ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/math/SquareMatrix.hpp
Revision: 1616
Committed: Wed Oct 20 18:07:08 2004 UTC (19 years, 8 months ago) by tim
File size: 11587 byte(s)
Log Message:
Math library pass the unit test

File Contents

# Content
1 /*
2 * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3 *
4 * Contact: oopse@oopse.org
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public License
8 * as published by the Free Software Foundation; either version 2.1
9 * of the License, or (at your option) any later version.
10 * All we ask is that proper credit is given for our work, which includes
11 * - but is not limited to - adding the above copyright notice to the beginning
12 * of your source code files, and to any copyright notice that you may distribute
13 * with programs based on this work.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 */
25
26 /**
27 * @file SquareMatrix.hpp
28 * @author Teng Lin
29 * @date 10/11/2004
30 * @version 1.0
31 */
32 #ifndef MATH_SQUAREMATRIX_HPP
33 #define MATH_SQUAREMATRIX_HPP
34
35 #include "math/RectMatrix.hpp"
36
37 namespace oopse {
38
39 /**
40 * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
41 * @brief A square matrix class
42 * @template Real the element type
43 * @template Dim the dimension of the square matrix
44 */
45 template<typename Real, int Dim>
46 class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
47 public:
48
49 /** default constructor */
50 SquareMatrix() {
51 for (unsigned int i = 0; i < Dim; i++)
52 for (unsigned int j = 0; j < Dim; j++)
53 data_[i][j] = 0.0;
54 }
55
56 /** copy constructor */
57 SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
58 }
59
60 /** copy assignment operator */
61 SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
62 RectMatrix<Real, Dim, Dim>::operator=(m);
63 return *this;
64 }
65
66 /** Retunrs an identity matrix*/
67
68 static SquareMatrix<Real, Dim> identity() {
69 SquareMatrix<Real, Dim> m;
70
71 for (unsigned int i = 0; i < Dim; i++)
72 for (unsigned int j = 0; j < Dim; j++)
73 if (i == j)
74 m(i, j) = 1.0;
75 else
76 m(i, j) = 0.0;
77
78 return m;
79 }
80
81 /**
82 * Retunrs the inversion of this matrix.
83 * @todo need implementation
84 */
85 SquareMatrix<Real, Dim> inverse() {
86 SquareMatrix<Real, Dim> result;
87
88 return result;
89 }
90
91 /**
92 * Returns the determinant of this matrix.
93 * @todo need implementation
94 */
95 Real determinant() const {
96 Real det;
97 return det;
98 }
99
100 /** Returns the trace of this matrix. */
101 Real trace() const {
102 Real tmp = 0;
103
104 for (unsigned int i = 0; i < Dim ; i++)
105 tmp += data_[i][i];
106
107 return tmp;
108 }
109
110 /** Tests if this matrix is symmetrix. */
111 bool isSymmetric() const {
112 for (unsigned int i = 0; i < Dim - 1; i++)
113 for (unsigned int j = i; j < Dim; j++)
114 if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
115 return false;
116
117 return true;
118 }
119
120 /** Tests if this matrix is orthogonal. */
121 bool isOrthogonal() {
122 SquareMatrix<Real, Dim> tmp;
123
124 tmp = *this * transpose();
125
126 return tmp.isDiagonal();
127 }
128
129 /** Tests if this matrix is diagonal. */
130 bool isDiagonal() const {
131 for (unsigned int i = 0; i < Dim ; i++)
132 for (unsigned int j = 0; j < Dim; j++)
133 if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
134 return false;
135
136 return true;
137 }
138
139 /** Tests if this matrix is the unit matrix. */
140 bool isUnitMatrix() const {
141 if (!isDiagonal())
142 return false;
143
144 for (unsigned int i = 0; i < Dim ; i++)
145 if (fabs(data_[i][i] - 1) > oopse::epsilon)
146 return false;
147
148 return true;
149 }
150
151 /** @todo need implementation */
152 void diagonalize() {
153 //jacobi(m, eigenValues, ortMat);
154 }
155
156 /**
157 * Jacobi iteration routines for computing eigenvalues/eigenvectors of
158 * real symmetric matrix
159 *
160 * @return true if success, otherwise return false
161 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
162 * overwritten
163 * @param w will contain the eigenvalues of the matrix On return of this function
164 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
165 * normalized and mutually orthogonal.
166 */
167
168 static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
169 SquareMatrix<Real, Dim>& v);
170 };//end SquareMatrix
171
172
173 /*=========================================================================
174
175 Program: Visualization Toolkit
176 Module: $RCSfile: SquareMatrix.hpp,v $
177
178 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
179 All rights reserved.
180 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
181
182 This software is distributed WITHOUT ANY WARRANTY; without even
183 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
184 PURPOSE. See the above copyright notice for more information.
185
186 =========================================================================*/
187
188 #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\
189 a(k, l)=h+s*(g-h*tau)
190
191 #define VTK_MAX_ROTATIONS 20
192
193 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
194 // real symmetric matrix. Square nxn matrix a; size of matrix in n;
195 // output eigenvalues in w; and output eigenvectors in v. Resulting
196 // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
197 // normalized.
198 template<typename Real, int Dim>
199 int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
200 SquareMatrix<Real, Dim>& v) {
201 const int n = Dim;
202 int i, j, k, iq, ip, numPos;
203 Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
204 Real bspace[4], zspace[4];
205 Real *b = bspace;
206 Real *z = zspace;
207
208 // only allocate memory if the matrix is large
209 if (n > 4)
210 {
211 b = new Real[n];
212 z = new Real[n];
213 }
214
215 // initialize
216 for (ip=0; ip<n; ip++)
217 {
218 for (iq=0; iq<n; iq++)
219 {
220 v(ip, iq) = 0.0;
221 }
222 v(ip, ip) = 1.0;
223 }
224 for (ip=0; ip<n; ip++)
225 {
226 b[ip] = w[ip] = a(ip, ip);
227 z[ip] = 0.0;
228 }
229
230 // begin rotation sequence
231 for (i=0; i<VTK_MAX_ROTATIONS; i++)
232 {
233 sm = 0.0;
234 for (ip=0; ip<n-1; ip++)
235 {
236 for (iq=ip+1; iq<n; iq++)
237 {
238 sm += fabs(a(ip, iq));
239 }
240 }
241 if (sm == 0.0)
242 {
243 break;
244 }
245
246 if (i < 3) // first 3 sweeps
247 {
248 tresh = 0.2*sm/(n*n);
249 }
250 else
251 {
252 tresh = 0.0;
253 }
254
255 for (ip=0; ip<n-1; ip++)
256 {
257 for (iq=ip+1; iq<n; iq++)
258 {
259 g = 100.0*fabs(a(ip, iq));
260
261 // after 4 sweeps
262 if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
263 && (fabs(w[iq])+g) == fabs(w[iq]))
264 {
265 a(ip, iq) = 0.0;
266 }
267 else if (fabs(a(ip, iq)) > tresh)
268 {
269 h = w[iq] - w[ip];
270 if ( (fabs(h)+g) == fabs(h))
271 {
272 t = (a(ip, iq)) / h;
273 }
274 else
275 {
276 theta = 0.5*h / (a(ip, iq));
277 t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
278 if (theta < 0.0)
279 {
280 t = -t;
281 }
282 }
283 c = 1.0 / sqrt(1+t*t);
284 s = t*c;
285 tau = s/(1.0+c);
286 h = t*a(ip, iq);
287 z[ip] -= h;
288 z[iq] += h;
289 w[ip] -= h;
290 w[iq] += h;
291 a(ip, iq)=0.0;
292
293 // ip already shifted left by 1 unit
294 for (j = 0;j <= ip-1;j++)
295 {
296 VTK_ROTATE(a,j,ip,j,iq);
297 }
298 // ip and iq already shifted left by 1 unit
299 for (j = ip+1;j <= iq-1;j++)
300 {
301 VTK_ROTATE(a,ip,j,j,iq);
302 }
303 // iq already shifted left by 1 unit
304 for (j=iq+1; j<n; j++)
305 {
306 VTK_ROTATE(a,ip,j,iq,j);
307 }
308 for (j=0; j<n; j++)
309 {
310 VTK_ROTATE(v,j,ip,j,iq);
311 }
312 }
313 }
314 }
315
316 for (ip=0; ip<n; ip++)
317 {
318 b[ip] += z[ip];
319 w[ip] = b[ip];
320 z[ip] = 0.0;
321 }
322 }
323
324 //// this is NEVER called
325 if ( i >= VTK_MAX_ROTATIONS )
326 {
327 std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
328 return 0;
329 }
330
331 // sort eigenfunctions these changes do not affect accuracy
332 for (j=0; j<n-1; j++) // boundary incorrect
333 {
334 k = j;
335 tmp = w[k];
336 for (i=j+1; i<n; i++) // boundary incorrect, shifted already
337 {
338 if (w[i] >= tmp) // why exchage if same?
339 {
340 k = i;
341 tmp = w[k];
342 }
343 }
344 if (k != j)
345 {
346 w[k] = w[j];
347 w[j] = tmp;
348 for (i=0; i<n; i++)
349 {
350 tmp = v(i, j);
351 v(i, j) = v(i, k);
352 v(i, k) = tmp;
353 }
354 }
355 }
356 // insure eigenvector consistency (i.e., Jacobi can compute vectors that
357 // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
358 // reek havoc in hyperstreamline/other stuff. We will select the most
359 // positive eigenvector.
360 int ceil_half_n = (n >> 1) + (n & 1);
361 for (j=0; j<n; j++)
362 {
363 for (numPos=0, i=0; i<n; i++)
364 {
365 if ( v(i, j) >= 0.0 )
366 {
367 numPos++;
368 }
369 }
370 // if ( numPos < ceil(double(n)/double(2.0)) )
371 if ( numPos < ceil_half_n)
372 {
373 for(i=0; i<n; i++)
374 {
375 v(i, j) *= -1.0;
376 }
377 }
378 }
379
380 if (n > 4)
381 {
382 delete [] b;
383 delete [] z;
384 }
385 return 1;
386 }
387
388
389 }
390 #endif //MATH_SQUAREMATRIX_HPP
391