[i] = temp_con[i].get_dsqr();
142 <    }
143 <
144 <
145 <    // save oldAtoms to check for lode balancing later on.
146 <
147 <    oldAtoms = nAtoms;
148 <
149 <    moving = new int[nAtoms];
150 <    moved = new int[nAtoms];
151 <
152 <    oldPos = new double[nAtoms * 3];
153 <  }
154 <
155 <  delete[] temp_con;
156 < }
157 <
158 <
159 < template<typename T> void Integrator<T>::integrate(void){
160 <
161 <  double runTime = info->run_time;
162 <  double sampleTime = info->sampleTime;
163 <  double statusTime = info->statusTime;
164 <  double thermalTime = info->thermalTime;
165 <  double resetTime = info->resetTime;
166 <
167 <  double difference;
168 <  double currSample;
169 <  double currThermal;
170 <  double currStatus;
171 <  double currReset;
172 <
173 <  int calcPot, calcStress;
174 <  int i;
175 <  int localIndex;
176 <
177 < #ifdef IS_MPI
178 <  int which_node;
179 < #endif // is_mpi
180 <  
181 <  vector<StuntDouble*> particles;
182 <  string inAngle;
183 <
184 <  tStats = new Thermo(info);
185 <  statOut = new StatWriter(info);
186 <  dumpOut = new DumpWriter(info);
187 <
188 <  if (info->useSolidThermInt && !info->useLiquidThermInt) {
189 <    restOut = new RestraintWriter(info);
190 <    initRestraints = new RestraintReader(info);
191 <  }
192 <
193 <  atoms = info->atoms;
194 <
195 <  dt = info->dt;
196 <  dt2 = 0.5 * dt;
197 <
198 <  readyCheck();
199 <
200 <  // remove center of mass drift velocity (in case we passed in a configuration
201 <  // that was drifting
202 <  tStats->removeCOMdrift();
203 <
204 <  // initialize the retraints if necessary
205 <  if (info->useSolidThermInt && !info->useLiquidThermInt) {
206 <    initRestraints->zeroZangle();
207 <    inAngle = info->zAngleName + "_in";
208 <    initRestraints->readZangle(inAngle.c_str());
209 <    initRestraints->readIdealCrystal();
210 <  }
211 <
212 <  // initialize the forces before the first step
213 <  calcForce(1, 1);
214 <
215 <  //execute constraint algorithm to make sure at the very beginning the system is constrained  
216 <  if(nConstrained){
217 <    preMove();
218 <    constrainA();
219 <    calcForce(1, 1);
220 <    constrainB();
221 <  }
222 <
223 <  if (info->setTemp){
224 <    thermalize();
225 <  }
226 <
227 <  calcPot     = 0;
228 <  calcStress  = 0;
229 <  currSample  = sampleTime + info->getTime();
230 <  currThermal = thermalTime+ info->getTime();
231 <  currStatus  = statusTime + info->getTime();
232 <  currReset   = resetTime  + info->getTime();
233 <
234 <  dumpOut->writeDump(info->getTime());
235 <  statOut->writeStat(info->getTime());
236 <  restOut->writeZangle(info->getTime());
237 <
238 < #ifdef IS_MPI
239 <  strcpy(checkPointMsg, "The integrator is ready to go.");
240 <  MPIcheckPoint();
241 < #endif // is_mpi
242 <
243 <  while (info->getTime() < runTime && !stopIntegrator()){
244 <    difference = info->getTime() + dt - currStatus;
245 <    if (difference > 0 || fabs(difference) < 1e-4 ){
246 <      calcPot = 1;
247 <      calcStress = 1;
248 <    }
249 <
250 < #ifdef PROFILE
251 <    startProfile( pro1 );
252 < #endif
89 >      if (!simParams->getUseInitTime()) {
90 >        currentSnapshot_->setTime(0.0);
91 >      }
92      
93 <    integrateStep(calcPot, calcStress);
94 <
95 < #ifdef PROFILE
96 <    endProfile( pro1 );
97 <
98 <    startProfile( pro2 );
99 < #endif // profile
100 <
101 <    info->incrTime(dt);
263 <
264 <    if (info->setTemp){
265 <      if (info->getTime() >= currThermal){
266 <        thermalize();
267 <        currThermal += thermalTime;
93 >      //create a default ForceManager
94 >      //if the subclass wants to use a different ForceManager, use setForceManager
95 >      forceMan_ = new ForceManager(info);
96 >    
97 >      //set the force manager for thermodynamic integration if specified
98 >      if (simParams->getUseSolidThermInt() || simParams->getUseLiquidThermInt()){
99 >        ThermoIntegrationForceManager* thermoForce_
100 >          = new ThermoIntegrationForceManager(info);
101 >        setForceManager(thermoForce_);
102        }
269    }
270
271    if (info->getTime() >= currSample){
272      dumpOut->writeDump(info->getTime());
273      // write a zAng file to coincide with each dump or eor file
274      if (info->useSolidThermInt && !info->useLiquidThermInt)
275        restOut->writeZangle(info->getTime());
276      currSample += sampleTime;
277    }
278
279    if (info->getTime() >= currStatus){
280      statOut->writeStat(info->getTime());
281      calcPot = 0;
282      calcStress = 0;
283      currStatus += statusTime;
284    }
285
286    if (info->resetIntegrator){
287      if (info->getTime() >= currReset){
288        this->resetIntegrator();
289        currReset += resetTime;
290      }
291    }
103      
104 < #ifdef PROFILE
105 <    endProfile( pro2 );
106 < #endif //profile
104 >      // check for the temperature set flag (velocity scaling)      
105 >      if (simParams->haveTempSet()) {
106 >        needVelocityScaling = simParams->getTempSet();
107  
108 < #ifdef IS_MPI
109 <    strcpy(checkPointMsg, "successfully took a time step.");
110 <    MPIcheckPoint();
111 < #endif // is_mpi
112 <  }
113 <
114 <  dumpOut->writeFinal(info->getTime());
115 <
305 <  // write the file containing the omega values of the final configuration
306 <  if (info->useSolidThermInt && !info->useLiquidThermInt){
307 <    restOut->writeZangle(info->getTime());
308 <    restOut->writeZangle(info->getTime(), inAngle.c_str());
309 <  }
310 <
311 <  delete dumpOut;
312 <  delete statOut;
313 < }
314 <
315 < template<typename T> void Integrator<T>::integrateStep(int calcPot,
316 <                                                       int calcStress){
317 <  // Position full step, and velocity half step
318 <
319 < #ifdef PROFILE
320 <  startProfile(pro3);
321 < #endif //profile
322 <
323 <  //save old state (position, velocity etc)
324 <  preMove();
325 < #ifdef PROFILE
326 <  endProfile(pro3);
327 <
328 <  startProfile(pro4);
329 < #endif // profile
330 <
331 <  moveA();
332 <
333 < #ifdef PROFILE
334 <  endProfile(pro4);
335 <  
336 <  startProfile(pro5);
337 < #endif//profile
338 <
339 <
340 < #ifdef IS_MPI
341 <  strcpy(checkPointMsg, "Succesful moveA\n");
342 <  MPIcheckPoint();
343 < #endif // is_mpi
344 <
345 <  // calc forces
346 <  calcForce(calcPot, calcStress);
347 <
348 < #ifdef IS_MPI
349 <  strcpy(checkPointMsg, "Succesful doForces\n");
350 <  MPIcheckPoint();
351 < #endif // is_mpi
352 <
353 < #ifdef PROFILE
354 <  endProfile( pro5 );
355 <
356 <  startProfile( pro6 );
357 < #endif //profile
358 <
359 <  // finish the velocity  half step
360 <
361 <  moveB();
362 <
363 < #ifdef PROFILE
364 <  endProfile(pro6);
365 < #endif // profile
366 <
367 < #ifdef IS_MPI
368 <  strcpy(checkPointMsg, "Succesful moveB\n");
369 <  MPIcheckPoint();
370 < #endif // is_mpi
371 < }
372 <
373 <
374 < template<typename T> void Integrator<T>::moveA(void){
375 <  size_t i, j;
376 <  DirectionalAtom* dAtom;
377 <  double Tb[3], ji[3];
378 <  double vel[3], pos[3], frc[3];
379 <  double mass;
380 <  double omega;
381 <
382 <  for (i = 0; i < integrableObjects.size() ; i++){
383 <    integrableObjects[i]->getVel(vel);
384 <    integrableObjects[i]->getPos(pos);
385 <    integrableObjects[i]->getFrc(frc);
386 <    //    std::cerr << "f = " << frc[0] << "\t" << frc[1] << "\t" << frc[2] << "\n";
387 <    
388 <    mass = integrableObjects[i]->getMass();
389 <
390 <    for (j = 0; j < 3; j++){
391 <      // velocity half step
392 <      vel[j] += (dt2 * frc[j] / mass) * eConvert;
393 <      // position whole step
394 <      pos[j] += dt * vel[j];
395 <    }
396 <
397 <    integrableObjects[i]->setVel(vel);
398 <    integrableObjects[i]->setPos(pos);
399 <
400 <
401 <    if (integrableObjects[i]->isDirectional()){
108 >        if (simParams->haveTargetTemp()) {
109 >          targetScalingTemp = simParams->getTargetTemp();
110 >        }
111 >        else {
112 >          sprintf(painCave.errMsg,
113 >                  "Integrator Error: Target Temperature is not set\n");
114 >          painCave.isFatal = 1;
115 >          simError();
116  
403      // get and convert the torque to body frame
404
405      integrableObjects[i]->getTrq(Tb);
406
407      //      std::cerr << "t = " << Tb[0] << "\t" << Tb[1] << "\t" << Tb[2] << "\n";
408      integrableObjects[i]->lab2Body(Tb);
409
410      // get the angular momentum, and propagate a half step
411
412      integrableObjects[i]->getJ(ji);
413
414      for (j = 0; j < 3; j++)
415        ji[j] += (dt2 * Tb[j]) * eConvert;
416
417      this->rotationPropagation( integrableObjects[i], ji );
418
419      integrableObjects[i]->setJ(ji);
420    }
421  }
422
423  if(nConstrained)
424    constrainA();
425 }
426
427
428 template<typename T> void Integrator<T>::moveB(void){
429  int i, j;
430  double Tb[3], ji[3];
431  double vel[3], frc[3];
432  double mass;
433
434  for (i = 0; i < integrableObjects.size(); i++){
435    integrableObjects[i]->getVel(vel);
436    integrableObjects[i]->getFrc(frc);
437
438    mass = integrableObjects[i]->getMass();
439
440    // velocity half step
441    for (j = 0; j < 3; j++)
442      vel[j] += (dt2 * frc[j] / mass) * eConvert;
443
444    integrableObjects[i]->setVel(vel);
445
446    if (integrableObjects[i]->isDirectional()){
447
448      // get and convert the torque to body frame
449
450      integrableObjects[i]->getTrq(Tb);
451      integrableObjects[i]->lab2Body(Tb);
452
453      // get the angular momentum, and propagate a half step
454
455      integrableObjects[i]->getJ(ji);
456
457      for (j = 0; j < 3; j++)
458        ji[j] += (dt2 * Tb[j]) * eConvert;
459
460
461      integrableObjects[i]->setJ(ji);
462    }
463  }
464
465  if(nConstrained)
466    constrainB();
467 }
468
469
470 template<typename T> void Integrator<T>::preMove(void){
471  int i, j;
472  double pos[3];
473
474  if (nConstrained){
475    for (i = 0; i < nAtoms; i++){
476      atoms[i]->getPos(pos);
477
478      for (j = 0; j < 3; j++){
479        oldPos[3 * i + j] = pos[j];
480      }
481    }
482  }
483 }
484
485 template<typename T> void Integrator<T>::constrainA(){
486  int i, j;
487  int done;
488  double posA[3], posB[3];
489  double velA[3], velB[3];
490  double pab[3];
491  double rab[3];
492  int a, b, ax, ay, az, bx, by, bz;
493  double rma, rmb;
494  double dx, dy, dz;
495  double rpab;
496  double rabsq, pabsq, rpabsq;
497  double diffsq;
498  double gab;
499  int iteration;
500
501  for (i = 0; i < nAtoms; i++){
502    moving[i] = 0;
503    moved[i] = 1;
504  }
505
506  iteration = 0;
507  done = 0;
508  while (!done && (iteration < maxIteration)){
509    done = 1;
510    for (i = 0; i < nConstrained; i++){
511      a = constrainedA[i];
512      b = constrainedB[i];
513
514      ax = (a * 3) + 0;
515      ay = (a * 3) + 1;
516      az = (a * 3) + 2;
517
518      bx = (b * 3) + 0;
519      by = (b * 3) + 1;
520      bz = (b * 3) + 2;
521
522      if (moved[a] || moved[b]){
523        atoms[a]->getPos(posA);
524        atoms[b]->getPos(posB);
525
526        for (j = 0; j < 3; j++)
527          pab[j] = posA[j] - posB[j];
528
529        //periodic boundary condition
530
531        info->wrapVector(pab);
532
533        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
534
535        rabsq = constrainedDsqr[i];
536        diffsq = rabsq - pabsq;
537
538        // the original rattle code from alan tidesley
539        if (fabs(diffsq) > (tol * rabsq * 2)){
540          rab[0] = oldPos[ax] - oldPos[bx];
541          rab[1] = oldPos[ay] - oldPos[by];
542          rab[2] = oldPos[az] - oldPos[bz];
543
544          info->wrapVector(rab);
545
546          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
547
548          rpabsq = rpab * rpab;
549
550
551          if (rpabsq < (rabsq * -diffsq)){
552 #ifdef IS_MPI
553            a = atoms[a]->getGlobalIndex();
554            b = atoms[b]->getGlobalIndex();
555 #endif //is_mpi
556            sprintf(painCave.errMsg,
557                    "Constraint failure in constrainA at atom %d and %d.\n", a,
558                    b);
559            painCave.isFatal = 1;
560            simError();
561          }
562
563          rma = 1.0 / atoms[a]->getMass();
564          rmb = 1.0 / atoms[b]->getMass();
565
566          gab = diffsq / (2.0 * (rma + rmb) * rpab);
567
568          dx = rab[0] * gab;
569          dy = rab[1] * gab;
570          dz = rab[2] * gab;
571
572          posA[0] += rma * dx;
573          posA[1] += rma * dy;
574          posA[2] += rma * dz;
575
576          atoms[a]->setPos(posA);
577
578          posB[0] -= rmb * dx;
579          posB[1] -= rmb * dy;
580          posB[2] -= rmb * dz;
581
582          atoms[b]->setPos(posB);
583
584          dx = dx / dt;
585          dy = dy / dt;
586          dz = dz / dt;
587
588          atoms[a]->getVel(velA);
589
590          velA[0] += rma * dx;
591          velA[1] += rma * dy;
592          velA[2] += rma * dz;
593
594          atoms[a]->setVel(velA);
595
596          atoms[b]->getVel(velB);
597
598          velB[0] -= rmb * dx;
599          velB[1] -= rmb * dy;
600          velB[2] -= rmb * dz;
601
602          atoms[b]->setVel(velB);
603
604          moving[a] = 1;
605          moving[b] = 1;
606          done = 0;
117          }
118        }
609    }
610
611    for (i = 0; i < nAtoms; i++){
612      moved[i] = moving[i];
613      moving[i] = 0;
614    }
615
616    iteration++;
617  }
618
619  if (!done){
620    sprintf(painCave.errMsg,
621            "Constraint failure in constrainA, too many iterations: %d\n",
622            iteration);
623    painCave.isFatal = 1;
624    simError();
625  }
626
627 }
628
629 template<typename T> void Integrator<T>::constrainB(void){
630  int i, j;
631  int done;
632  double posA[3], posB[3];
633  double velA[3], velB[3];
634  double vxab, vyab, vzab;
635  double rab[3];
636  int a, b, ax, ay, az, bx, by, bz;
637  double rma, rmb;
638  double dx, dy, dz;
639  double rvab;
640  double gab;
641  int iteration;
642
643  for (i = 0; i < nAtoms; i++){
644    moving[i] = 0;
645    moved[i] = 1;
646  }
647
648  done = 0;
649  iteration = 0;
650  while (!done && (iteration < maxIteration)){
651    done = 1;
652
653    for (i = 0; i < nConstrained; i++){
654      a = constrainedA[i];
655      b = constrainedB[i];
656
657      ax = (a * 3) + 0;
658      ay = (a * 3) + 1;
659      az = (a * 3) + 2;
660
661      bx = (b * 3) + 0;
662      by = (b * 3) + 1;
663      bz = (b * 3) + 2;
664
665      if (moved[a] || moved[b]){
666        atoms[a]->getVel(velA);
667        atoms[b]->getVel(velB);
668
669        vxab = velA[0] - velB[0];
670        vyab = velA[1] - velB[1];
671        vzab = velA[2] - velB[2];
672
673        atoms[a]->getPos(posA);
674        atoms[b]->getPos(posB);
675
676        for (j = 0; j < 3; j++)
677          rab[j] = posA[j] - posB[j];
678
679        info->wrapVector(rab);
680
681        rma = 1.0 / atoms[a]->getMass();
682        rmb = 1.0 / atoms[b]->getMass();
683
684        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
685
686        gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
687
688        if (fabs(gab) > tol){
689          dx = rab[0] * gab;
690          dy = rab[1] * gab;
691          dz = rab[2] * gab;
692
693          velA[0] += rma * dx;
694          velA[1] += rma * dy;
695          velA[2] += rma * dz;
696
697          atoms[a]->setVel(velA);
698
699          velB[0] -= rmb * dx;
700          velB[1] -= rmb * dy;
701          velB[2] -= rmb * dz;
702
703          atoms[b]->setVel(velB);
704
705          moving[a] = 1;
706          moving[b] = 1;
707          done = 0;
708        }
709      }
710    }
711
712    for (i = 0; i < nAtoms; i++){
713      moved[i] = moving[i];
714      moving[i] = 0;
715    }
716
717    iteration++;
718  }
719
720  if (!done){
721    sprintf(painCave.errMsg,
722            "Constraint failure in constrainB, too many iterations: %d\n",
723            iteration);
724    painCave.isFatal = 1;
725    simError();
726  }
727 }
728
729 template<typename T> void Integrator<T>::rotationPropagation
730 ( StuntDouble* sd, double ji[3] ){
731
732  double angle;
733  double A[3][3], I[3][3];
734  int i, j, k;
735
736  // use the angular velocities to propagate the rotation matrix a
737  // full time step
738
739  sd->getA(A);
740  sd->getI(I);
741
742  if (sd->isLinear()) {
743
744    i = sd->linearAxis();
745    j = (i+1)%3;
746    k = (i+2)%3;
747
748    angle = dt2 * ji[j] / I[j][j];
749    this->rotate( k, i, angle, ji, A );
750
751    angle = dt * ji[k] / I[k][k];
752    this->rotate( i, j, angle, ji, A);
753
754    angle = dt2 * ji[j] / I[j][j];
755    this->rotate( k, i, angle, ji, A );
756
757  } else {
758    // rotate about the x-axis
759    angle = dt2 * ji[0] / I[0][0];
760    this->rotate( 1, 2, angle, ji, A );
119      
120 <    // rotate about the y-axis
121 <    angle = dt2 * ji[1] / I[1][1];
122 <    this->rotate( 2, 0, angle, ji, A );
120 >      //create a default a velocitizer
121 >      //if the subclass want to using different velocitizer, use setVelocitizer
122 >      velocitizer_ = new Velocitizer(info);
123      
766    // rotate about the z-axis
767    angle = dt * ji[2] / I[2][2];
768    sd->addZangle(angle);
769    this->rotate( 0, 1, angle, ji, A);
770    
771    // rotate about the y-axis
772    angle = dt2 * ji[1] / I[1][1];
773    this->rotate( 2, 0, angle, ji, A );
774    
775    // rotate about the x-axis
776    angle = dt2 * ji[0] / I[0][0];
777    this->rotate( 1, 2, angle, ji, A );
778    
779  }
780  sd->setA( A  );
781 }
782
783 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
784                                                double angle, double ji[3],
785                                                double A[3][3]){
786  int i, j, k;
787  double sinAngle;
788  double cosAngle;
789  double angleSqr;
790  double angleSqrOver4;
791  double top, bottom;
792  double rot[3][3];
793  double tempA[3][3];
794  double tempJ[3];
795
796  // initialize the tempA
797
798  for (i = 0; i < 3; i++){
799    for (j = 0; j < 3; j++){
800      tempA[j][i] = A[i][j];
124      }
802  }
125  
126 <  // initialize the tempJ
127 <
128 <  for (i = 0; i < 3; i++)
129 <    tempJ[i] = ji[i];
130 <
131 <  // initalize rot as a unit matrix
810 <
811 <  rot[0][0] = 1.0;
812 <  rot[0][1] = 0.0;
813 <  rot[0][2] = 0.0;
814 <
815 <  rot[1][0] = 0.0;
816 <  rot[1][1] = 1.0;
817 <  rot[1][2] = 0.0;
818 <
819 <  rot[2][0] = 0.0;
820 <  rot[2][1] = 0.0;
821 <  rot[2][2] = 1.0;
822 <
823 <  // use a small angle aproximation for sin and cosine
824 <
825 <  angleSqr = angle * angle;
826 <  angleSqrOver4 = angleSqr / 4.0;
827 <  top = 1.0 - angleSqrOver4;
828 <  bottom = 1.0 + angleSqrOver4;
829 <
830 <  cosAngle = top / bottom;
831 <  sinAngle = angle / bottom;
832 <
833 <  rot[axes1][axes1] = cosAngle;
834 <  rot[axes2][axes2] = cosAngle;
835 <
836 <  rot[axes1][axes2] = sinAngle;
837 <  rot[axes2][axes1] = -sinAngle;
838 <
839 <  // rotate the momentum acoording to: ji[] = rot[][] * ji[]
840 <
841 <  for (i = 0; i < 3; i++){
842 <    ji[i] = 0.0;
843 <    for (k = 0; k < 3; k++){
844 <      ji[i] += rot[i][k] * tempJ[k];
845 <    }
126 >  Integrator::~Integrator(){
127 >    delete forceMan_;
128 >    delete velocitizer_;
129 >    
130 >    delete dumpWriter;
131 >    delete statWriter;
132    }
133  
848  // rotate the Rotation matrix acording to:
849  //            A[][] = A[][] * transpose(rot[][])
134  
851
852  // NOte for as yet unknown reason, we are performing the
853  // calculation as:
854  //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
855
856  for (i = 0; i < 3; i++){
857    for (j = 0; j < 3; j++){
858      A[j][i] = 0.0;
859      for (k = 0; k < 3; k++){
860        A[j][i] += tempA[i][k] * rot[j][k];
861      }
862    }
863  }
135   }
136  
866 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
867  myFF->doForces(calcPot, calcStress);
868 }
869
870 template<typename T> void Integrator<T>::thermalize(){
871  tStats->velocitize();
872 }
873
874 template<typename T> double Integrator<T>::getConservedQuantity(void){
875  return tStats->getTotalE();
876 }
877 template<typename T> string Integrator<T>::getAdditionalParameters(void){
878  //By default, return a null string
879  //The reason we use string instead of char* is that if we use char*, we will
880  //return a pointer point to local variable which might cause problem
881  return string();
882 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines