ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/integrators/SMIPDForceManager.cpp
Revision: 3458
Committed: Fri Oct 3 17:47:08 2008 UTC (15 years, 8 months ago) by chuckv
File size: 20944 byte(s)
Log Message:
Fixed makefile.

File Contents

# User Rev Content
1 chuckv 3450 /*
2     * Copyright (c) 2008 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41     #include <fstream>
42     #include <iostream>
43     #include "integrators/SMIPDForceManager.hpp"
44     #include "math/CholeskyDecomposition.hpp"
45     #include "utils/OOPSEConstant.hpp"
46     #include "hydrodynamics/Sphere.hpp"
47     #include "hydrodynamics/Ellipsoid.hpp"
48     #include "utils/ElementsTable.hpp"
49     #include "math/ConvexHull.hpp"
50     #include "math/Triangle.hpp"
51    
52    
53     namespace oopse {
54    
55     SMIPDForceManager::SMIPDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) {
56     simParams = info->getSimParams();
57     veloMunge = new Velocitizer(info);
58    
59     // Create Hull, Convex Hull for now, other options later.
60     surfaceMesh_ = new ConvexHull();
61    
62    
63     /* Check that the simulation has target pressure and target
64     temperature set*/
65    
66     if (!simParams->haveTargetTemp()) {
67     sprintf(painCave.errMsg, "You can't use the SMIPDynamics integrator without a targetTemp!\n");
68     painCave.isFatal = 1;
69     painCave.severity = OOPSE_ERROR;
70     simError();
71     } else {
72     targetTemp_ = simParams->getTargetTemp();
73     }
74    
75     if (!simParams->haveTargetPressure()) {
76     sprintf(painCave.errMsg, "SMIPDynamics error: You can't use the SMIPD integrator\n"
77     " without a targetPressure!\n");
78    
79     painCave.isFatal = 1;
80     simError();
81     } else {
82     targetPressure_ = simParams->getTargetPressure();
83     }
84    
85    
86     if (simParams->getUsePeriodicBoundaryConditions()) {
87     sprintf(painCave.errMsg, "SMIPDynamics error: You can't use the SMIPD integrator\n"
88     " with periodic boundary conditions !\n");
89    
90     painCave.isFatal = 1;
91     simError();
92     }
93    
94    
95     // Build the hydroProp map:
96     std::map<std::string, HydroProp*> hydroPropMap;
97    
98     Molecule* mol;
99     StuntDouble* integrableObject;
100     SimInfo::MoleculeIterator i;
101     Molecule::IntegrableObjectIterator j;
102     bool needHydroPropFile = false;
103    
104     for (mol = info->beginMolecule(i); mol != NULL;
105     mol = info->nextMolecule(i)) {
106     for (integrableObject = mol->beginIntegrableObject(j);
107     integrableObject != NULL;
108     integrableObject = mol->nextIntegrableObject(j)) {
109    
110     if (integrableObject->isRigidBody()) {
111     RigidBody* rb = static_cast<RigidBody*>(integrableObject);
112     if (rb->getNumAtoms() > 1) needHydroPropFile = true;
113     }
114    
115     }
116     }
117    
118    
119     if (needHydroPropFile) {
120     if (simParams->haveHydroPropFile()) {
121     hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
122     } else {
123     sprintf( painCave.errMsg,
124     "HydroPropFile must be set to a file name if Langevin Dynamics\n"
125     "\tis specified for rigidBodies which contain more than one atom\n"
126     "\tTo create a HydroPropFile, run the \"Hydro\" program.\n");
127     painCave.severity = OOPSE_ERROR;
128     painCave.isFatal = 1;
129     simError();
130     }
131    
132     for (mol = info->beginMolecule(i); mol != NULL;
133     mol = info->nextMolecule(i)) {
134     for (integrableObject = mol->beginIntegrableObject(j);
135     integrableObject != NULL;
136     integrableObject = mol->nextIntegrableObject(j)) {
137    
138     std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
139     if (iter != hydroPropMap.end()) {
140     hydroProps_.push_back(iter->second);
141     } else {
142     sprintf( painCave.errMsg,
143     "Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str());
144     painCave.severity = OOPSE_ERROR;
145     painCave.isFatal = 1;
146     simError();
147     }
148     }
149     }
150     } else {
151    
152     std::map<std::string, HydroProp*> hydroPropMap;
153     for (mol = info->beginMolecule(i); mol != NULL;
154     mol = info->nextMolecule(i)) {
155     for (integrableObject = mol->beginIntegrableObject(j);
156     integrableObject != NULL;
157     integrableObject = mol->nextIntegrableObject(j)) {
158     Shape* currShape = NULL;
159    
160     if (integrableObject->isAtom()){
161     Atom* atom = static_cast<Atom*>(integrableObject);
162     AtomType* atomType = atom->getAtomType();
163     if (atomType->isGayBerne()) {
164     DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType);
165     GenericData* data = dAtomType->getPropertyByName("GayBerne");
166     if (data != NULL) {
167     GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data);
168    
169     if (gayBerneData != NULL) {
170     GayBerneParam gayBerneParam = gayBerneData->getData();
171     currShape = new Ellipsoid(V3Zero,
172     gayBerneParam.GB_l / 2.0,
173     gayBerneParam.GB_d / 2.0,
174     Mat3x3d::identity());
175     } else {
176     sprintf( painCave.errMsg,
177     "Can not cast GenericData to GayBerneParam\n");
178     painCave.severity = OOPSE_ERROR;
179     painCave.isFatal = 1;
180     simError();
181     }
182     } else {
183     sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n");
184     painCave.severity = OOPSE_ERROR;
185     painCave.isFatal = 1;
186     simError();
187     }
188     } else {
189     if (atomType->isLennardJones()){
190     GenericData* data = atomType->getPropertyByName("LennardJones");
191     if (data != NULL) {
192     LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
193     if (ljData != NULL) {
194     LJParam ljParam = ljData->getData();
195     currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0);
196     } else {
197     sprintf( painCave.errMsg,
198     "Can not cast GenericData to LJParam\n");
199     painCave.severity = OOPSE_ERROR;
200     painCave.isFatal = 1;
201     simError();
202     }
203     }
204     } else {
205     int aNum = etab.GetAtomicNum((atom->getType()).c_str());
206     if (aNum != 0) {
207     currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
208     } else {
209     sprintf( painCave.errMsg,
210     "Could not find atom type in default element.txt\n");
211     painCave.severity = OOPSE_ERROR;
212     painCave.isFatal = 1;
213     simError();
214     }
215     }
216     }
217     }
218     HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp());
219     std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
220     if (iter != hydroPropMap.end())
221     hydroProps_.push_back(iter->second);
222     else {
223     currHydroProp->complete();
224     hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp));
225     hydroProps_.push_back(currHydroProp);
226     }
227     }
228     }
229     }
230    
231     /* Compute hull first time through to get the area of t=0*/
232    
233     /* Build a vector of integrable objects to determine if the are surface atoms */
234     for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
235     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
236     integrableObject = mol->nextIntegrableObject(j)) {
237     localSites_.push_back(integrableObject);
238     }
239     }
240    
241     surfaceMesh_->computeHull(localSites_);
242     Area0_ = surfaceMesh_->getArea();
243 chuckv 3458 //variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt();
244    
245 chuckv 3450 }
246    
247     std::map<std::string, HydroProp*> SMIPDForceManager::parseFrictionFile(const std::string& filename) {
248     std::map<std::string, HydroProp*> props;
249     std::ifstream ifs(filename.c_str());
250     if (ifs.is_open()) {
251    
252     }
253    
254     const unsigned int BufferSize = 65535;
255     char buffer[BufferSize];
256     while (ifs.getline(buffer, BufferSize)) {
257     HydroProp* currProp = new HydroProp(buffer);
258     props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp));
259     }
260    
261     return props;
262     }
263    
264     void SMIPDForceManager::postCalculation(bool needStress){
265     SimInfo::MoleculeIterator i;
266     Molecule::IntegrableObjectIterator j;
267     Molecule* mol;
268     StuntDouble* integrableObject;
269     RealType mass;
270     Vector3d pos;
271     Vector3d frc;
272     Mat3x3d A;
273     Mat3x3d Atrans;
274     Vector3d Tb;
275     Vector3d ji;
276     unsigned int index = 0;
277     int fdf;
278    
279     fdf = 0;
280 chuckv 3458
281 chuckv 3450 /*Compute surface Mesh*/
282     surfaceMesh_->computeHull(localSites_);
283    
284     /* Get area and number of surface stunt doubles and compute new variance */
285 chuckv 3458 //RealType area = surfaceMesh_->getArea();
286     //RealType nSurfaceSDs = surfaceMesh_->getNs();
287 chuckv 3450
288 chuckv 3458 // std::cerr << "Surface Area is: " << area << " nSurfaceSDs is: " << nSurfaceSDs << std::endl;
289    
290 chuckv 3450 /* Compute variance for random forces */
291    
292 chuckv 3458 // variance_ = sqrt(2.0*NumericConstant::PI)*(targetPressure_*area/nSurfaceSDs);
293    
294     // std::vector<Triangle*> sMesh = surfaceMesh_->getMesh();
295     // std::vector<RealType> randNums = genTriangleForces(sMesh.size(),variance_);
296    
297 chuckv 3450 /* Loop over the mesh faces and apply random force to each of the faces*/
298 chuckv 3458
299    
300     // std::vector<Triangle*>::iterator face;
301     // std::vector<StuntDouble*>::iterator vertex;
302     /*
303 chuckv 3450 for (face = sMesh.begin(); face != sMesh.end(); ++face){
304    
305     Triangle* thisTriangle = *face;
306     std::vector<StuntDouble*> vertexSDs = thisTriangle->getVertices();
307    
308     for (vertex = vertexSDs.begin(); vertex != vertexSDs.end(); ++vertex){
309 chuckv 3458 std::cout << (*vertex)->getPos() << std::endl;
310     // mass = integrableObject->getMass();
311 chuckv 3450
312 chuckv 3458 // integrableObject->addFrc(randomForce);
313 chuckv 3450 }
314    
315    
316     }
317 chuckv 3458 */
318     /*
319 chuckv 3450 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
320    
321    
322     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
323     integrableObject = mol->nextIntegrableObject(j)) {
324    
325     mass = integrableObject->getMass();
326     if (integrableObject->isDirectional()){
327    
328     // preliminaries for directional objects:
329    
330     A = integrableObject->getA();
331     Atrans = A.transpose();
332     Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();
333    
334     //apply random force and torque at center of resistance
335    
336     Vector3d randomForceBody;
337     Vector3d randomTorqueBody;
338     genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
339     Vector3d randomForceLab = Atrans * randomForceBody;
340     Vector3d randomTorqueLab = Atrans * randomTorqueBody;
341     integrableObject->addFrc(randomForceLab);
342     integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab ));
343    
344     Mat3x3d I = integrableObject->getI();
345     Vector3d omegaBody;
346    
347     // What remains contains velocity explicitly, but the velocity required
348     // is at the full step: v(t + h), while we have initially the velocity
349     // at the half step: v(t + h/2). We need to iterate to converge the
350     // friction force and friction torque vectors.
351    
352     // this is the velocity at the half-step:
353    
354     Vector3d vel =integrableObject->getVel();
355     Vector3d angMom = integrableObject->getJ();
356    
357     //estimate velocity at full-step using everything but friction forces:
358    
359     frc = integrableObject->getFrc();
360     Vector3d velStep = vel + (dt2_ /mass * OOPSEConstant::energyConvert) * frc;
361    
362     Tb = integrableObject->lab2Body(integrableObject->getTrq());
363     Vector3d angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * Tb;
364    
365     Vector3d omegaLab;
366     Vector3d vcdLab;
367     Vector3d vcdBody;
368     Vector3d frictionForceBody;
369     Vector3d frictionForceLab(0.0);
370     Vector3d oldFFL; // used to test for convergence
371     Vector3d frictionTorqueBody(0.0);
372     Vector3d oldFTB; // used to test for convergence
373     Vector3d frictionTorqueLab;
374     RealType fdot;
375     RealType tdot;
376    
377     //iteration starts here:
378    
379     for (int k = 0; k < maxIterNum_; k++) {
380    
381     if (integrableObject->isLinear()) {
382     int linearAxis = integrableObject->linearAxis();
383     int l = (linearAxis +1 )%3;
384     int m = (linearAxis +2 )%3;
385     omegaBody[l] = angMomStep[l] /I(l, l);
386     omegaBody[m] = angMomStep[m] /I(m, m);
387    
388     } else {
389     omegaBody[0] = angMomStep[0] /I(0, 0);
390     omegaBody[1] = angMomStep[1] /I(1, 1);
391     omegaBody[2] = angMomStep[2] /I(2, 2);
392     }
393    
394     omegaLab = Atrans * omegaBody;
395    
396     // apply friction force and torque at center of resistance
397    
398     vcdLab = velStep + cross(omegaLab, rcrLab);
399     vcdBody = A * vcdLab;
400     frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
401     oldFFL = frictionForceLab;
402     frictionForceLab = Atrans * frictionForceBody;
403     oldFTB = frictionTorqueBody;
404     frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
405     frictionTorqueLab = Atrans * frictionTorqueBody;
406    
407     // re-estimate velocities at full-step using friction forces:
408    
409     velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForceLab);
410     angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * (Tb + frictionTorqueBody);
411    
412     // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
413    
414     fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
415     tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
416    
417     if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
418     break; // iteration ends here
419     }
420    
421     integrableObject->addFrc(frictionForceLab);
422     integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
423    
424    
425     } else {
426     //spherical atom
427    
428     Vector3d randomForce;
429     Vector3d randomTorque;
430     genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
431     integrableObject->addFrc(randomForce);
432    
433     // What remains contains velocity explicitly, but the velocity required
434     // is at the full step: v(t + h), while we have initially the velocity
435     // at the half step: v(t + h/2). We need to iterate to converge the
436     // friction force vector.
437    
438     // this is the velocity at the half-step:
439    
440     Vector3d vel =integrableObject->getVel();
441    
442     //estimate velocity at full-step using everything but friction forces:
443    
444     frc = integrableObject->getFrc();
445     Vector3d velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * frc;
446    
447     Vector3d frictionForce(0.0);
448     Vector3d oldFF; // used to test for convergence
449     RealType fdot;
450    
451     //iteration starts here:
452    
453     for (int k = 0; k < maxIterNum_; k++) {
454    
455     oldFF = frictionForce;
456     frictionForce = -hydroProps_[index]->getXitt() * velStep;
457    
458     // re-estimate velocities at full-step using friction forces:
459    
460     velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForce);
461    
462     // check for convergence (if the vector has converged, fdot will be 1.0):
463    
464     fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
465    
466     if (fabs(1.0 - fdot) <= forceTolerance_)
467     break; // iteration ends here
468     }
469    
470     integrableObject->addFrc(frictionForce);
471    
472    
473     }
474    
475     ++index;
476    
477     }
478     }
479 chuckv 3458 */
480     // info_->setFdf(fdf);
481 chuckv 3450 // veloMunge->removeComDrift();
482     // Remove angular drift if we are not using periodic boundary conditions.
483     //if(!simParams->getUsePeriodicBoundaryConditions())
484     // veloMunge->removeAngularDrift();
485    
486 chuckv 3458 //ForceManager::postCalculation(needStress);
487 chuckv 3450 }
488    
489     void SMIPDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) {
490    
491    
492     Vector<RealType, 6> Z;
493     Vector<RealType, 6> generalForce;
494    
495     Z[0] = randNumGen_.randNorm(0, variance);
496     Z[1] = randNumGen_.randNorm(0, variance);
497     Z[2] = randNumGen_.randNorm(0, variance);
498     Z[3] = randNumGen_.randNorm(0, variance);
499     Z[4] = randNumGen_.randNorm(0, variance);
500     Z[5] = randNumGen_.randNorm(0, variance);
501    
502     generalForce = hydroProps_[index]->getS()*Z;
503    
504     force[0] = generalForce[0];
505     force[1] = generalForce[1];
506     force[2] = generalForce[2];
507     torque[0] = generalForce[3];
508     torque[1] = generalForce[4];
509     torque[2] = generalForce[5];
510    
511     }
512     std::vector<RealType> SMIPDForceManager::genTriangleForces(int nTriangles, RealType variance) {
513    
514     // zero fill the random vector before starting:
515     std::vector<RealType> gaussRand;
516     gaussRand.resize(nTriangles);
517     std::fill(gaussRand.begin(), gaussRand.end(), 0.0);
518    
519    
520     #ifdef IS_MPI
521     if (worldRank == 0) {
522     #endif
523     for (int i = 0; i < nTriangles; i++) {
524     gaussRand[i] = fabs(randNumGen_.randNorm(0.0, 1.0));
525     }
526     #ifdef IS_MPI
527     }
528     #endif
529    
530     // push these out to the other processors
531    
532     #ifdef IS_MPI
533     if (worldRank == 0) {
534     MPI_Bcast(&gaussRand[0], nTriangles, MPI_REAL, 0, MPI_COMM_WORLD);
535     } else {
536     MPI_Bcast(&gaussRand[0], nTriangles, MPI_REAL, 0, MPI_COMM_WORLD);
537     }
538     #endif
539    
540     for (int i = 0; i < nTriangles; i++) {
541     gaussRand[i] = gaussRand[i] * variance;
542     }
543    
544     return gaussRand;
545     }
546    
547     }

Properties

Name Value
svn:executable *