ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/integrators/SMIPDForceManager.cpp
Revision: 3458
Committed: Fri Oct 3 17:47:08 2008 UTC (15 years, 8 months ago) by chuckv
File size: 20944 byte(s)
Log Message:
Fixed makefile.

File Contents

# Content
1 /*
2 * Copyright (c) 2008 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41 #include <fstream>
42 #include <iostream>
43 #include "integrators/SMIPDForceManager.hpp"
44 #include "math/CholeskyDecomposition.hpp"
45 #include "utils/OOPSEConstant.hpp"
46 #include "hydrodynamics/Sphere.hpp"
47 #include "hydrodynamics/Ellipsoid.hpp"
48 #include "utils/ElementsTable.hpp"
49 #include "math/ConvexHull.hpp"
50 #include "math/Triangle.hpp"
51
52
53 namespace oopse {
54
55 SMIPDForceManager::SMIPDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) {
56 simParams = info->getSimParams();
57 veloMunge = new Velocitizer(info);
58
59 // Create Hull, Convex Hull for now, other options later.
60 surfaceMesh_ = new ConvexHull();
61
62
63 /* Check that the simulation has target pressure and target
64 temperature set*/
65
66 if (!simParams->haveTargetTemp()) {
67 sprintf(painCave.errMsg, "You can't use the SMIPDynamics integrator without a targetTemp!\n");
68 painCave.isFatal = 1;
69 painCave.severity = OOPSE_ERROR;
70 simError();
71 } else {
72 targetTemp_ = simParams->getTargetTemp();
73 }
74
75 if (!simParams->haveTargetPressure()) {
76 sprintf(painCave.errMsg, "SMIPDynamics error: You can't use the SMIPD integrator\n"
77 " without a targetPressure!\n");
78
79 painCave.isFatal = 1;
80 simError();
81 } else {
82 targetPressure_ = simParams->getTargetPressure();
83 }
84
85
86 if (simParams->getUsePeriodicBoundaryConditions()) {
87 sprintf(painCave.errMsg, "SMIPDynamics error: You can't use the SMIPD integrator\n"
88 " with periodic boundary conditions !\n");
89
90 painCave.isFatal = 1;
91 simError();
92 }
93
94
95 // Build the hydroProp map:
96 std::map<std::string, HydroProp*> hydroPropMap;
97
98 Molecule* mol;
99 StuntDouble* integrableObject;
100 SimInfo::MoleculeIterator i;
101 Molecule::IntegrableObjectIterator j;
102 bool needHydroPropFile = false;
103
104 for (mol = info->beginMolecule(i); mol != NULL;
105 mol = info->nextMolecule(i)) {
106 for (integrableObject = mol->beginIntegrableObject(j);
107 integrableObject != NULL;
108 integrableObject = mol->nextIntegrableObject(j)) {
109
110 if (integrableObject->isRigidBody()) {
111 RigidBody* rb = static_cast<RigidBody*>(integrableObject);
112 if (rb->getNumAtoms() > 1) needHydroPropFile = true;
113 }
114
115 }
116 }
117
118
119 if (needHydroPropFile) {
120 if (simParams->haveHydroPropFile()) {
121 hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
122 } else {
123 sprintf( painCave.errMsg,
124 "HydroPropFile must be set to a file name if Langevin Dynamics\n"
125 "\tis specified for rigidBodies which contain more than one atom\n"
126 "\tTo create a HydroPropFile, run the \"Hydro\" program.\n");
127 painCave.severity = OOPSE_ERROR;
128 painCave.isFatal = 1;
129 simError();
130 }
131
132 for (mol = info->beginMolecule(i); mol != NULL;
133 mol = info->nextMolecule(i)) {
134 for (integrableObject = mol->beginIntegrableObject(j);
135 integrableObject != NULL;
136 integrableObject = mol->nextIntegrableObject(j)) {
137
138 std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
139 if (iter != hydroPropMap.end()) {
140 hydroProps_.push_back(iter->second);
141 } else {
142 sprintf( painCave.errMsg,
143 "Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str());
144 painCave.severity = OOPSE_ERROR;
145 painCave.isFatal = 1;
146 simError();
147 }
148 }
149 }
150 } else {
151
152 std::map<std::string, HydroProp*> hydroPropMap;
153 for (mol = info->beginMolecule(i); mol != NULL;
154 mol = info->nextMolecule(i)) {
155 for (integrableObject = mol->beginIntegrableObject(j);
156 integrableObject != NULL;
157 integrableObject = mol->nextIntegrableObject(j)) {
158 Shape* currShape = NULL;
159
160 if (integrableObject->isAtom()){
161 Atom* atom = static_cast<Atom*>(integrableObject);
162 AtomType* atomType = atom->getAtomType();
163 if (atomType->isGayBerne()) {
164 DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType);
165 GenericData* data = dAtomType->getPropertyByName("GayBerne");
166 if (data != NULL) {
167 GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data);
168
169 if (gayBerneData != NULL) {
170 GayBerneParam gayBerneParam = gayBerneData->getData();
171 currShape = new Ellipsoid(V3Zero,
172 gayBerneParam.GB_l / 2.0,
173 gayBerneParam.GB_d / 2.0,
174 Mat3x3d::identity());
175 } else {
176 sprintf( painCave.errMsg,
177 "Can not cast GenericData to GayBerneParam\n");
178 painCave.severity = OOPSE_ERROR;
179 painCave.isFatal = 1;
180 simError();
181 }
182 } else {
183 sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n");
184 painCave.severity = OOPSE_ERROR;
185 painCave.isFatal = 1;
186 simError();
187 }
188 } else {
189 if (atomType->isLennardJones()){
190 GenericData* data = atomType->getPropertyByName("LennardJones");
191 if (data != NULL) {
192 LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
193 if (ljData != NULL) {
194 LJParam ljParam = ljData->getData();
195 currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0);
196 } else {
197 sprintf( painCave.errMsg,
198 "Can not cast GenericData to LJParam\n");
199 painCave.severity = OOPSE_ERROR;
200 painCave.isFatal = 1;
201 simError();
202 }
203 }
204 } else {
205 int aNum = etab.GetAtomicNum((atom->getType()).c_str());
206 if (aNum != 0) {
207 currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
208 } else {
209 sprintf( painCave.errMsg,
210 "Could not find atom type in default element.txt\n");
211 painCave.severity = OOPSE_ERROR;
212 painCave.isFatal = 1;
213 simError();
214 }
215 }
216 }
217 }
218 HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp());
219 std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
220 if (iter != hydroPropMap.end())
221 hydroProps_.push_back(iter->second);
222 else {
223 currHydroProp->complete();
224 hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp));
225 hydroProps_.push_back(currHydroProp);
226 }
227 }
228 }
229 }
230
231 /* Compute hull first time through to get the area of t=0*/
232
233 /* Build a vector of integrable objects to determine if the are surface atoms */
234 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
235 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
236 integrableObject = mol->nextIntegrableObject(j)) {
237 localSites_.push_back(integrableObject);
238 }
239 }
240
241 surfaceMesh_->computeHull(localSites_);
242 Area0_ = surfaceMesh_->getArea();
243 //variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt();
244
245 }
246
247 std::map<std::string, HydroProp*> SMIPDForceManager::parseFrictionFile(const std::string& filename) {
248 std::map<std::string, HydroProp*> props;
249 std::ifstream ifs(filename.c_str());
250 if (ifs.is_open()) {
251
252 }
253
254 const unsigned int BufferSize = 65535;
255 char buffer[BufferSize];
256 while (ifs.getline(buffer, BufferSize)) {
257 HydroProp* currProp = new HydroProp(buffer);
258 props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp));
259 }
260
261 return props;
262 }
263
264 void SMIPDForceManager::postCalculation(bool needStress){
265 SimInfo::MoleculeIterator i;
266 Molecule::IntegrableObjectIterator j;
267 Molecule* mol;
268 StuntDouble* integrableObject;
269 RealType mass;
270 Vector3d pos;
271 Vector3d frc;
272 Mat3x3d A;
273 Mat3x3d Atrans;
274 Vector3d Tb;
275 Vector3d ji;
276 unsigned int index = 0;
277 int fdf;
278
279 fdf = 0;
280
281 /*Compute surface Mesh*/
282 surfaceMesh_->computeHull(localSites_);
283
284 /* Get area and number of surface stunt doubles and compute new variance */
285 //RealType area = surfaceMesh_->getArea();
286 //RealType nSurfaceSDs = surfaceMesh_->getNs();
287
288 // std::cerr << "Surface Area is: " << area << " nSurfaceSDs is: " << nSurfaceSDs << std::endl;
289
290 /* Compute variance for random forces */
291
292 // variance_ = sqrt(2.0*NumericConstant::PI)*(targetPressure_*area/nSurfaceSDs);
293
294 // std::vector<Triangle*> sMesh = surfaceMesh_->getMesh();
295 // std::vector<RealType> randNums = genTriangleForces(sMesh.size(),variance_);
296
297 /* Loop over the mesh faces and apply random force to each of the faces*/
298
299
300 // std::vector<Triangle*>::iterator face;
301 // std::vector<StuntDouble*>::iterator vertex;
302 /*
303 for (face = sMesh.begin(); face != sMesh.end(); ++face){
304
305 Triangle* thisTriangle = *face;
306 std::vector<StuntDouble*> vertexSDs = thisTriangle->getVertices();
307
308 for (vertex = vertexSDs.begin(); vertex != vertexSDs.end(); ++vertex){
309 std::cout << (*vertex)->getPos() << std::endl;
310 // mass = integrableObject->getMass();
311
312 // integrableObject->addFrc(randomForce);
313 }
314
315
316 }
317 */
318 /*
319 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
320
321
322 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
323 integrableObject = mol->nextIntegrableObject(j)) {
324
325 mass = integrableObject->getMass();
326 if (integrableObject->isDirectional()){
327
328 // preliminaries for directional objects:
329
330 A = integrableObject->getA();
331 Atrans = A.transpose();
332 Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();
333
334 //apply random force and torque at center of resistance
335
336 Vector3d randomForceBody;
337 Vector3d randomTorqueBody;
338 genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
339 Vector3d randomForceLab = Atrans * randomForceBody;
340 Vector3d randomTorqueLab = Atrans * randomTorqueBody;
341 integrableObject->addFrc(randomForceLab);
342 integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab ));
343
344 Mat3x3d I = integrableObject->getI();
345 Vector3d omegaBody;
346
347 // What remains contains velocity explicitly, but the velocity required
348 // is at the full step: v(t + h), while we have initially the velocity
349 // at the half step: v(t + h/2). We need to iterate to converge the
350 // friction force and friction torque vectors.
351
352 // this is the velocity at the half-step:
353
354 Vector3d vel =integrableObject->getVel();
355 Vector3d angMom = integrableObject->getJ();
356
357 //estimate velocity at full-step using everything but friction forces:
358
359 frc = integrableObject->getFrc();
360 Vector3d velStep = vel + (dt2_ /mass * OOPSEConstant::energyConvert) * frc;
361
362 Tb = integrableObject->lab2Body(integrableObject->getTrq());
363 Vector3d angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * Tb;
364
365 Vector3d omegaLab;
366 Vector3d vcdLab;
367 Vector3d vcdBody;
368 Vector3d frictionForceBody;
369 Vector3d frictionForceLab(0.0);
370 Vector3d oldFFL; // used to test for convergence
371 Vector3d frictionTorqueBody(0.0);
372 Vector3d oldFTB; // used to test for convergence
373 Vector3d frictionTorqueLab;
374 RealType fdot;
375 RealType tdot;
376
377 //iteration starts here:
378
379 for (int k = 0; k < maxIterNum_; k++) {
380
381 if (integrableObject->isLinear()) {
382 int linearAxis = integrableObject->linearAxis();
383 int l = (linearAxis +1 )%3;
384 int m = (linearAxis +2 )%3;
385 omegaBody[l] = angMomStep[l] /I(l, l);
386 omegaBody[m] = angMomStep[m] /I(m, m);
387
388 } else {
389 omegaBody[0] = angMomStep[0] /I(0, 0);
390 omegaBody[1] = angMomStep[1] /I(1, 1);
391 omegaBody[2] = angMomStep[2] /I(2, 2);
392 }
393
394 omegaLab = Atrans * omegaBody;
395
396 // apply friction force and torque at center of resistance
397
398 vcdLab = velStep + cross(omegaLab, rcrLab);
399 vcdBody = A * vcdLab;
400 frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
401 oldFFL = frictionForceLab;
402 frictionForceLab = Atrans * frictionForceBody;
403 oldFTB = frictionTorqueBody;
404 frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
405 frictionTorqueLab = Atrans * frictionTorqueBody;
406
407 // re-estimate velocities at full-step using friction forces:
408
409 velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForceLab);
410 angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * (Tb + frictionTorqueBody);
411
412 // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
413
414 fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
415 tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
416
417 if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
418 break; // iteration ends here
419 }
420
421 integrableObject->addFrc(frictionForceLab);
422 integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
423
424
425 } else {
426 //spherical atom
427
428 Vector3d randomForce;
429 Vector3d randomTorque;
430 genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
431 integrableObject->addFrc(randomForce);
432
433 // What remains contains velocity explicitly, but the velocity required
434 // is at the full step: v(t + h), while we have initially the velocity
435 // at the half step: v(t + h/2). We need to iterate to converge the
436 // friction force vector.
437
438 // this is the velocity at the half-step:
439
440 Vector3d vel =integrableObject->getVel();
441
442 //estimate velocity at full-step using everything but friction forces:
443
444 frc = integrableObject->getFrc();
445 Vector3d velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * frc;
446
447 Vector3d frictionForce(0.0);
448 Vector3d oldFF; // used to test for convergence
449 RealType fdot;
450
451 //iteration starts here:
452
453 for (int k = 0; k < maxIterNum_; k++) {
454
455 oldFF = frictionForce;
456 frictionForce = -hydroProps_[index]->getXitt() * velStep;
457
458 // re-estimate velocities at full-step using friction forces:
459
460 velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForce);
461
462 // check for convergence (if the vector has converged, fdot will be 1.0):
463
464 fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
465
466 if (fabs(1.0 - fdot) <= forceTolerance_)
467 break; // iteration ends here
468 }
469
470 integrableObject->addFrc(frictionForce);
471
472
473 }
474
475 ++index;
476
477 }
478 }
479 */
480 // info_->setFdf(fdf);
481 // veloMunge->removeComDrift();
482 // Remove angular drift if we are not using periodic boundary conditions.
483 //if(!simParams->getUsePeriodicBoundaryConditions())
484 // veloMunge->removeAngularDrift();
485
486 //ForceManager::postCalculation(needStress);
487 }
488
489 void SMIPDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) {
490
491
492 Vector<RealType, 6> Z;
493 Vector<RealType, 6> generalForce;
494
495 Z[0] = randNumGen_.randNorm(0, variance);
496 Z[1] = randNumGen_.randNorm(0, variance);
497 Z[2] = randNumGen_.randNorm(0, variance);
498 Z[3] = randNumGen_.randNorm(0, variance);
499 Z[4] = randNumGen_.randNorm(0, variance);
500 Z[5] = randNumGen_.randNorm(0, variance);
501
502 generalForce = hydroProps_[index]->getS()*Z;
503
504 force[0] = generalForce[0];
505 force[1] = generalForce[1];
506 force[2] = generalForce[2];
507 torque[0] = generalForce[3];
508 torque[1] = generalForce[4];
509 torque[2] = generalForce[5];
510
511 }
512 std::vector<RealType> SMIPDForceManager::genTriangleForces(int nTriangles, RealType variance) {
513
514 // zero fill the random vector before starting:
515 std::vector<RealType> gaussRand;
516 gaussRand.resize(nTriangles);
517 std::fill(gaussRand.begin(), gaussRand.end(), 0.0);
518
519
520 #ifdef IS_MPI
521 if (worldRank == 0) {
522 #endif
523 for (int i = 0; i < nTriangles; i++) {
524 gaussRand[i] = fabs(randNumGen_.randNorm(0.0, 1.0));
525 }
526 #ifdef IS_MPI
527 }
528 #endif
529
530 // push these out to the other processors
531
532 #ifdef IS_MPI
533 if (worldRank == 0) {
534 MPI_Bcast(&gaussRand[0], nTriangles, MPI_REAL, 0, MPI_COMM_WORLD);
535 } else {
536 MPI_Bcast(&gaussRand[0], nTriangles, MPI_REAL, 0, MPI_COMM_WORLD);
537 }
538 #endif
539
540 for (int i = 0; i < nTriangles; i++) {
541 gaussRand[i] = gaussRand[i] * variance;
542 }
543
544 return gaussRand;
545 }
546
547 }

Properties

Name Value
svn:executable *