ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/integrators/NVT.cpp
(Generate patch)

Comparing trunk/OOPSE-4/src/integrators/NVT.cpp (file contents):
Revision 1625 by tim, Thu Oct 21 16:22:01 2004 UTC vs.
Revision 1930 by gezelter, Wed Jan 12 22:41:40 2005 UTC

# Line 1 | Line 1
1 < #include <math.h>
2 <
3 < #include "primitives/Atom.hpp"
4 < #include "primitives/SRI.hpp"
5 < #include "primitives/AbstractClasses.hpp"
6 < #include "brains/SimInfo.hpp"
7 < #include "UseTheForce/ForceFields.hpp"
8 < #include "brains/Thermo.hpp"
9 < #include "io/ReadWrite.hpp"
10 < #include "integrators/Integrator.hpp"
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > #include "integrators/NVT.hpp"
43 > #include "primitives/Molecule.hpp"
44   #include "utils/simError.h"
45 + #include "utils/OOPSEConstant.hpp"
46  
47 + namespace oopse {
48  
49 < // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
49 > NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6) {
50  
51 < template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff):
17 <  T( theInfo, the_ff )
18 < {
19 <  GenericData* data;
20 <  DoubleGenericData * chiValue;
21 <  DoubleGenericData * integralOfChidtValue;
51 >    Globals* simParams = info_->getSimParams();
52  
53 <  chiValue = NULL;
54 <  integralOfChidtValue = NULL;
53 >    if (simParams->getUseInitXSstate()) {
54 >        Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
55 >        currSnapshot->setChi(0.0);
56 >        currSnapshot->setIntegralOfChiDt(0.0);
57 >    }
58 >    
59 >    if (!simParams->haveTargetTemp()) {
60 >        sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n");
61 >        painCave.isFatal = 1;
62 >        painCave.severity = OOPSE_ERROR;
63 >        simError();
64 >    } else {
65 >        targetTemp_ = simParams->getTargetTemp();
66 >    }
67  
68 <  chi = 0.0;
27 <  have_tau_thermostat = 0;
28 <  have_target_temp = 0;
29 <  have_chi_tolerance = 0;
30 <  integralOfChidt = 0.0;
68 >    // We must set tauThermostat_.
69  
70 +    if (!simParams->haveTauThermostat()) {
71 +        sprintf(painCave.errMsg, "If you use the constant temperature\n"
72 +                                     "\tintegrator, you must set tauThermostat_.\n");
73  
74 <  if( theInfo->useInitXSstate ){
75 <
76 <    // retrieve chi and integralOfChidt from simInfo
77 <    data = info->getProperty(CHIVALUE_ID);
78 <    if(data){
38 <      chiValue = dynamic_cast<DoubleGenericData*>(data);
74 >        painCave.severity = OOPSE_ERROR;
75 >        painCave.isFatal = 1;
76 >        simError();
77 >    } else {
78 >        tauThermostat_ = simParams->getTauThermostat();
79      }
40    
41    data = info->getProperty(INTEGRALOFCHIDT_ID);
42    if(data){
43      integralOfChidtValue = dynamic_cast<DoubleGenericData*>(data);
44    }
45    
46    // chi and integralOfChidt should appear by pair
47    if(chiValue && integralOfChidtValue){
48      chi = chiValue->getData();
49      integralOfChidt = integralOfChidtValue->getData();
50    }
51  }
80  
81 <  oldVel = new double[3*integrableObjects.size()];
54 <  oldJi = new double[3*integrableObjects.size()];
81 >    update();
82   }
83  
84 < template<typename T> NVT<T>::~NVT() {
85 <  delete[] oldVel;
86 <  delete[] oldJi;
84 > void NVT::doUpdate() {
85 >    oldVel_.resize(info_->getNIntegrableObjects());
86 >    oldJi_.resize(info_->getNIntegrableObjects());    
87   }
88 + void NVT::moveA() {
89 +    SimInfo::MoleculeIterator i;
90 +    Molecule::IntegrableObjectIterator  j;
91 +    Molecule* mol;
92 +    StuntDouble* integrableObject;
93 +    Vector3d Tb;
94 +    Vector3d ji;
95 +    double mass;
96 +    Vector3d vel;
97 +    Vector3d pos;
98 +    Vector3d frc;
99  
100 < template<typename T> void NVT<T>::moveA() {
100 >    double chi = currentSnapshot_->getChi();
101 >    double integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
102 >    
103 >    // We need the temperature at time = t for the chi update below:
104  
105 <  int i, j;
65 <  DirectionalAtom* dAtom;
66 <  double Tb[3], ji[3];
67 <  double mass;
68 <  double vel[3], pos[3], frc[3];
105 >    double instTemp = thermo.getTemperature();
106  
107 <  double instTemp;
107 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
108 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
109 >               integrableObject = mol->nextIntegrableObject(j)) {
110  
111 <  // We need the temperature at time = t for the chi update below:
111 >        vel = integrableObject->getVel();
112 >        pos = integrableObject->getPos();
113 >        frc = integrableObject->getFrc();
114  
115 <  instTemp = tStats->getTemperature();
115 >        mass = integrableObject->getMass();
116  
117 <  for( i=0; i < integrableObjects.size(); i++ ){
117 >        // velocity half step  (use chi from previous step here):
118 >        //vel[j] += dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - vel[j]*chi);
119 >        vel += dt2 *OOPSEConstant::energyConvert/mass*frc - dt2*chi*vel;
120 >        
121 >        // position whole step
122 >        //pos[j] += dt * vel[j];
123 >        pos += dt * vel;
124  
125 <    integrableObjects[i]->getVel( vel );
126 <    integrableObjects[i]->getPos( pos );
80 <    integrableObjects[i]->getFrc( frc );
125 >        integrableObject->setVel(vel);
126 >        integrableObject->setPos(pos);
127  
128 <    mass = integrableObjects[i]->getMass();
128 >        if (integrableObject->isDirectional()) {
129  
130 <    for (j=0; j < 3; j++) {
131 <      // velocity half step  (use chi from previous step here):
86 <      vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi);
87 <      // position whole step
88 <      pos[j] += dt * vel[j];
89 <    }
130 >            //convert the torque to body frame
131 >            Tb = integrableObject->lab2Body(integrableObject->getTrq());
132  
133 <    integrableObjects[i]->setVel( vel );
92 <    integrableObjects[i]->setPos( pos );
133 >            // get the angular momentum, and propagate a half step
134  
135 <    if( integrableObjects[i]->isDirectional() ){
135 >            ji = integrableObject->getJ();
136  
137 <      // get and convert the torque to body frame
137 >            //ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi);
138 >            ji += dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *ji;
139 >            rotAlgo->rotate(integrableObject, ji, dt);
140  
141 <      integrableObjects[i]->getTrq( Tb );
142 <      integrableObjects[i]->lab2Body( Tb );
141 >            integrableObject->setJ(ji);
142 >        }
143 >    }
144  
101      // get the angular momentum, and propagate a half step
102
103      integrableObjects[i]->getJ( ji );
104
105      for (j=0; j < 3; j++)
106        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
107
108      this->rotationPropagation( integrableObjects[i], ji );
109
110      integrableObjects[i]->setJ( ji );
145      }
146 <  }
147 <  
114 <  if(nConstrained)
115 <    constrainA();
146 >    
147 >    rattle->constraintA();
148  
149 <  // Finally, evolve chi a half step (just like a velocity) using
150 <  // temperature at time t, not time t+dt/2
149 >    // Finally, evolve chi a half step (just like a velocity) using
150 >    // temperature at time t, not time t+dt/2
151  
152 <  //std::cerr << "targetTemp = " << targetTemp << " instTemp = " << instTemp << " tauThermostat = " << tauThermostat << " integral of Chi = " << integralOfChidt << "\n";
153 <  
154 <  chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat);
123 <  integralOfChidt += chi*dt2;
152 >    
153 >    chi += dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_);
154 >    integralOfChidt += chi * dt2;
155  
156 +    currentSnapshot_->setChi(chi);
157 +    currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
158   }
159  
160 < template<typename T> void NVT<T>::moveB( void ){
161 <  int i, j, k;
162 <  double Tb[3], ji[3];
163 <  double vel[3], frc[3];
164 <  double mass;
165 <  double instTemp;
166 <  double oldChi, prevChi;
160 > void NVT::moveB() {
161 >    SimInfo::MoleculeIterator i;
162 >    Molecule::IntegrableObjectIterator  j;
163 >    Molecule* mol;
164 >    StuntDouble* integrableObject;
165 >    
166 >    Vector3d Tb;
167 >    Vector3d ji;    
168 >    Vector3d vel;
169 >    Vector3d frc;
170 >    double mass;
171 >    double instTemp;
172 >    int index;
173 >    // Set things up for the iteration:
174  
175 <  // Set things up for the iteration:
176 <
177 <  oldChi = chi;
175 >    double chi = currentSnapshot_->getChi();
176 >    double oldChi = chi;
177 >    double  prevChi;
178 >    double integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
179  
180 <  for( i=0; i < integrableObjects.size(); i++ ){
180 >    index = 0;
181 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
182 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
183 >               integrableObject = mol->nextIntegrableObject(j)) {
184 >                oldVel_[index] = integrableObject->getVel();
185 >                oldJi_[index] = integrableObject->getJ();                
186  
187 <    integrableObjects[i]->getVel( vel );
188 <
189 <    for (j=0; j < 3; j++)
144 <      oldVel[3*i + j]  = vel[j];
145 <
146 <    if( integrableObjects[i]->isDirectional() ){
147 <
148 <      integrableObjects[i]->getJ( ji );
149 <
150 <      for (j=0; j < 3; j++)
151 <        oldJi[3*i + j] = ji[j];
152 <
187 >                ++index;    
188 >        }
189 >          
190      }
154  }
191  
192 <  // do the iteration:
192 >    // do the iteration:
193  
194 <  for (k=0; k < 4; k++) {
194 >    for(int k = 0; k < maxIterNum_; k++) {
195 >        index = 0;
196 >        instTemp = thermo.getTemperature();
197  
198 <    instTemp = tStats->getTemperature();
198 >        // evolve chi another half step using the temperature at t + dt/2
199  
200 <    // evolve chi another half step using the temperature at t + dt/2
200 >        prevChi = chi;
201 >        chi = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_);
202  
203 <    prevChi = chi;
204 <    chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) /
205 <      (tauThermostat*tauThermostat);
203 >        for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
204 >            for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
205 >                   integrableObject = mol->nextIntegrableObject(j)) {
206  
207 <    for( i=0; i < integrableObjects.size(); i++ ){
207 >                frc = integrableObject->getFrc();
208 >                vel = integrableObject->getVel();
209  
210 <      integrableObjects[i]->getFrc( frc );
171 <      integrableObjects[i]->getVel(vel);
210 >                mass = integrableObject->getMass();
211  
212 <      mass = integrableObjects[i]->getMass();
212 >                // velocity half step
213 >                //for(j = 0; j < 3; j++)
214 >                //    vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - oldVel_[3*i + j]*chi);
215 >                vel = oldVel_[index] + dt2/mass*OOPSEConstant::energyConvert * frc - dt2*chi*oldVel_[index];
216 >            
217 >                integrableObject->setVel(vel);
218  
219 <      // velocity half step
176 <      for (j=0; j < 3; j++)
177 <        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi);
219 >                if (integrableObject->isDirectional()) {
220  
221 <      integrableObjects[i]->setVel( vel );
221 >                    // get and convert the torque to body frame
222  
223 <      if( integrableObjects[i]->isDirectional() ){
223 >                    Tb =  integrableObject->lab2Body(integrableObject->getTrq());
224  
225 <        // get and convert the torque to body frame
225 >                    //for(j = 0; j < 3; j++)
226 >                    //    ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi_[3*i+j]*chi);
227 >                    ji = oldJi_[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *oldJi_[index];
228  
229 <        integrableObjects[i]->getTrq( Tb );
230 <        integrableObjects[i]->lab2Body( Tb );
229 >                    integrableObject->setJ(ji);
230 >                }
231  
188        for (j=0; j < 3; j++)
189          ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
232  
233 <        integrableObjects[i]->setJ( ji );
234 <      }
235 <    }
233 >                ++index;
234 >            }
235 >        }
236      
195    if(nConstrained)
196      constrainB();
237  
238 <    if (fabs(prevChi - chi) <= chiTolerance) break;
199 <  }
238 >        rattle->constraintB();
239  
240 <  integralOfChidt += dt2*chi;
241 < }
240 >        if (fabs(prevChi - chi) <= chiTolerance_)
241 >            break;
242  
243 < template<typename T> void NVT<T>::resetIntegrator( void ){
243 >    }
244  
245 <  chi = 0.0;
207 <  integralOfChidt = 0.0;
208 < }
245 >    integralOfChidt += dt2 * chi;
246  
247 < template<typename T> int NVT<T>::readyCheck() {
248 <
212 <  //check parent's readyCheck() first
213 <  if (T::readyCheck() == -1)
214 <    return -1;
215 <
216 <  // First check to see if we have a target temperature.
217 <  // Not having one is fatal.
218 <
219 <  if (!have_target_temp) {
220 <    sprintf( painCave.errMsg,
221 <             "You can't use the NVT integrator without a targetTemp!\n"
222 <             );
223 <    painCave.isFatal = 1;
224 <    painCave.severity = OOPSE_ERROR;
225 <    simError();
226 <    return -1;
227 <  }
228 <
229 <  // We must set tauThermostat.
230 <
231 <  if (!have_tau_thermostat) {
232 <    sprintf( painCave.errMsg,
233 <             "If you use the constant temperature\n"
234 <             "\tintegrator, you must set tauThermostat.\n");
235 <    painCave.severity = OOPSE_ERROR;
236 <    painCave.isFatal = 1;
237 <    simError();
238 <    return -1;
239 <  }
240 <
241 <  if (!have_chi_tolerance) {
242 <    sprintf( painCave.errMsg,
243 <             "In NVT integrator: setting chi tolerance to 1e-6\n");
244 <    chiTolerance = 1e-6;
245 <    have_chi_tolerance = 1;
246 <    painCave.severity = OOPSE_INFO;
247 <    painCave.isFatal = 0;
248 <    simError();
249 <  }
250 <
251 <  return 1;
252 <
247 >    currentSnapshot_->setChi(chi);
248 >    currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
249   }
250  
255 template<typename T> double NVT<T>::getConservedQuantity(void){
251  
252 <  double conservedQuantity;
258 <  double fkBT;
259 <  double Energy;
260 <  double thermostat_kinetic;
261 <  double thermostat_potential;
252 > double NVT::calcConservedQuantity() {
253  
254 <  fkBT = (double)(info->ndf) * kB * targetTemp;
254 >    double chi = currentSnapshot_->getChi();
255 >    double integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
256 >    double conservedQuantity;
257 >    double fkBT;
258 >    double Energy;
259 >    double thermostat_kinetic;
260 >    double thermostat_potential;
261 >    
262 >    fkBT = info_->getNdf() *OOPSEConstant::kB *targetTemp_;
263  
264 <  Energy = tStats->getTotalE();
264 >    Energy = thermo.getTotalE();
265  
266 <  thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
268 <    (2.0 * eConvert);
266 >    thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * OOPSEConstant::energyConvert);
267  
268 <  thermostat_potential = fkBT * integralOfChidt / eConvert;
268 >    thermostat_potential = fkBT * integralOfChidt / OOPSEConstant::energyConvert;
269  
270 <  conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
270 >    conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
271  
272 <  return conservedQuantity;
272 >    return conservedQuantity;
273   }
274  
277 template<typename T> string NVT<T>::getAdditionalParameters(void){
278  string parameters;
279  const int BUFFERSIZE = 2000; // size of the read buffer
280  char buffer[BUFFERSIZE];
275  
276 <  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
283 <  parameters += buffer;
284 <
285 <  return parameters;
286 < }
276 > }//end namespace oopse

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines