ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/math/SquareMatrix3.hpp
Revision: 1630
Committed: Thu Oct 21 21:31:39 2004 UTC (19 years, 8 months ago) by tim
File size: 16427 byte(s)
Log Message:
Snapshot and SnapshotManager in progress

File Contents

# Content
1 /*
2 * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3 *
4 * Contact: oopse@oopse.org
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public License
8 * as published by the Free Software Foundation; either version 2.1
9 * of the License, or (at your option) any later version.
10 * All we ask is that proper credit is given for our work, which includes
11 * - but is not limited to - adding the above copyright notice to the beginning
12 * of your source code files, and to any copyright notice that you may distribute
13 * with programs based on this work.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 */
25
26 /**
27 * @file SquareMatrix3.hpp
28 * @author Teng Lin
29 * @date 10/11/2004
30 * @version 1.0
31 */
32 #ifndef MATH_SQUAREMATRIX3_HPP
33 #define MATH_SQUAREMATRIX3_HPP
34
35 #include "Quaternion.hpp"
36 #include "SquareMatrix.hpp"
37 #include "Vector3.hpp"
38
39 namespace oopse {
40
41 template<typename Real>
42 class SquareMatrix3 : public SquareMatrix<Real, 3> {
43 public:
44
45 typedef Real ElemType;
46 typedef Real* ElemPoinerType;
47
48 /** default constructor */
49 SquareMatrix3() : SquareMatrix<Real, 3>() {
50 }
51
52 /** copy constructor */
53 SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) {
54 }
55
56 SquareMatrix3( const Vector3<Real>& eulerAngles) {
57 setupRotMat(eulerAngles);
58 }
59
60 SquareMatrix3(Real phi, Real theta, Real psi) {
61 setupRotMat(phi, theta, psi);
62 }
63
64 SquareMatrix3(const Quaternion<Real>& q) {
65 setupRotMat(q);
66
67 }
68
69 SquareMatrix3(Real w, Real x, Real y, Real z) {
70 setupRotMat(w, x, y, z);
71 }
72
73 /** copy assignment operator */
74 SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) {
75 if (this == &m)
76 return *this;
77 SquareMatrix<Real, 3>::operator=(m);
78 return *this;
79 }
80
81 /**
82 * Sets this matrix to a rotation matrix by three euler angles
83 * @ param euler
84 */
85 void setupRotMat(const Vector3<Real>& eulerAngles) {
86 setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]);
87 }
88
89 /**
90 * Sets this matrix to a rotation matrix by three euler angles
91 * @param phi
92 * @param theta
93 * @psi theta
94 */
95 void setupRotMat(Real phi, Real theta, Real psi) {
96 Real sphi, stheta, spsi;
97 Real cphi, ctheta, cpsi;
98
99 sphi = sin(phi);
100 stheta = sin(theta);
101 spsi = sin(psi);
102 cphi = cos(phi);
103 ctheta = cos(theta);
104 cpsi = cos(psi);
105
106 data_[0][0] = cpsi * cphi - ctheta * sphi * spsi;
107 data_[0][1] = cpsi * sphi + ctheta * cphi * spsi;
108 data_[0][2] = spsi * stheta;
109
110 data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi;
111 data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi;
112 data_[1][2] = cpsi * stheta;
113
114 data_[2][0] = stheta * sphi;
115 data_[2][1] = -stheta * cphi;
116 data_[2][2] = ctheta;
117 }
118
119
120 /**
121 * Sets this matrix to a rotation matrix by quaternion
122 * @param quat
123 */
124 void setupRotMat(const Quaternion<Real>& quat) {
125 setupRotMat(quat.w(), quat.x(), quat.y(), quat.z());
126 }
127
128 /**
129 * Sets this matrix to a rotation matrix by quaternion
130 * @param w the first element
131 * @param x the second element
132 * @param y the third element
133 * @param z the fourth element
134 */
135 void setupRotMat(Real w, Real x, Real y, Real z) {
136 Quaternion<Real> q(w, x, y, z);
137 *this = q.toRotationMatrix3();
138 }
139
140 /**
141 * Returns the quaternion from this rotation matrix
142 * @return the quaternion from this rotation matrix
143 * @exception invalid rotation matrix
144 */
145 Quaternion<Real> toQuaternion() {
146 Quaternion<Real> q;
147 Real t, s;
148 Real ad1, ad2, ad3;
149 t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0;
150
151 if( t > 0.0 ){
152
153 s = 0.5 / sqrt( t );
154 q[0] = 0.25 / s;
155 q[1] = (data_[1][2] - data_[2][1]) * s;
156 q[2] = (data_[2][0] - data_[0][2]) * s;
157 q[3] = (data_[0][1] - data_[1][0]) * s;
158 } else {
159
160 ad1 = fabs( data_[0][0] );
161 ad2 = fabs( data_[1][1] );
162 ad3 = fabs( data_[2][2] );
163
164 if( ad1 >= ad2 && ad1 >= ad3 ){
165
166 s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] );
167 q[0] = (data_[1][2] + data_[2][1]) / s;
168 q[1] = 0.5 / s;
169 q[2] = (data_[0][1] + data_[1][0]) / s;
170 q[3] = (data_[0][2] + data_[2][0]) / s;
171 } else if ( ad2 >= ad1 && ad2 >= ad3 ) {
172 s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0;
173 q[0] = (data_[0][2] + data_[2][0]) / s;
174 q[1] = (data_[0][1] + data_[1][0]) / s;
175 q[2] = 0.5 / s;
176 q[3] = (data_[1][2] + data_[2][1]) / s;
177 } else {
178
179 s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0;
180 q[0] = (data_[0][1] + data_[1][0]) / s;
181 q[1] = (data_[0][2] + data_[2][0]) / s;
182 q[2] = (data_[1][2] + data_[2][1]) / s;
183 q[3] = 0.5 / s;
184 }
185 }
186
187 return q;
188
189 }
190
191 /**
192 * Returns the euler angles from this rotation matrix
193 * @return the euler angles in a vector
194 * @exception invalid rotation matrix
195 * We use so-called "x-convention", which is the most common definition.
196 * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first
197 * rotation is by an angle phi about the z-axis, the second is by an angle
198 * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the
199 * z-axis (again).
200 */
201 Vector3<Real> toEulerAngles() {
202 Vector3<Real> myEuler;
203 Real phi,theta,psi,eps;
204 Real ctheta,stheta;
205
206 // set the tolerance for Euler angles and rotation elements
207
208 theta = acos(std::min(1.0, std::max(-1.0,data_[2][2])));
209 ctheta = data_[2][2];
210 stheta = sqrt(1.0 - ctheta * ctheta);
211
212 // when sin(theta) is close to 0, we need to consider singularity
213 // In this case, we can assign an arbitary value to phi (or psi), and then determine
214 // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0
215 // in cases of singularity.
216 // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.
217 // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never
218 // change the sign of both of the parameters passed to atan2.
219
220 if (fabs(stheta) <= oopse::epsilon){
221 psi = 0.0;
222 phi = atan2(-data_[1][0], data_[0][0]);
223 }
224 // we only have one unique solution
225 else{
226 phi = atan2(data_[2][0], -data_[2][1]);
227 psi = atan2(data_[0][2], data_[1][2]);
228 }
229
230 //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
231 if (phi < 0)
232 phi += M_PI;
233
234 if (psi < 0)
235 psi += M_PI;
236
237 myEuler[0] = phi;
238 myEuler[1] = theta;
239 myEuler[2] = psi;
240
241 return myEuler;
242 }
243
244 /** Returns the determinant of this matrix. */
245 Real determinant() const {
246 Real x,y,z;
247
248 x = data_[0][0] * (data_[1][1] * data_[2][2] - data_[1][2] * data_[2][1]);
249 y = data_[0][1] * (data_[1][2] * data_[2][0] - data_[1][0] * data_[2][2]);
250 z = data_[0][2] * (data_[1][0] * data_[2][1] - data_[1][1] * data_[2][0]);
251
252 return(x + y + z);
253 }
254
255 /**
256 * Sets the value of this matrix to the inversion of itself.
257 * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the
258 * implementation of inverse in SquareMatrix class
259 */
260 SquareMatrix3<Real> inverse() {
261 SquareMatrix3<Real> m;
262 double det = determinant();
263 if (fabs(det) <= oopse::epsilon) {
264 //"The method was called on a matrix with |determinant| <= 1e-6.",
265 //"This is a runtime or a programming error in your application.");
266 }
267
268 m(0, 0) = data_[1][1]*data_[2][2] - data_[1][2]*data_[2][1];
269 m(1, 0) = data_[1][2]*data_[2][0] - data_[1][0]*data_[2][2];
270 m(2, 0) = data_[1][0]*data_[2][1] - data_[1][1]*data_[2][0];
271 m(0, 1) = data_[2][1]*data_[0][2] - data_[2][2]*data_[0][1];
272 m(1, 1) = data_[2][2]*data_[0][0] - data_[2][0]*data_[0][2];
273 m(2, 1) = data_[2][0]*data_[0][1] - data_[2][1]*data_[0][0];
274 m(0, 2) = data_[0][1]*data_[1][2] - data_[0][2]*data_[1][1];
275 m(1, 2) = data_[0][2]*data_[1][0] - data_[0][0]*data_[1][2];
276 m(2, 2) = data_[0][0]*data_[1][1] - data_[0][1]*data_[1][0];
277
278 m /= det;
279 return m;
280 }
281 /**
282 * Extract the eigenvalues and eigenvectors from a 3x3 matrix.
283 * The eigenvectors (the columns of V) will be normalized.
284 * The eigenvectors are aligned optimally with the x, y, and z
285 * axes respectively.
286 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
287 * overwritten
288 * @param w will contain the eigenvalues of the matrix On return of this function
289 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
290 * normalized and mutually orthogonal.
291 * @warning a will be overwritten
292 */
293 static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);
294 };
295 /*=========================================================================
296
297 Program: Visualization Toolkit
298 Module: $RCSfile: SquareMatrix3.hpp,v $
299
300 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
301 All rights reserved.
302 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
303
304 This software is distributed WITHOUT ANY WARRANTY; without even
305 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
306 PURPOSE. See the above copyright notice for more information.
307
308 =========================================================================*/
309 template<typename Real>
310 void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,
311 SquareMatrix3<Real>& v) {
312 int i,j,k,maxI;
313 Real tmp, maxVal;
314 Vector3<Real> v_maxI, v_k, v_j;
315
316 // diagonalize using Jacobi
317 jacobi(a, w, v);
318 // if all the eigenvalues are the same, return identity matrix
319 if (w[0] == w[1] && w[0] == w[2] ) {
320 v = SquareMatrix3<Real>::identity();
321 return;
322 }
323
324 // transpose temporarily, it makes it easier to sort the eigenvectors
325 v = v.transpose();
326
327 // if two eigenvalues are the same, re-orthogonalize to optimally line
328 // up the eigenvectors with the x, y, and z axes
329 for (i = 0; i < 3; i++) {
330 if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same
331 // find maximum element of the independant eigenvector
332 maxVal = fabs(v(i, 0));
333 maxI = 0;
334 for (j = 1; j < 3; j++) {
335 if (maxVal < (tmp = fabs(v(i, j)))){
336 maxVal = tmp;
337 maxI = j;
338 }
339 }
340
341 // swap the eigenvector into its proper position
342 if (maxI != i) {
343 tmp = w(maxI);
344 w(maxI) = w(i);
345 w(i) = tmp;
346
347 v.swapRow(i, maxI);
348 }
349 // maximum element of eigenvector should be positive
350 if (v(maxI, maxI) < 0) {
351 v(maxI, 0) = -v(maxI, 0);
352 v(maxI, 1) = -v(maxI, 1);
353 v(maxI, 2) = -v(maxI, 2);
354 }
355
356 // re-orthogonalize the other two eigenvectors
357 j = (maxI+1)%3;
358 k = (maxI+2)%3;
359
360 v(j, 0) = 0.0;
361 v(j, 1) = 0.0;
362 v(j, 2) = 0.0;
363 v(j, j) = 1.0;
364
365 /** @todo */
366 v_maxI = v.getRow(maxI);
367 v_j = v.getRow(j);
368 v_k = cross(v_maxI, v_j);
369 v_k.normalize();
370 v_j = cross(v_k, v_maxI);
371 v.setRow(j, v_j);
372 v.setRow(k, v_k);
373
374
375 // transpose vectors back to columns
376 v = v.transpose();
377 return;
378 }
379 }
380
381 // the three eigenvalues are different, just sort the eigenvectors
382 // to align them with the x, y, and z axes
383
384 // find the vector with the largest x element, make that vector
385 // the first vector
386 maxVal = fabs(v(0, 0));
387 maxI = 0;
388 for (i = 1; i < 3; i++) {
389 if (maxVal < (tmp = fabs(v(i, 0)))) {
390 maxVal = tmp;
391 maxI = i;
392 }
393 }
394
395 // swap eigenvalue and eigenvector
396 if (maxI != 0) {
397 tmp = w(maxI);
398 w(maxI) = w(0);
399 w(0) = tmp;
400 v.swapRow(maxI, 0);
401 }
402 // do the same for the y element
403 if (fabs(v(1, 1)) < fabs(v(2, 1))) {
404 tmp = w(2);
405 w(2) = w(1);
406 w(1) = tmp;
407 v.swapRow(2, 1);
408 }
409
410 // ensure that the sign of the eigenvectors is correct
411 for (i = 0; i < 2; i++) {
412 if (v(i, i) < 0) {
413 v(i, 0) = -v(i, 0);
414 v(i, 1) = -v(i, 1);
415 v(i, 2) = -v(i, 2);
416 }
417 }
418
419 // set sign of final eigenvector to ensure that determinant is positive
420 if (v.determinant() < 0) {
421 v(2, 0) = -v(2, 0);
422 v(2, 1) = -v(2, 1);
423 v(2, 2) = -v(2, 2);
424 }
425
426 // transpose the eigenvectors back again
427 v = v.transpose();
428 return ;
429 }
430 typedef SquareMatrix3<double> Mat3x3d;
431 typedef SquareMatrix3<double> RotMat3x3d;
432
433 } //namespace oopse
434 #endif // MATH_SQUAREMATRIX_HPP
435