ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/math/SquareMatrix.hpp
Revision: 2759
Committed: Wed May 17 21:51:42 2006 UTC (18 years, 2 months ago) by tim
File size: 11301 byte(s)
Log Message:
Adding single precision capabilities to c++ side

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SquareMatrix.hpp
44 * @author Teng Lin
45 * @date 10/11/2004
46 * @version 1.0
47 */
48 #ifndef MATH_SQUAREMATRIX_HPP
49 #define MATH_SQUAREMATRIX_HPP
50
51 #include "math/RectMatrix.hpp"
52 #include "utils/NumericConstant.hpp"
53
54 namespace oopse {
55
56 /**
57 * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
58 * @brief A square matrix class
59 * @template Real the element type
60 * @template Dim the dimension of the square matrix
61 */
62 template<typename Real, int Dim>
63 class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
64 public:
65 typedef Real ElemType;
66 typedef Real* ElemPoinerType;
67
68 /** default constructor */
69 SquareMatrix() {
70 for (unsigned int i = 0; i < Dim; i++)
71 for (unsigned int j = 0; j < Dim; j++)
72 this->data_[i][j] = 0.0;
73 }
74
75 /** Constructs and initializes every element of this matrix to a scalar */
76 SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
77 }
78
79 /** Constructs and initializes from an array */
80 SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
81 }
82
83
84 /** copy constructor */
85 SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
86 }
87
88 /** copy assignment operator */
89 SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
90 RectMatrix<Real, Dim, Dim>::operator=(m);
91 return *this;
92 }
93
94 /** Retunrs an identity matrix*/
95
96 static SquareMatrix<Real, Dim> identity() {
97 SquareMatrix<Real, Dim> m;
98
99 for (unsigned int i = 0; i < Dim; i++)
100 for (unsigned int j = 0; j < Dim; j++)
101 if (i == j)
102 m(i, j) = 1.0;
103 else
104 m(i, j) = 0.0;
105
106 return m;
107 }
108
109 /**
110 * Retunrs the inversion of this matrix.
111 * @todo need implementation
112 */
113 SquareMatrix<Real, Dim> inverse() {
114 SquareMatrix<Real, Dim> result;
115
116 return result;
117 }
118
119 /**
120 * Returns the determinant of this matrix.
121 * @todo need implementation
122 */
123 Real determinant() const {
124 Real det;
125 return det;
126 }
127
128 /** Returns the trace of this matrix. */
129 Real trace() const {
130 Real tmp = 0;
131
132 for (unsigned int i = 0; i < Dim ; i++)
133 tmp += this->data_[i][i];
134
135 return tmp;
136 }
137
138 /** Tests if this matrix is symmetrix. */
139 bool isSymmetric() const {
140 for (unsigned int i = 0; i < Dim - 1; i++)
141 for (unsigned int j = i; j < Dim; j++)
142 if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
143 return false;
144
145 return true;
146 }
147
148 /** Tests if this matrix is orthogonal. */
149 bool isOrthogonal() {
150 SquareMatrix<Real, Dim> tmp;
151
152 tmp = *this * transpose();
153
154 return tmp.isDiagonal();
155 }
156
157 /** Tests if this matrix is diagonal. */
158 bool isDiagonal() const {
159 for (unsigned int i = 0; i < Dim ; i++)
160 for (unsigned int j = 0; j < Dim; j++)
161 if (i !=j && fabs(this->data_[i][j]) > epsilon)
162 return false;
163
164 return true;
165 }
166
167 /** Tests if this matrix is the unit matrix. */
168 bool isUnitMatrix() const {
169 if (!isDiagonal())
170 return false;
171
172 for (unsigned int i = 0; i < Dim ; i++)
173 if (fabs(this->data_[i][i] - 1) > epsilon)
174 return false;
175
176 return true;
177 }
178
179 /** Return the transpose of this matrix */
180 SquareMatrix<Real, Dim> transpose() const{
181 SquareMatrix<Real, Dim> result;
182
183 for (unsigned int i = 0; i < Dim; i++)
184 for (unsigned int j = 0; j < Dim; j++)
185 result(j, i) = this->data_[i][j];
186
187 return result;
188 }
189
190 /** @todo need implementation */
191 void diagonalize() {
192 //jacobi(m, eigenValues, ortMat);
193 }
194
195 /**
196 * Jacobi iteration routines for computing eigenvalues/eigenvectors of
197 * real symmetric matrix
198 *
199 * @return true if success, otherwise return false
200 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
201 * overwritten
202 * @param w will contain the eigenvalues of the matrix On return of this function
203 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
204 * normalized and mutually orthogonal.
205 */
206
207 static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
208 SquareMatrix<Real, Dim>& v);
209 };//end SquareMatrix
210
211
212 /*=========================================================================
213
214 Program: Visualization Toolkit
215 Module: $RCSfile: SquareMatrix.hpp,v $
216
217 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
218 All rights reserved.
219 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
220
221 This software is distributed WITHOUT ANY WARRANTY; without even
222 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
223 PURPOSE. See the above copyright notice for more information.
224
225 =========================================================================*/
226
227 #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
228 a(k, l)=h+s*(g-h*tau)
229
230 #define VTK_MAX_ROTATIONS 20
231
232 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
233 // real symmetric matrix. Square nxn matrix a; size of matrix in n;
234 // output eigenvalues in w; and output eigenvectors in v. Resulting
235 // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
236 // normalized.
237 template<typename Real, int Dim>
238 int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
239 SquareMatrix<Real, Dim>& v) {
240 const int n = Dim;
241 int i, j, k, iq, ip, numPos;
242 Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
243 Real bspace[4], zspace[4];
244 Real *b = bspace;
245 Real *z = zspace;
246
247 // only allocate memory if the matrix is large
248 if (n > 4) {
249 b = new Real[n];
250 z = new Real[n];
251 }
252
253 // initialize
254 for (ip=0; ip<n; ip++) {
255 for (iq=0; iq<n; iq++) {
256 v(ip, iq) = 0.0;
257 }
258 v(ip, ip) = 1.0;
259 }
260 for (ip=0; ip<n; ip++) {
261 b[ip] = w[ip] = a(ip, ip);
262 z[ip] = 0.0;
263 }
264
265 // begin rotation sequence
266 for (i=0; i<VTK_MAX_ROTATIONS; i++) {
267 sm = 0.0;
268 for (ip=0; ip<n-1; ip++) {
269 for (iq=ip+1; iq<n; iq++) {
270 sm += fabs(a(ip, iq));
271 }
272 }
273 if (sm == 0.0) {
274 break;
275 }
276
277 if (i < 3) { // first 3 sweeps
278 tresh = 0.2*sm/(n*n);
279 } else {
280 tresh = 0.0;
281 }
282
283 for (ip=0; ip<n-1; ip++) {
284 for (iq=ip+1; iq<n; iq++) {
285 g = 100.0*fabs(a(ip, iq));
286
287 // after 4 sweeps
288 if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
289 && (fabs(w[iq])+g) == fabs(w[iq])) {
290 a(ip, iq) = 0.0;
291 } else if (fabs(a(ip, iq)) > tresh) {
292 h = w[iq] - w[ip];
293 if ( (fabs(h)+g) == fabs(h)) {
294 t = (a(ip, iq)) / h;
295 } else {
296 theta = 0.5*h / (a(ip, iq));
297 t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
298 if (theta < 0.0) {
299 t = -t;
300 }
301 }
302 c = 1.0 / sqrt(1+t*t);
303 s = t*c;
304 tau = s/(1.0+c);
305 h = t*a(ip, iq);
306 z[ip] -= h;
307 z[iq] += h;
308 w[ip] -= h;
309 w[iq] += h;
310 a(ip, iq)=0.0;
311
312 // ip already shifted left by 1 unit
313 for (j = 0;j <= ip-1;j++) {
314 VTK_ROTATE(a,j,ip,j,iq);
315 }
316 // ip and iq already shifted left by 1 unit
317 for (j = ip+1;j <= iq-1;j++) {
318 VTK_ROTATE(a,ip,j,j,iq);
319 }
320 // iq already shifted left by 1 unit
321 for (j=iq+1; j<n; j++) {
322 VTK_ROTATE(a,ip,j,iq,j);
323 }
324 for (j=0; j<n; j++) {
325 VTK_ROTATE(v,j,ip,j,iq);
326 }
327 }
328 }
329 }
330
331 for (ip=0; ip<n; ip++) {
332 b[ip] += z[ip];
333 w[ip] = b[ip];
334 z[ip] = 0.0;
335 }
336 }
337
338 //// this is NEVER called
339 if ( i >= VTK_MAX_ROTATIONS ) {
340 std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
341 return 0;
342 }
343
344 // sort eigenfunctions these changes do not affect accuracy
345 for (j=0; j<n-1; j++) { // boundary incorrect
346 k = j;
347 tmp = w[k];
348 for (i=j+1; i<n; i++) { // boundary incorrect, shifted already
349 if (w[i] >= tmp) { // why exchage if same?
350 k = i;
351 tmp = w[k];
352 }
353 }
354 if (k != j) {
355 w[k] = w[j];
356 w[j] = tmp;
357 for (i=0; i<n; i++) {
358 tmp = v(i, j);
359 v(i, j) = v(i, k);
360 v(i, k) = tmp;
361 }
362 }
363 }
364 // insure eigenvector consistency (i.e., Jacobi can compute vectors that
365 // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
366 // reek havoc in hyperstreamline/other stuff. We will select the most
367 // positive eigenvector.
368 int ceil_half_n = (n >> 1) + (n & 1);
369 for (j=0; j<n; j++) {
370 for (numPos=0, i=0; i<n; i++) {
371 if ( v(i, j) >= 0.0 ) {
372 numPos++;
373 }
374 }
375 // if ( numPos < ceil(RealType(n)/RealType(2.0)) )
376 if ( numPos < ceil_half_n) {
377 for (i=0; i<n; i++) {
378 v(i, j) *= -1.0;
379 }
380 }
381 }
382
383 if (n > 4) {
384 delete [] b;
385 delete [] z;
386 }
387 return 1;
388 }
389
390
391 typedef SquareMatrix<RealType, 6> Mat6x6d;
392 }
393 #endif //MATH_SQUAREMATRIX_HPP
394