ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/math/SquareMatrix.hpp
Revision: 1603
Committed: Tue Oct 19 21:28:55 2004 UTC (19 years, 8 months ago) by tim
File size: 9928 byte(s)
Log Message:
more bugs get fixed at math library

File Contents

# User Rev Content
1 tim 1563 /*
2     * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3     *
4     * Contact: oopse@oopse.org
5     *
6     * This program is free software; you can redistribute it and/or
7     * modify it under the terms of the GNU Lesser General Public License
8     * as published by the Free Software Foundation; either version 2.1
9     * of the License, or (at your option) any later version.
10     * All we ask is that proper credit is given for our work, which includes
11     * - but is not limited to - adding the above copyright notice to the beginning
12     * of your source code files, and to any copyright notice that you may distribute
13     * with programs based on this work.
14     *
15     * This program is distributed in the hope that it will be useful,
16     * but WITHOUT ANY WARRANTY; without even the implied warranty of
17     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18     * GNU Lesser General Public License for more details.
19     *
20     * You should have received a copy of the GNU Lesser General Public License
21     * along with this program; if not, write to the Free Software
22     * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23     *
24     */
25    
26     /**
27     * @file SquareMatrix.hpp
28     * @author Teng Lin
29     * @date 10/11/2004
30     * @version 1.0
31     */
32     #ifndef MATH_SQUAREMATRIX_HPP
33     #define MATH_SQUAREMATRIX_HPP
34    
35 tim 1567 #include "math/RectMatrix.hpp"
36 tim 1563
37     namespace oopse {
38    
39     /**
40     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
41     * @brief A square matrix class
42     * @template Real the element type
43     * @template Dim the dimension of the square matrix
44     */
45     template<typename Real, int Dim>
46 tim 1567 class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
47 tim 1563 public:
48    
49     /** default constructor */
50     SquareMatrix() {
51     for (unsigned int i = 0; i < Dim; i++)
52     for (unsigned int j = 0; j < Dim; j++)
53     data_[i][j] = 0.0;
54     }
55    
56     /** copy constructor */
57 tim 1567 SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
58 tim 1563 }
59    
60     /** copy assignment operator */
61 tim 1567 SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
62     RectMatrix<Real, Dim, Dim>::operator=(m);
63     return *this;
64 tim 1563 }
65 tim 1567
66     /** Retunrs an identity matrix*/
67 tim 1563
68 tim 1567 static SquareMatrix<Real, Dim> identity() {
69     SquareMatrix<Real, Dim> m;
70 tim 1563
71     for (unsigned int i = 0; i < Dim; i++)
72 tim 1567 for (unsigned int j = 0; j < Dim; j++)
73 tim 1563 if (i == j)
74 tim 1567 m(i, j) = 1.0;
75 tim 1563 else
76 tim 1567 m(i, j) = 0.0;
77    
78     return m;
79 tim 1563 }
80    
81 tim 1594 /**
82     * Retunrs the inversion of this matrix.
83 tim 1603 * @todo need implementation
84 tim 1594 */
85 tim 1567 SquareMatrix<Real, Dim> inverse() {
86     SquareMatrix<Real, Dim> result;
87    
88     return result;
89 tim 1569 }
90 tim 1563
91 tim 1594 /**
92     * Returns the determinant of this matrix.
93 tim 1603 * @todo need implementation
94 tim 1594 */
95 tim 1563 double determinant() const {
96 tim 1567 double det;
97     return det;
98 tim 1563 }
99    
100     /** Returns the trace of this matrix. */
101     double trace() const {
102     double tmp = 0;
103    
104     for (unsigned int i = 0; i < Dim ; i++)
105     tmp += data_[i][i];
106    
107     return tmp;
108     }
109    
110     /** Tests if this matrix is symmetrix. */
111     bool isSymmetric() const {
112     for (unsigned int i = 0; i < Dim - 1; i++)
113     for (unsigned int j = i; j < Dim; j++)
114 tim 1567 if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
115 tim 1563 return false;
116    
117     return true;
118     }
119    
120 tim 1569 /** Tests if this matrix is orthogonal. */
121 tim 1567 bool isOrthogonal() {
122     SquareMatrix<Real, Dim> tmp;
123 tim 1563
124 tim 1567 tmp = *this * transpose();
125 tim 1563
126 tim 1569 return tmp.isDiagonal();
127 tim 1563 }
128    
129     /** Tests if this matrix is diagonal. */
130     bool isDiagonal() const {
131     for (unsigned int i = 0; i < Dim ; i++)
132     for (unsigned int j = 0; j < Dim; j++)
133 tim 1567 if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
134 tim 1563 return false;
135    
136     return true;
137     }
138    
139     /** Tests if this matrix is the unit matrix. */
140     bool isUnitMatrix() const {
141     if (!isDiagonal())
142     return false;
143    
144     for (unsigned int i = 0; i < Dim ; i++)
145 tim 1567 if (fabs(data_[i][i] - 1) > oopse::epsilon)
146 tim 1563 return false;
147    
148     return true;
149 tim 1567 }
150 tim 1563
151 tim 1603 /** @todo need implementation */
152 tim 1569 void diagonalize() {
153 tim 1594 //jacobi(m, eigenValues, ortMat);
154 tim 1569 }
155    
156     /**
157     * Finds the eigenvalues and eigenvectors of a symmetric matrix
158     * @param eigenvals a reference to a vector3 where the
159     * eigenvalues will be stored. The eigenvalues are ordered so
160     * that eigenvals[0] <= eigenvals[1] <= eigenvals[2].
161     * @return an orthogonal matrix whose ith column is an
162     * eigenvector for the eigenvalue eigenvals[i]
163     */
164     SquareMatrix<Real, Dim> findEigenvectors(Vector<Real, Dim>& eigenValues) {
165     SquareMatrix<Real, Dim> ortMat;
166    
167     if ( !isSymmetric()){
168 tim 1603 //throw();
169 tim 1569 }
170    
171     SquareMatrix<Real, Dim> m(*this);
172     jacobi(m, eigenValues, ortMat);
173    
174     return ortMat;
175     }
176     /**
177     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
178     * real symmetric matrix
179     *
180     * @return true if success, otherwise return false
181     * @param a source matrix
182     * @param w output eigenvalues
183     * @param v output eigenvectors
184     */
185 tim 1576 bool jacobi(const SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
186 tim 1569 SquareMatrix<Real, Dim>& v);
187 tim 1563 };//end SquareMatrix
188    
189 tim 1569
190     #define ROT(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);a(k, l)=h+s*(g-h*tau)
191     #define MAX_ROTATIONS 60
192    
193 tim 1576 template<typename Real, int Dim>
194     bool SquareMatrix<Real, Dim>::jacobi(const SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
195     SquareMatrix<Real, Dim>& v) {
196 tim 1569 const int N = Dim;
197     int i, j, k, iq, ip;
198     double tresh, theta, tau, t, sm, s, h, g, c;
199     double tmp;
200     Vector<Real, Dim> b, z;
201    
202     // initialize
203 tim 1586 for (ip=0; ip<N; ip++) {
204     for (iq=0; iq<N; iq++)
205     v(ip, iq) = 0.0;
206     v(ip, ip) = 1.0;
207 tim 1569 }
208 tim 1586
209     for (ip=0; ip<N; ip++) {
210     b(ip) = w(ip) = a(ip, ip);
211     z(ip) = 0.0;
212 tim 1569 }
213    
214     // begin rotation sequence
215 tim 1586 for (i=0; i<MAX_ROTATIONS; i++) {
216     sm = 0.0;
217     for (ip=0; ip<2; ip++) {
218     for (iq=ip+1; iq<N; iq++)
219     sm += fabs(a(ip, iq));
220     }
221    
222     if (sm == 0.0)
223     break;
224 tim 1569
225 tim 1586 if (i < 4)
226     tresh = 0.2*sm/(9);
227     else
228     tresh = 0.0;
229 tim 1569
230 tim 1586 for (ip=0; ip<2; ip++) {
231     for (iq=ip+1; iq<N; iq++) {
232     g = 100.0*fabs(a(ip, iq));
233     if (i > 4 && (fabs(w(ip))+g) == fabs(w(ip))
234     && (fabs(w(iq))+g) == fabs(w(iq))) {
235     a(ip, iq) = 0.0;
236     } else if (fabs(a(ip, iq)) > tresh) {
237     h = w(iq) - w(ip);
238     if ( (fabs(h)+g) == fabs(h)) {
239     t = (a(ip, iq)) / h;
240     } else {
241     theta = 0.5*h / (a(ip, iq));
242     t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
243 tim 1569
244 tim 1586 if (theta < 0.0)
245     t = -t;
246     }
247 tim 1569
248 tim 1586 c = 1.0 / sqrt(1+t*t);
249     s = t*c;
250     tau = s/(1.0+c);
251     h = t*a(ip, iq);
252     z(ip) -= h;
253     z(iq) += h;
254     w(ip) -= h;
255     w(iq) += h;
256     a(ip, iq)=0.0;
257    
258     for (j=0;j<ip-1;j++)
259     ROT(a,j,ip,j,iq);
260    
261     for (j=ip+1;j<iq-1;j++)
262     ROT(a,ip,j,j,iq);
263    
264     for (j=iq+1; j<N; j++)
265     ROT(a,ip,j,iq,j);
266 tim 1594
267 tim 1586 for (j=0; j<N; j++)
268     ROT(v,j,ip,j,iq);
269     }
270     }
271     }//for (ip=0; ip<2; ip++)
272    
273     for (ip=0; ip<N; ip++) {
274     b(ip) += z(ip);
275     w(ip) = b(ip);
276     z(ip) = 0.0;
277     }
278    
279     } // end for (i=0; i<MAX_ROTATIONS; i++)
280    
281 tim 1569 if ( i >= MAX_ROTATIONS )
282 tim 1586 return false;
283 tim 1569
284     // sort eigenfunctions
285 tim 1586 for (j=0; j<N; j++) {
286     k = j;
287     tmp = w(k);
288     for (i=j; i<N; i++) {
289     if (w(i) >= tmp) {
290     k = i;
291     tmp = w(k);
292     }
293     }
294    
295     if (k != j) {
296     w(k) = w(j);
297     w(j) = tmp;
298     for (i=0; i<N; i++) {
299     tmp = v(i, j);
300     v(i, j) = v(i, k);
301     v(i, k) = tmp;
302     }
303     }
304 tim 1569 }
305    
306     // insure eigenvector consistency (i.e., Jacobi can compute
307     // vectors that are negative of one another (.707,.707,0) and
308     // (-.707,-.707,0). This can reek havoc in
309     // hyperstreamline/other stuff. We will select the most
310     // positive eigenvector.
311     int numPos;
312 tim 1586 for (j=0; j<N; j++) {
313     for (numPos=0, i=0; i<N; i++) if ( v(i, j) >= 0.0 ) numPos++;
314     if ( numPos < 2 ) for(i=0; i<N; i++) v(i, j) *= -1.0;
315 tim 1569 }
316    
317     return true;
318 tim 1563 }
319 tim 1569
320     #undef ROT
321     #undef MAX_ROTATIONS
322    
323     }
324    
325 tim 1563 #endif //MATH_SQUAREMATRIX_HPP