ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/math/SquareMatrix.hpp
Revision: 1569
Committed: Thu Oct 14 23:28:09 2004 UTC (19 years, 8 months ago) by tim
File size: 8995 byte(s)
Log Message:
math library in progress

File Contents

# Content
1 /*
2 * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3 *
4 * Contact: oopse@oopse.org
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public License
8 * as published by the Free Software Foundation; either version 2.1
9 * of the License, or (at your option) any later version.
10 * All we ask is that proper credit is given for our work, which includes
11 * - but is not limited to - adding the above copyright notice to the beginning
12 * of your source code files, and to any copyright notice that you may distribute
13 * with programs based on this work.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 */
25
26 /**
27 * @file SquareMatrix.hpp
28 * @author Teng Lin
29 * @date 10/11/2004
30 * @version 1.0
31 */
32 #ifndef MATH_SQUAREMATRIX_HPP
33 #define MATH_SQUAREMATRIX_HPP
34
35 #include "math/RectMatrix.hpp"
36
37 namespace oopse {
38
39 /**
40 * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
41 * @brief A square matrix class
42 * @template Real the element type
43 * @template Dim the dimension of the square matrix
44 */
45 template<typename Real, int Dim>
46 class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
47 public:
48
49 /** default constructor */
50 SquareMatrix() {
51 for (unsigned int i = 0; i < Dim; i++)
52 for (unsigned int j = 0; j < Dim; j++)
53 data_[i][j] = 0.0;
54 }
55
56 /** copy constructor */
57 SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
58 }
59
60 /** copy assignment operator */
61 SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
62 RectMatrix<Real, Dim, Dim>::operator=(m);
63 return *this;
64 }
65
66 /** Retunrs an identity matrix*/
67
68 static SquareMatrix<Real, Dim> identity() {
69 SquareMatrix<Real, Dim> m;
70
71 for (unsigned int i = 0; i < Dim; i++)
72 for (unsigned int j = 0; j < Dim; j++)
73 if (i == j)
74 m(i, j) = 1.0;
75 else
76 m(i, j) = 0.0;
77
78 return m;
79 }
80
81 /** Retunrs the inversion of this matrix. */
82 SquareMatrix<Real, Dim> inverse() {
83 SquareMatrix<Real, Dim> result;
84
85 return result;
86 }
87
88 /** Returns the determinant of this matrix. */
89 double determinant() const {
90 double det;
91 return det;
92 }
93
94 /** Returns the trace of this matrix. */
95 double trace() const {
96 double tmp = 0;
97
98 for (unsigned int i = 0; i < Dim ; i++)
99 tmp += data_[i][i];
100
101 return tmp;
102 }
103
104 /** Tests if this matrix is symmetrix. */
105 bool isSymmetric() const {
106 for (unsigned int i = 0; i < Dim - 1; i++)
107 for (unsigned int j = i; j < Dim; j++)
108 if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
109 return false;
110
111 return true;
112 }
113
114 /** Tests if this matrix is orthogonal. */
115 bool isOrthogonal() {
116 SquareMatrix<Real, Dim> tmp;
117
118 tmp = *this * transpose();
119
120 return tmp.isDiagonal();
121 }
122
123 /** Tests if this matrix is diagonal. */
124 bool isDiagonal() const {
125 for (unsigned int i = 0; i < Dim ; i++)
126 for (unsigned int j = 0; j < Dim; j++)
127 if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
128 return false;
129
130 return true;
131 }
132
133 /** Tests if this matrix is the unit matrix. */
134 bool isUnitMatrix() const {
135 if (!isDiagonal())
136 return false;
137
138 for (unsigned int i = 0; i < Dim ; i++)
139 if (fabs(data_[i][i] - 1) > oopse::epsilon)
140 return false;
141
142 return true;
143 }
144
145 void diagonalize() {
146 jacobi(m, eigenValues, ortMat);
147 }
148
149 /**
150 * Finds the eigenvalues and eigenvectors of a symmetric matrix
151 * @param eigenvals a reference to a vector3 where the
152 * eigenvalues will be stored. The eigenvalues are ordered so
153 * that eigenvals[0] <= eigenvals[1] <= eigenvals[2].
154 * @return an orthogonal matrix whose ith column is an
155 * eigenvector for the eigenvalue eigenvals[i]
156 */
157 SquareMatrix<Real, Dim> findEigenvectors(Vector<Real, Dim>& eigenValues) {
158 SquareMatrix<Real, Dim> ortMat;
159
160 if ( !isSymmetric()){
161 throw();
162 }
163
164 SquareMatrix<Real, Dim> m(*this);
165 jacobi(m, eigenValues, ortMat);
166
167 return ortMat;
168 }
169 /**
170 * Jacobi iteration routines for computing eigenvalues/eigenvectors of
171 * real symmetric matrix
172 *
173 * @return true if success, otherwise return false
174 * @param a source matrix
175 * @param w output eigenvalues
176 * @param v output eigenvectors
177 */
178 void jacobi(const SquareMatrix<Real, Dim>& a,
179 Vector<Real, Dim>& w,
180 SquareMatrix<Real, Dim>& v);
181 };//end SquareMatrix
182
183
184 #define ROT(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);a(k, l)=h+s*(g-h*tau)
185 #define MAX_ROTATIONS 60
186
187 template<Real, int Dim>
188 void SquareMatrix<Real, int Dim>::jacobi(SquareMatrix<Real, Dim>& a,
189 Vector<Real, Dim>& w,
190 SquareMatrix<Real, Dim>& v) {
191 const int N = Dim;
192 int i, j, k, iq, ip;
193 double tresh, theta, tau, t, sm, s, h, g, c;
194 double tmp;
195 Vector<Real, Dim> b, z;
196
197 // initialize
198 for (ip=0; ip<N; ip++)
199 {
200 for (iq=0; iq<N; iq++) v(ip, iq) = 0.0;
201 v(ip, ip) = 1.0;
202 }
203 for (ip=0; ip<N; ip++)
204 {
205 b(ip) = w(ip) = a(ip, ip);
206 z(ip) = 0.0;
207 }
208
209 // begin rotation sequence
210 for (i=0; i<MAX_ROTATIONS; i++)
211 {
212 sm = 0.0;
213 for (ip=0; ip<2; ip++)
214 {
215 for (iq=ip+1; iq<N; iq++) sm += fabs(a(ip, iq));
216 }
217 if (sm == 0.0) break;
218
219 if (i < 4) tresh = 0.2*sm/(9);
220 else tresh = 0.0;
221
222 for (ip=0; ip<2; ip++)
223 {
224 for (iq=ip+1; iq<N; iq++)
225 {
226 g = 100.0*fabs(a(ip, iq));
227 if (i > 4 && (fabs(w(ip))+g) == fabs(w(ip))
228 && (fabs(w(iq))+g) == fabs(w(iq)))
229 {
230 a(ip, iq) = 0.0;
231 }
232 else if (fabs(a(ip, iq)) > tresh)
233 {
234 h = w(iq) - w(ip);
235 if ( (fabs(h)+g) == fabs(h)) t = (a(ip, iq)) / h;
236 else
237 {
238 theta = 0.5*h / (a(ip, iq));
239 t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
240 if (theta < 0.0) t = -t;
241 }
242 c = 1.0 / sqrt(1+t*t);
243 s = t*c;
244 tau = s/(1.0+c);
245 h = t*a(ip, iq);
246 z(ip) -= h;
247 z(iq) += h;
248 w(ip) -= h;
249 w(iq) += h;
250 a(ip, iq)=0.0;
251 for (j=0;j<ip-1;j++)
252 {
253 ROT(a,j,ip,j,iq);
254 }
255 for (j=ip+1;j<iq-1;j++)
256 {
257 ROT(a,ip,j,j,iq);
258 }
259 for (j=iq+1; j<N; j++)
260 {
261 ROT(a,ip,j,iq,j);
262 }
263 for (j=0; j<N; j++)
264 {
265 ROT(v,j,ip,j,iq);
266 }
267 }
268 }
269 }
270
271 for (ip=0; ip<N; ip++)
272 {
273 b(ip) += z(ip);
274 w(ip) = b(ip);
275 z(ip) = 0.0;
276 }
277 }
278
279 if ( i >= MAX_ROTATIONS )
280 return false;
281
282 // sort eigenfunctions
283 for (j=0; j<N; j++)
284 {
285 k = j;
286 tmp = w(k);
287 for (i=j; i<N; i++)
288 {
289 if (w(i) >= tmp)
290 {
291 k = i;
292 tmp = w(k);
293 }
294 }
295 if (k != j)
296 {
297 w(k) = w(j);
298 w(j) = tmp;
299 for (i=0; i<N; i++)
300 {
301 tmp = v(i, j);
302 v(i, j) = v(i, k);
303 v(i, k) = tmp;
304 }
305 }
306 }
307
308 // insure eigenvector consistency (i.e., Jacobi can compute
309 // vectors that are negative of one another (.707,.707,0) and
310 // (-.707,-.707,0). This can reek havoc in
311 // hyperstreamline/other stuff. We will select the most
312 // positive eigenvector.
313 int numPos;
314 for (j=0; j<N; j++)
315 {
316 for (numPos=0, i=0; i<N; i++) if ( v(i, j) >= 0.0 ) numPos++;
317 if ( numPos < 2 ) for(i=0; i<N; i++) v(i, j) *= -1.0;
318 }
319
320 return true;
321 }
322
323 #undef ROT
324 #undef MAX_ROTATIONS
325
326 }
327
328
329 }
330 #endif //MATH_SQUAREMATRIX_HPP