ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/math/SquareMatrix3.hpp
Revision: 2611
Committed: Mon Mar 13 22:42:40 2006 UTC (18 years, 4 months ago) by tim
File size: 18463 byte(s)
Log Message:
LangevinDynamics in progress

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 tim 1563 *
4 gezelter 1930 * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40 tim 1563 */
41 gezelter 1930
42 tim 1563 /**
43     * @file SquareMatrix3.hpp
44     * @author Teng Lin
45     * @date 10/11/2004
46     * @version 1.0
47     */
48 gezelter 2204 #ifndef MATH_SQUAREMATRIX3_HPP
49 tim 1592 #define MATH_SQUAREMATRIX3_HPP
50 tim 2611 #include <vector>
51 tim 1586 #include "Quaternion.hpp"
52 tim 1563 #include "SquareMatrix.hpp"
53 tim 1586 #include "Vector3.hpp"
54 tim 2146 #include "utils/NumericConstant.hpp"
55 tim 1563 namespace oopse {
56    
57 gezelter 2204 template<typename Real>
58     class SquareMatrix3 : public SquareMatrix<Real, 3> {
59     public:
60 tim 1630
61 gezelter 2204 typedef Real ElemType;
62     typedef Real* ElemPoinerType;
63 tim 1563
64 gezelter 2204 /** default constructor */
65     SquareMatrix3() : SquareMatrix<Real, 3>() {
66     }
67 tim 1563
68 gezelter 2204 /** Constructs and initializes every element of this matrix to a scalar */
69     SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){
70     }
71 tim 1644
72 gezelter 2204 /** Constructs and initializes from an array */
73     SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){
74     }
75 tim 1644
76    
77 gezelter 2204 /** copy constructor */
78     SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) {
79     }
80 gezelter 1930
81 gezelter 2204 SquareMatrix3( const Vector3<Real>& eulerAngles) {
82     setupRotMat(eulerAngles);
83     }
84 tim 1586
85 gezelter 2204 SquareMatrix3(Real phi, Real theta, Real psi) {
86     setupRotMat(phi, theta, psi);
87     }
88 tim 1586
89 gezelter 2204 SquareMatrix3(const Quaternion<Real>& q) {
90     setupRotMat(q);
91 tim 1606
92 gezelter 2204 }
93 tim 1586
94 gezelter 2204 SquareMatrix3(Real w, Real x, Real y, Real z) {
95     setupRotMat(w, x, y, z);
96     }
97 tim 1586
98 gezelter 2204 /** copy assignment operator */
99     SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) {
100     if (this == &m)
101     return *this;
102     SquareMatrix<Real, 3>::operator=(m);
103     return *this;
104     }
105 tim 1569
106 gezelter 1930
107 gezelter 2204 SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) {
108     this->setupRotMat(q);
109     return *this;
110     }
111 gezelter 1930
112 gezelter 2204 /**
113     * Sets this matrix to a rotation matrix by three euler angles
114     * @ param euler
115     */
116     void setupRotMat(const Vector3<Real>& eulerAngles) {
117     setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]);
118     }
119 tim 1569
120 gezelter 2204 /**
121     * Sets this matrix to a rotation matrix by three euler angles
122     * @param phi
123     * @param theta
124     * @psi theta
125     */
126     void setupRotMat(Real phi, Real theta, Real psi) {
127     Real sphi, stheta, spsi;
128     Real cphi, ctheta, cpsi;
129 tim 1569
130 gezelter 2204 sphi = sin(phi);
131     stheta = sin(theta);
132     spsi = sin(psi);
133     cphi = cos(phi);
134     ctheta = cos(theta);
135     cpsi = cos(psi);
136 tim 1569
137 gezelter 2204 this->data_[0][0] = cpsi * cphi - ctheta * sphi * spsi;
138     this->data_[0][1] = cpsi * sphi + ctheta * cphi * spsi;
139     this->data_[0][2] = spsi * stheta;
140 tim 1586
141 gezelter 2204 this->data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi;
142     this->data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi;
143     this->data_[1][2] = cpsi * stheta;
144 tim 1586
145 gezelter 2204 this->data_[2][0] = stheta * sphi;
146     this->data_[2][1] = -stheta * cphi;
147     this->data_[2][2] = ctheta;
148     }
149 tim 1586
150    
151 gezelter 2204 /**
152     * Sets this matrix to a rotation matrix by quaternion
153     * @param quat
154     */
155     void setupRotMat(const Quaternion<Real>& quat) {
156     setupRotMat(quat.w(), quat.x(), quat.y(), quat.z());
157     }
158 tim 1569
159 gezelter 2204 /**
160     * Sets this matrix to a rotation matrix by quaternion
161     * @param w the first element
162     * @param x the second element
163     * @param y the third element
164     * @param z the fourth element
165     */
166     void setupRotMat(Real w, Real x, Real y, Real z) {
167     Quaternion<Real> q(w, x, y, z);
168     *this = q.toRotationMatrix3();
169     }
170 tim 1569
171 tim 2596 void setupSkewMat(Vector3<Real> v) {
172     setupSkewMat(v[0], v[1], v[2]);
173     }
174    
175     void setupSkewMat(Real v1, Real v2, Real v3) {
176     this->data_[0][0] = 0;
177     this->data_[0][1] = -v3;
178     this->data_[0][2] = v2;
179     this->data_[1][0] = v3;
180     this->data_[1][1] = 0;
181     this->data_[1][2] = -v1;
182     this->data_[2][0] = -v2;
183     this->data_[2][1] = v1;
184     this->data_[2][2] = 0;
185    
186    
187     }
188    
189    
190    
191 gezelter 2204 /**
192     * Returns the quaternion from this rotation matrix
193     * @return the quaternion from this rotation matrix
194     * @exception invalid rotation matrix
195     */
196     Quaternion<Real> toQuaternion() {
197     Quaternion<Real> q;
198     Real t, s;
199     Real ad1, ad2, ad3;
200     t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0;
201 tim 1569
202 tim 2336 if( t > NumericConstant::epsilon ){
203 tim 1586
204 gezelter 2204 s = 0.5 / sqrt( t );
205     q[0] = 0.25 / s;
206     q[1] = (this->data_[1][2] - this->data_[2][1]) * s;
207     q[2] = (this->data_[2][0] - this->data_[0][2]) * s;
208     q[3] = (this->data_[0][1] - this->data_[1][0]) * s;
209     } else {
210 tim 1586
211 tim 2332 ad1 = this->data_[0][0];
212     ad2 = this->data_[1][1];
213     ad3 = this->data_[2][2];
214 tim 1586
215 gezelter 2204 if( ad1 >= ad2 && ad1 >= ad3 ){
216 tim 1586
217 gezelter 2204 s = 0.5 / sqrt( 1.0 + this->data_[0][0] - this->data_[1][1] - this->data_[2][2] );
218     q[0] = (this->data_[1][2] - this->data_[2][1]) * s;
219     q[1] = 0.25 / s;
220     q[2] = (this->data_[0][1] + this->data_[1][0]) * s;
221     q[3] = (this->data_[0][2] + this->data_[2][0]) * s;
222     } else if ( ad2 >= ad1 && ad2 >= ad3 ) {
223     s = 0.5 / sqrt( 1.0 + this->data_[1][1] - this->data_[0][0] - this->data_[2][2] );
224     q[0] = (this->data_[2][0] - this->data_[0][2] ) * s;
225     q[1] = (this->data_[0][1] + this->data_[1][0]) * s;
226     q[2] = 0.25 / s;
227     q[3] = (this->data_[1][2] + this->data_[2][1]) * s;
228     } else {
229 tim 1586
230 gezelter 2204 s = 0.5 / sqrt( 1.0 + this->data_[2][2] - this->data_[0][0] - this->data_[1][1] );
231     q[0] = (this->data_[0][1] - this->data_[1][0]) * s;
232     q[1] = (this->data_[0][2] + this->data_[2][0]) * s;
233     q[2] = (this->data_[1][2] + this->data_[2][1]) * s;
234     q[3] = 0.25 / s;
235     }
236     }
237 tim 1586
238 gezelter 2204 return q;
239 tim 1586
240 gezelter 2204 }
241 tim 1586
242 gezelter 2204 /**
243     * Returns the euler angles from this rotation matrix
244     * @return the euler angles in a vector
245     * @exception invalid rotation matrix
246     * We use so-called "x-convention", which is the most common definition.
247     * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first
248     * rotation is by an angle phi about the z-axis, the second is by an angle
249     * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the
250     * z-axis (again).
251     */
252     Vector3<Real> toEulerAngles() {
253     Vector3<Real> myEuler;
254     Real phi;
255     Real theta;
256     Real psi;
257     Real ctheta;
258     Real stheta;
259 tim 1586
260 gezelter 2204 // set the tolerance for Euler angles and rotation elements
261 tim 1586
262 gezelter 2204 theta = acos(std::min(1.0, std::max(-1.0,this->data_[2][2])));
263     ctheta = this->data_[2][2];
264     stheta = sqrt(1.0 - ctheta * ctheta);
265 tim 1586
266 gezelter 2204 // when sin(theta) is close to 0, we need to consider singularity
267     // In this case, we can assign an arbitary value to phi (or psi), and then determine
268     // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0
269     // in cases of singularity.
270     // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.
271     // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never
272     // change the sign of both of the parameters passed to atan2.
273 tim 1586
274 gezelter 2204 if (fabs(stheta) <= oopse::epsilon){
275     psi = 0.0;
276     phi = atan2(-this->data_[1][0], this->data_[0][0]);
277     }
278     // we only have one unique solution
279     else{
280     phi = atan2(this->data_[2][0], -this->data_[2][1]);
281     psi = atan2(this->data_[0][2], this->data_[1][2]);
282     }
283 tim 1586
284 gezelter 2204 //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
285     if (phi < 0)
286     phi += M_PI;
287 tim 1586
288 gezelter 2204 if (psi < 0)
289     psi += M_PI;
290 tim 1586
291 gezelter 2204 myEuler[0] = phi;
292     myEuler[1] = theta;
293     myEuler[2] = psi;
294 tim 1586
295 gezelter 2204 return myEuler;
296     }
297 tim 1563
298 gezelter 2204 /** Returns the determinant of this matrix. */
299     Real determinant() const {
300     Real x,y,z;
301 tim 1594
302 gezelter 2204 x = this->data_[0][0] * (this->data_[1][1] * this->data_[2][2] - this->data_[1][2] * this->data_[2][1]);
303     y = this->data_[0][1] * (this->data_[1][2] * this->data_[2][0] - this->data_[1][0] * this->data_[2][2]);
304     z = this->data_[0][2] * (this->data_[1][0] * this->data_[2][1] - this->data_[1][1] * this->data_[2][0]);
305 tim 1594
306 gezelter 2204 return(x + y + z);
307     }
308 gezelter 1930
309 gezelter 2204 /** Returns the trace of this matrix. */
310     Real trace() const {
311     return this->data_[0][0] + this->data_[1][1] + this->data_[2][2];
312     }
313 tim 1594
314 gezelter 2204 /**
315     * Sets the value of this matrix to the inversion of itself.
316     * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the
317     * implementation of inverse in SquareMatrix class
318     */
319     SquareMatrix3<Real> inverse() const {
320     SquareMatrix3<Real> m;
321     double det = determinant();
322     if (fabs(det) <= oopse::epsilon) {
323     //"The method was called on a matrix with |determinant| <= 1e-6.",
324     //"This is a runtime or a programming error in your application.");
325 tim 2611 std::vector<int> zeroDiagElementIndex;
326     for (int i =0; i < 3; ++i) {
327     if (fabs(this->data_[i][i]) <= oopse::epsilon) {
328     zeroDiagElementIndex.push_back(i);
329     }
330     }
331 tim 1563
332 tim 2611 if (zeroDiagElementIndex.size() == 2) {
333     int index = zeroDiagElementIndex[0];
334     m(index, index) = 1.0 / this->data_[index][index];
335     }else if (zeroDiagElementIndex.size() == 1) {
336 tim 1594
337 tim 2611 int a = (zeroDiagElementIndex[0] + 1) % 3;
338     int b = (zeroDiagElementIndex[0] + 2) %3;
339     double denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b];
340     m(a, a) = this->data_[b][b] /denom;
341     m(b, a) = -this->data_[b][a]/denom;
342    
343     m(a,b) = -this->data_[a][b]/denom;
344     m(b, b) = this->data_[a][a]/denom;
345    
346     }
347    
348     /*
349     for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) {
350     if (this->data_[*iter][0] > oopse::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] ||
351     this->data_[0][*iter] > oopse::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) {
352     std::cout << "can not inverse matrix" << std::endl;
353     }
354     }
355     */
356     } else {
357    
358     m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1];
359     m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2];
360     m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0];
361     m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1];
362     m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2];
363     m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0];
364     m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1];
365     m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2];
366     m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0];
367    
368     m /= det;
369     }
370 gezelter 2204 return m;
371     }
372 tim 2583
373     SquareMatrix3<Real> transpose() const{
374     SquareMatrix3<Real> result;
375    
376     for (unsigned int i = 0; i < 3; i++)
377     for (unsigned int j = 0; j < 3; j++)
378     result(j, i) = this->data_[i][j];
379    
380     return result;
381     }
382 gezelter 2204 /**
383     * Extract the eigenvalues and eigenvectors from a 3x3 matrix.
384     * The eigenvectors (the columns of V) will be normalized.
385     * The eigenvectors are aligned optimally with the x, y, and z
386     * axes respectively.
387     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
388     * overwritten
389     * @param w will contain the eigenvalues of the matrix On return of this function
390     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
391     * normalized and mutually orthogonal.
392     * @warning a will be overwritten
393     */
394     static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);
395     };
396     /*=========================================================================
397 tim 1569
398 tim 1616 Program: Visualization Toolkit
399     Module: $RCSfile: SquareMatrix3.hpp,v $
400 tim 1592
401 tim 1616 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
402     All rights reserved.
403     See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
404 tim 1594
405 gezelter 2204 This software is distributed WITHOUT ANY WARRANTY; without even
406     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
407     PURPOSE. See the above copyright notice for more information.
408 tim 1594
409 gezelter 2204 =========================================================================*/
410     template<typename Real>
411     void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,
412     SquareMatrix3<Real>& v) {
413     int i,j,k,maxI;
414     Real tmp, maxVal;
415     Vector3<Real> v_maxI, v_k, v_j;
416 tim 1594
417 gezelter 2204 // diagonalize using Jacobi
418     jacobi(a, w, v);
419     // if all the eigenvalues are the same, return identity matrix
420     if (w[0] == w[1] && w[0] == w[2] ) {
421     v = SquareMatrix3<Real>::identity();
422     return;
423     }
424 tim 1594
425 gezelter 2204 // transpose temporarily, it makes it easier to sort the eigenvectors
426     v = v.transpose();
427 tim 1616
428 gezelter 2204 // if two eigenvalues are the same, re-orthogonalize to optimally line
429     // up the eigenvectors with the x, y, and z axes
430     for (i = 0; i < 3; i++) {
431     if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same
432     // find maximum element of the independant eigenvector
433     maxVal = fabs(v(i, 0));
434     maxI = 0;
435     for (j = 1; j < 3; j++) {
436     if (maxVal < (tmp = fabs(v(i, j)))){
437     maxVal = tmp;
438     maxI = j;
439     }
440     }
441 tim 1616
442 gezelter 2204 // swap the eigenvector into its proper position
443     if (maxI != i) {
444     tmp = w(maxI);
445     w(maxI) = w(i);
446     w(i) = tmp;
447 tim 1594
448 gezelter 2204 v.swapRow(i, maxI);
449     }
450     // maximum element of eigenvector should be positive
451     if (v(maxI, maxI) < 0) {
452     v(maxI, 0) = -v(maxI, 0);
453     v(maxI, 1) = -v(maxI, 1);
454     v(maxI, 2) = -v(maxI, 2);
455     }
456 tim 1594
457 gezelter 2204 // re-orthogonalize the other two eigenvectors
458     j = (maxI+1)%3;
459     k = (maxI+2)%3;
460 tim 1594
461 gezelter 2204 v(j, 0) = 0.0;
462     v(j, 1) = 0.0;
463     v(j, 2) = 0.0;
464     v(j, j) = 1.0;
465 tim 1594
466 gezelter 2204 /** @todo */
467     v_maxI = v.getRow(maxI);
468     v_j = v.getRow(j);
469     v_k = cross(v_maxI, v_j);
470     v_k.normalize();
471     v_j = cross(v_k, v_maxI);
472     v.setRow(j, v_j);
473     v.setRow(k, v_k);
474 tim 1594
475    
476 gezelter 2204 // transpose vectors back to columns
477     v = v.transpose();
478     return;
479     }
480     }
481 tim 1594
482 gezelter 2204 // the three eigenvalues are different, just sort the eigenvectors
483     // to align them with the x, y, and z axes
484 tim 1594
485 gezelter 2204 // find the vector with the largest x element, make that vector
486     // the first vector
487     maxVal = fabs(v(0, 0));
488     maxI = 0;
489     for (i = 1; i < 3; i++) {
490     if (maxVal < (tmp = fabs(v(i, 0)))) {
491     maxVal = tmp;
492     maxI = i;
493     }
494     }
495 tim 1594
496 gezelter 2204 // swap eigenvalue and eigenvector
497     if (maxI != 0) {
498     tmp = w(maxI);
499     w(maxI) = w(0);
500     w(0) = tmp;
501     v.swapRow(maxI, 0);
502     }
503     // do the same for the y element
504     if (fabs(v(1, 1)) < fabs(v(2, 1))) {
505     tmp = w(2);
506     w(2) = w(1);
507     w(1) = tmp;
508     v.swapRow(2, 1);
509     }
510 tim 1594
511 gezelter 2204 // ensure that the sign of the eigenvectors is correct
512     for (i = 0; i < 2; i++) {
513     if (v(i, i) < 0) {
514     v(i, 0) = -v(i, 0);
515     v(i, 1) = -v(i, 1);
516     v(i, 2) = -v(i, 2);
517     }
518     }
519 tim 1563
520 gezelter 2204 // set sign of final eigenvector to ensure that determinant is positive
521     if (v.determinant() < 0) {
522     v(2, 0) = -v(2, 0);
523     v(2, 1) = -v(2, 1);
524     v(2, 2) = -v(2, 2);
525 tim 1616 }
526 gezelter 1930
527 gezelter 2204 // transpose the eigenvectors back again
528     v = v.transpose();
529     return ;
530     }
531 gezelter 1930
532 gezelter 2204 /**
533     * Return the multiplication of two matrixes (m1 * m2).
534     * @return the multiplication of two matrixes
535     * @param m1 the first matrix
536     * @param m2 the second matrix
537     */
538     template<typename Real>
539     inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) {
540     SquareMatrix3<Real> result;
541 gezelter 1930
542 gezelter 2204 for (unsigned int i = 0; i < 3; i++)
543     for (unsigned int j = 0; j < 3; j++)
544     for (unsigned int k = 0; k < 3; k++)
545     result(i, j) += m1(i, k) * m2(k, j);
546 gezelter 1930
547 gezelter 2204 return result;
548     }
549 gezelter 1930
550 gezelter 2204 template<typename Real>
551     inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) {
552     SquareMatrix3<Real> result;
553    
554     for (unsigned int i = 0; i < 3; i++) {
555     for (unsigned int j = 0; j < 3; j++) {
556     result(i, j) = v1[i] * v2[j];
557     }
558     }
559 gezelter 1930
560 gezelter 2204 return result;
561     }
562 gezelter 1930
563    
564 gezelter 2204 typedef SquareMatrix3<double> Mat3x3d;
565     typedef SquareMatrix3<double> RotMat3x3d;
566 tim 1586
567     } //namespace oopse
568     #endif // MATH_SQUAREMATRIX_HPP
569 tim 1616