ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/math/SquareMatrix.hpp
Revision: 1639
Committed: Fri Oct 22 23:09:57 2004 UTC (19 years, 8 months ago) by tim
File size: 12399 byte(s)
Log Message:
more work in Snapshot

File Contents

# Content
1 /*
2 * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3 *
4 * Contact: oopse@oopse.org
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public License
8 * as published by the Free Software Foundation; either version 2.1
9 * of the License, or (at your option) any later version.
10 * All we ask is that proper credit is given for our work, which includes
11 * - but is not limited to - adding the above copyright notice to the beginning
12 * of your source code files, and to any copyright notice that you may distribute
13 * with programs based on this work.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 */
25
26 /**
27 * @file SquareMatrix.hpp
28 * @author Teng Lin
29 * @date 10/11/2004
30 * @version 1.0
31 */
32 #ifndef MATH_SQUAREMATRIX_HPP
33 #define MATH_SQUAREMATRIX_HPP
34
35 #include "math/RectMatrix.hpp"
36
37 namespace oopse {
38
39 /**
40 * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
41 * @brief A square matrix class
42 * @template Real the element type
43 * @template Dim the dimension of the square matrix
44 */
45 template<typename Real, int Dim>
46 class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
47 public:
48 typedef Real ElemType;
49 typedef Real* ElemPoinerType;
50
51 /** default constructor */
52 SquareMatrix() {
53 for (unsigned int i = 0; i < Dim; i++)
54 for (unsigned int j = 0; j < Dim; j++)
55 data_[i][j] = 0.0;
56 }
57
58 /** copy constructor */
59 SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
60 }
61
62 /** copy assignment operator */
63 SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
64 RectMatrix<Real, Dim, Dim>::operator=(m);
65 return *this;
66 }
67
68 /** Retunrs an identity matrix*/
69
70 static SquareMatrix<Real, Dim> identity() {
71 SquareMatrix<Real, Dim> m;
72
73 for (unsigned int i = 0; i < Dim; i++)
74 for (unsigned int j = 0; j < Dim; j++)
75 if (i == j)
76 m(i, j) = 1.0;
77 else
78 m(i, j) = 0.0;
79
80 return m;
81 }
82
83 /**
84 * Retunrs the inversion of this matrix.
85 * @todo need implementation
86 */
87 SquareMatrix<Real, Dim> inverse() {
88 SquareMatrix<Real, Dim> result;
89
90 return result;
91 }
92
93 /**
94 * Returns the determinant of this matrix.
95 * @todo need implementation
96 */
97 Real determinant() const {
98 Real det;
99 return det;
100 }
101
102 /** Returns the trace of this matrix. */
103 Real trace() const {
104 Real tmp = 0;
105
106 for (unsigned int i = 0; i < Dim ; i++)
107 tmp += data_[i][i];
108
109 return tmp;
110 }
111
112 /** Tests if this matrix is symmetrix. */
113 bool isSymmetric() const {
114 for (unsigned int i = 0; i < Dim - 1; i++)
115 for (unsigned int j = i; j < Dim; j++)
116 if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
117 return false;
118
119 return true;
120 }
121
122 /** Tests if this matrix is orthogonal. */
123 bool isOrthogonal() {
124 SquareMatrix<Real, Dim> tmp;
125
126 tmp = *this * transpose();
127
128 return tmp.isDiagonal();
129 }
130
131 /** Tests if this matrix is diagonal. */
132 bool isDiagonal() const {
133 for (unsigned int i = 0; i < Dim ; i++)
134 for (unsigned int j = 0; j < Dim; j++)
135 if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
136 return false;
137
138 return true;
139 }
140
141 /** Tests if this matrix is the unit matrix. */
142 bool isUnitMatrix() const {
143 if (!isDiagonal())
144 return false;
145
146 for (unsigned int i = 0; i < Dim ; i++)
147 if (fabs(data_[i][i] - 1) > oopse::epsilon)
148 return false;
149
150 return true;
151 }
152
153 /** @todo need implementation */
154 void diagonalize() {
155 //jacobi(m, eigenValues, ortMat);
156 }
157
158 /**
159 * Jacobi iteration routines for computing eigenvalues/eigenvectors of
160 * real symmetric matrix
161 *
162 * @return true if success, otherwise return false
163 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
164 * overwritten
165 * @param w will contain the eigenvalues of the matrix On return of this function
166 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
167 * normalized and mutually orthogonal.
168 */
169
170 static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
171 SquareMatrix<Real, Dim>& v);
172 };//end SquareMatrix
173
174
175 /*=========================================================================
176
177 Program: Visualization Toolkit
178 Module: $RCSfile: SquareMatrix.hpp,v $
179
180 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
181 All rights reserved.
182 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
183
184 This software is distributed WITHOUT ANY WARRANTY; without even
185 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
186 PURPOSE. See the above copyright notice for more information.
187
188 =========================================================================*/
189
190 #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\
191 a(k, l)=h+s*(g-h*tau)
192
193 #define VTK_MAX_ROTATIONS 20
194
195 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
196 // real symmetric matrix. Square nxn matrix a; size of matrix in n;
197 // output eigenvalues in w; and output eigenvectors in v. Resulting
198 // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
199 // normalized.
200 template<typename Real, int Dim>
201 int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
202 SquareMatrix<Real, Dim>& v) {
203 const int n = Dim;
204 int i, j, k, iq, ip, numPos;
205 Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
206 Real bspace[4], zspace[4];
207 Real *b = bspace;
208 Real *z = zspace;
209
210 // only allocate memory if the matrix is large
211 if (n > 4) {
212 b = new Real[n];
213 z = new Real[n];
214 }
215
216 // initialize
217 for (ip=0; ip<n; ip++) {
218 for (iq=0; iq<n; iq++) {
219 v(ip, iq) = 0.0;
220 }
221 v(ip, ip) = 1.0;
222 }
223 for (ip=0; ip<n; ip++) {
224 b[ip] = w[ip] = a(ip, ip);
225 z[ip] = 0.0;
226 }
227
228 // begin rotation sequence
229 for (i=0; i<VTK_MAX_ROTATIONS; i++) {
230 sm = 0.0;
231 for (ip=0; ip<n-1; ip++) {
232 for (iq=ip+1; iq<n; iq++) {
233 sm += fabs(a(ip, iq));
234 }
235 }
236 if (sm == 0.0) {
237 break;
238 }
239
240 if (i < 3) { // first 3 sweeps
241 tresh = 0.2*sm/(n*n);
242 } else {
243 tresh = 0.0;
244 }
245
246 for (ip=0; ip<n-1; ip++) {
247 for (iq=ip+1; iq<n; iq++) {
248 g = 100.0*fabs(a(ip, iq));
249
250 // after 4 sweeps
251 if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
252 && (fabs(w[iq])+g) == fabs(w[iq])) {
253 a(ip, iq) = 0.0;
254 } else if (fabs(a(ip, iq)) > tresh) {
255 h = w[iq] - w[ip];
256 if ( (fabs(h)+g) == fabs(h)) {
257 t = (a(ip, iq)) / h;
258 } else {
259 theta = 0.5*h / (a(ip, iq));
260 t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
261 if (theta < 0.0) {
262 t = -t;
263 }
264 }
265 c = 1.0 / sqrt(1+t*t);
266 s = t*c;
267 tau = s/(1.0+c);
268 h = t*a(ip, iq);
269 z[ip] -= h;
270 z[iq] += h;
271 w[ip] -= h;
272 w[iq] += h;
273 a(ip, iq)=0.0;
274
275 // ip already shifted left by 1 unit
276 for (j = 0;j <= ip-1;j++) {
277 VTK_ROTATE(a,j,ip,j,iq);
278 }
279 // ip and iq already shifted left by 1 unit
280 for (j = ip+1;j <= iq-1;j++) {
281 VTK_ROTATE(a,ip,j,j,iq);
282 }
283 // iq already shifted left by 1 unit
284 for (j=iq+1; j<n; j++) {
285 VTK_ROTATE(a,ip,j,iq,j);
286 }
287 for (j=0; j<n; j++) {
288 VTK_ROTATE(v,j,ip,j,iq);
289 }
290 }
291 }
292 }
293
294 for (ip=0; ip<n; ip++) {
295 b[ip] += z[ip];
296 w[ip] = b[ip];
297 z[ip] = 0.0;
298 }
299 }
300
301 //// this is NEVER called
302 if ( i >= VTK_MAX_ROTATIONS ) {
303 std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
304 return 0;
305 }
306
307 // sort eigenfunctions these changes do not affect accuracy
308 for (j=0; j<n-1; j++) { // boundary incorrect
309 k = j;
310 tmp = w[k];
311 for (i=j+1; i<n; i++) { // boundary incorrect, shifted already
312 if (w[i] >= tmp) { // why exchage if same?
313 k = i;
314 tmp = w[k];
315 }
316 }
317 if (k != j) {
318 w[k] = w[j];
319 w[j] = tmp;
320 for (i=0; i<n; i++) {
321 tmp = v(i, j);
322 v(i, j) = v(i, k);
323 v(i, k) = tmp;
324 }
325 }
326 }
327 // insure eigenvector consistency (i.e., Jacobi can compute vectors that
328 // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
329 // reek havoc in hyperstreamline/other stuff. We will select the most
330 // positive eigenvector.
331 int ceil_half_n = (n >> 1) + (n & 1);
332 for (j=0; j<n; j++) {
333 for (numPos=0, i=0; i<n; i++) {
334 if ( v(i, j) >= 0.0 ) {
335 numPos++;
336 }
337 }
338 // if ( numPos < ceil(double(n)/double(2.0)) )
339 if ( numPos < ceil_half_n) {
340 for (i=0; i<n; i++) {
341 v(i, j) *= -1.0;
342 }
343 }
344 }
345
346 if (n > 4) {
347 delete [] b;
348 delete [] z;
349 }
350 return 1;
351 }
352
353
354 }
355 #endif //MATH_SQUAREMATRIX_HPP
356