ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/math/SquareMatrix.hpp
Revision: 1930
Committed: Wed Jan 12 22:41:40 2005 UTC (19 years, 5 months ago) by gezelter
File size: 13650 byte(s)
Log Message:
merging new_design branch into OOPSE-2.0

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SquareMatrix.hpp
44 * @author Teng Lin
45 * @date 10/11/2004
46 * @version 1.0
47 */
48 #ifndef MATH_SQUAREMATRIX_HPP
49 #define MATH_SQUAREMATRIX_HPP
50
51 #include "math/RectMatrix.hpp"
52
53 namespace oopse {
54
55 /**
56 * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
57 * @brief A square matrix class
58 * @template Real the element type
59 * @template Dim the dimension of the square matrix
60 */
61 template<typename Real, int Dim>
62 class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
63 public:
64 typedef Real ElemType;
65 typedef Real* ElemPoinerType;
66
67 /** default constructor */
68 SquareMatrix() {
69 for (unsigned int i = 0; i < Dim; i++)
70 for (unsigned int j = 0; j < Dim; j++)
71 data_[i][j] = 0.0;
72 }
73
74 /** Constructs and initializes every element of this matrix to a scalar */
75 SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
76 }
77
78 /** Constructs and initializes from an array */
79 SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
80 }
81
82
83 /** copy constructor */
84 SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
85 }
86
87 /** copy assignment operator */
88 SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
89 RectMatrix<Real, Dim, Dim>::operator=(m);
90 return *this;
91 }
92
93 /** Retunrs an identity matrix*/
94
95 static SquareMatrix<Real, Dim> identity() {
96 SquareMatrix<Real, Dim> m;
97
98 for (unsigned int i = 0; i < Dim; i++)
99 for (unsigned int j = 0; j < Dim; j++)
100 if (i == j)
101 m(i, j) = 1.0;
102 else
103 m(i, j) = 0.0;
104
105 return m;
106 }
107
108 /**
109 * Retunrs the inversion of this matrix.
110 * @todo need implementation
111 */
112 SquareMatrix<Real, Dim> inverse() {
113 SquareMatrix<Real, Dim> result;
114
115 return result;
116 }
117
118 /**
119 * Returns the determinant of this matrix.
120 * @todo need implementation
121 */
122 Real determinant() const {
123 Real det;
124 return det;
125 }
126
127 /** Returns the trace of this matrix. */
128 Real trace() const {
129 Real tmp = 0;
130
131 for (unsigned int i = 0; i < Dim ; i++)
132 tmp += data_[i][i];
133
134 return tmp;
135 }
136
137 /** Tests if this matrix is symmetrix. */
138 bool isSymmetric() const {
139 for (unsigned int i = 0; i < Dim - 1; i++)
140 for (unsigned int j = i; j < Dim; j++)
141 if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
142 return false;
143
144 return true;
145 }
146
147 /** Tests if this matrix is orthogonal. */
148 bool isOrthogonal() {
149 SquareMatrix<Real, Dim> tmp;
150
151 tmp = *this * transpose();
152
153 return tmp.isDiagonal();
154 }
155
156 /** Tests if this matrix is diagonal. */
157 bool isDiagonal() const {
158 for (unsigned int i = 0; i < Dim ; i++)
159 for (unsigned int j = 0; j < Dim; j++)
160 if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
161 return false;
162
163 return true;
164 }
165
166 /** Tests if this matrix is the unit matrix. */
167 bool isUnitMatrix() const {
168 if (!isDiagonal())
169 return false;
170
171 for (unsigned int i = 0; i < Dim ; i++)
172 if (fabs(data_[i][i] - 1) > oopse::epsilon)
173 return false;
174
175 return true;
176 }
177
178 /** @todo need implementation */
179 void diagonalize() {
180 //jacobi(m, eigenValues, ortMat);
181 }
182
183 /**
184 * Jacobi iteration routines for computing eigenvalues/eigenvectors of
185 * real symmetric matrix
186 *
187 * @return true if success, otherwise return false
188 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
189 * overwritten
190 * @param w will contain the eigenvalues of the matrix On return of this function
191 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
192 * normalized and mutually orthogonal.
193 */
194
195 static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
196 SquareMatrix<Real, Dim>& v);
197 };//end SquareMatrix
198
199
200 /*=========================================================================
201
202 Program: Visualization Toolkit
203 Module: $RCSfile: SquareMatrix.hpp,v $
204
205 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
206 All rights reserved.
207 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
208
209 This software is distributed WITHOUT ANY WARRANTY; without even
210 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
211 PURPOSE. See the above copyright notice for more information.
212
213 =========================================================================*/
214
215 #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\
216 a(k, l)=h+s*(g-h*tau)
217
218 #define VTK_MAX_ROTATIONS 20
219
220 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
221 // real symmetric matrix. Square nxn matrix a; size of matrix in n;
222 // output eigenvalues in w; and output eigenvectors in v. Resulting
223 // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
224 // normalized.
225 template<typename Real, int Dim>
226 int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
227 SquareMatrix<Real, Dim>& v) {
228 const int n = Dim;
229 int i, j, k, iq, ip, numPos;
230 Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
231 Real bspace[4], zspace[4];
232 Real *b = bspace;
233 Real *z = zspace;
234
235 // only allocate memory if the matrix is large
236 if (n > 4) {
237 b = new Real[n];
238 z = new Real[n];
239 }
240
241 // initialize
242 for (ip=0; ip<n; ip++) {
243 for (iq=0; iq<n; iq++) {
244 v(ip, iq) = 0.0;
245 }
246 v(ip, ip) = 1.0;
247 }
248 for (ip=0; ip<n; ip++) {
249 b[ip] = w[ip] = a(ip, ip);
250 z[ip] = 0.0;
251 }
252
253 // begin rotation sequence
254 for (i=0; i<VTK_MAX_ROTATIONS; i++) {
255 sm = 0.0;
256 for (ip=0; ip<n-1; ip++) {
257 for (iq=ip+1; iq<n; iq++) {
258 sm += fabs(a(ip, iq));
259 }
260 }
261 if (sm == 0.0) {
262 break;
263 }
264
265 if (i < 3) { // first 3 sweeps
266 tresh = 0.2*sm/(n*n);
267 } else {
268 tresh = 0.0;
269 }
270
271 for (ip=0; ip<n-1; ip++) {
272 for (iq=ip+1; iq<n; iq++) {
273 g = 100.0*fabs(a(ip, iq));
274
275 // after 4 sweeps
276 if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
277 && (fabs(w[iq])+g) == fabs(w[iq])) {
278 a(ip, iq) = 0.0;
279 } else if (fabs(a(ip, iq)) > tresh) {
280 h = w[iq] - w[ip];
281 if ( (fabs(h)+g) == fabs(h)) {
282 t = (a(ip, iq)) / h;
283 } else {
284 theta = 0.5*h / (a(ip, iq));
285 t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
286 if (theta < 0.0) {
287 t = -t;
288 }
289 }
290 c = 1.0 / sqrt(1+t*t);
291 s = t*c;
292 tau = s/(1.0+c);
293 h = t*a(ip, iq);
294 z[ip] -= h;
295 z[iq] += h;
296 w[ip] -= h;
297 w[iq] += h;
298 a(ip, iq)=0.0;
299
300 // ip already shifted left by 1 unit
301 for (j = 0;j <= ip-1;j++) {
302 VTK_ROTATE(a,j,ip,j,iq);
303 }
304 // ip and iq already shifted left by 1 unit
305 for (j = ip+1;j <= iq-1;j++) {
306 VTK_ROTATE(a,ip,j,j,iq);
307 }
308 // iq already shifted left by 1 unit
309 for (j=iq+1; j<n; j++) {
310 VTK_ROTATE(a,ip,j,iq,j);
311 }
312 for (j=0; j<n; j++) {
313 VTK_ROTATE(v,j,ip,j,iq);
314 }
315 }
316 }
317 }
318
319 for (ip=0; ip<n; ip++) {
320 b[ip] += z[ip];
321 w[ip] = b[ip];
322 z[ip] = 0.0;
323 }
324 }
325
326 //// this is NEVER called
327 if ( i >= VTK_MAX_ROTATIONS ) {
328 std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
329 return 0;
330 }
331
332 // sort eigenfunctions these changes do not affect accuracy
333 for (j=0; j<n-1; j++) { // boundary incorrect
334 k = j;
335 tmp = w[k];
336 for (i=j+1; i<n; i++) { // boundary incorrect, shifted already
337 if (w[i] >= tmp) { // why exchage if same?
338 k = i;
339 tmp = w[k];
340 }
341 }
342 if (k != j) {
343 w[k] = w[j];
344 w[j] = tmp;
345 for (i=0; i<n; i++) {
346 tmp = v(i, j);
347 v(i, j) = v(i, k);
348 v(i, k) = tmp;
349 }
350 }
351 }
352 // insure eigenvector consistency (i.e., Jacobi can compute vectors that
353 // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
354 // reek havoc in hyperstreamline/other stuff. We will select the most
355 // positive eigenvector.
356 int ceil_half_n = (n >> 1) + (n & 1);
357 for (j=0; j<n; j++) {
358 for (numPos=0, i=0; i<n; i++) {
359 if ( v(i, j) >= 0.0 ) {
360 numPos++;
361 }
362 }
363 // if ( numPos < ceil(double(n)/double(2.0)) )
364 if ( numPos < ceil_half_n) {
365 for (i=0; i<n; i++) {
366 v(i, j) *= -1.0;
367 }
368 }
369 }
370
371 if (n > 4) {
372 delete [] b;
373 delete [] z;
374 }
375 return 1;
376 }
377
378
379 }
380 #endif //MATH_SQUAREMATRIX_HPP
381