ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/math/SquareMatrix3.hpp
Revision: 1644
Committed: Mon Oct 25 22:46:19 2004 UTC (19 years, 8 months ago) by tim
File size: 16738 byte(s)
Log Message:
add getArray function to  RectMatrix and Vector classes

File Contents

# Content
1 /*
2 * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3 *
4 * Contact: oopse@oopse.org
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public License
8 * as published by the Free Software Foundation; either version 2.1
9 * of the License, or (at your option) any later version.
10 * All we ask is that proper credit is given for our work, which includes
11 * - but is not limited to - adding the above copyright notice to the beginning
12 * of your source code files, and to any copyright notice that you may distribute
13 * with programs based on this work.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 */
25
26 /**
27 * @file SquareMatrix3.hpp
28 * @author Teng Lin
29 * @date 10/11/2004
30 * @version 1.0
31 */
32 #ifndef MATH_SQUAREMATRIX3_HPP
33 #define MATH_SQUAREMATRIX3_HPP
34
35 #include "Quaternion.hpp"
36 #include "SquareMatrix.hpp"
37 #include "Vector3.hpp"
38
39 namespace oopse {
40
41 template<typename Real>
42 class SquareMatrix3 : public SquareMatrix<Real, 3> {
43 public:
44
45 typedef Real ElemType;
46 typedef Real* ElemPoinerType;
47
48 /** default constructor */
49 SquareMatrix3() : SquareMatrix<Real, 3>() {
50 }
51
52 /** Constructs and initializes every element of this matrix to a scalar */
53 SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){
54 }
55
56 /** Constructs and initializes from an array */
57 SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){
58 }
59
60
61 /** copy constructor */
62 SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) {
63 }
64
65 SquareMatrix3( const Vector3<Real>& eulerAngles) {
66 setupRotMat(eulerAngles);
67 }
68
69 SquareMatrix3(Real phi, Real theta, Real psi) {
70 setupRotMat(phi, theta, psi);
71 }
72
73 SquareMatrix3(const Quaternion<Real>& q) {
74 setupRotMat(q);
75
76 }
77
78 SquareMatrix3(Real w, Real x, Real y, Real z) {
79 setupRotMat(w, x, y, z);
80 }
81
82 /** copy assignment operator */
83 SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) {
84 if (this == &m)
85 return *this;
86 SquareMatrix<Real, 3>::operator=(m);
87 return *this;
88 }
89
90 /**
91 * Sets this matrix to a rotation matrix by three euler angles
92 * @ param euler
93 */
94 void setupRotMat(const Vector3<Real>& eulerAngles) {
95 setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]);
96 }
97
98 /**
99 * Sets this matrix to a rotation matrix by three euler angles
100 * @param phi
101 * @param theta
102 * @psi theta
103 */
104 void setupRotMat(Real phi, Real theta, Real psi) {
105 Real sphi, stheta, spsi;
106 Real cphi, ctheta, cpsi;
107
108 sphi = sin(phi);
109 stheta = sin(theta);
110 spsi = sin(psi);
111 cphi = cos(phi);
112 ctheta = cos(theta);
113 cpsi = cos(psi);
114
115 data_[0][0] = cpsi * cphi - ctheta * sphi * spsi;
116 data_[0][1] = cpsi * sphi + ctheta * cphi * spsi;
117 data_[0][2] = spsi * stheta;
118
119 data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi;
120 data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi;
121 data_[1][2] = cpsi * stheta;
122
123 data_[2][0] = stheta * sphi;
124 data_[2][1] = -stheta * cphi;
125 data_[2][2] = ctheta;
126 }
127
128
129 /**
130 * Sets this matrix to a rotation matrix by quaternion
131 * @param quat
132 */
133 void setupRotMat(const Quaternion<Real>& quat) {
134 setupRotMat(quat.w(), quat.x(), quat.y(), quat.z());
135 }
136
137 /**
138 * Sets this matrix to a rotation matrix by quaternion
139 * @param w the first element
140 * @param x the second element
141 * @param y the third element
142 * @param z the fourth element
143 */
144 void setupRotMat(Real w, Real x, Real y, Real z) {
145 Quaternion<Real> q(w, x, y, z);
146 *this = q.toRotationMatrix3();
147 }
148
149 /**
150 * Returns the quaternion from this rotation matrix
151 * @return the quaternion from this rotation matrix
152 * @exception invalid rotation matrix
153 */
154 Quaternion<Real> toQuaternion() {
155 Quaternion<Real> q;
156 Real t, s;
157 Real ad1, ad2, ad3;
158 t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0;
159
160 if( t > 0.0 ){
161
162 s = 0.5 / sqrt( t );
163 q[0] = 0.25 / s;
164 q[1] = (data_[1][2] - data_[2][1]) * s;
165 q[2] = (data_[2][0] - data_[0][2]) * s;
166 q[3] = (data_[0][1] - data_[1][0]) * s;
167 } else {
168
169 ad1 = fabs( data_[0][0] );
170 ad2 = fabs( data_[1][1] );
171 ad3 = fabs( data_[2][2] );
172
173 if( ad1 >= ad2 && ad1 >= ad3 ){
174
175 s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] );
176 q[0] = (data_[1][2] + data_[2][1]) / s;
177 q[1] = 0.5 / s;
178 q[2] = (data_[0][1] + data_[1][0]) / s;
179 q[3] = (data_[0][2] + data_[2][0]) / s;
180 } else if ( ad2 >= ad1 && ad2 >= ad3 ) {
181 s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0;
182 q[0] = (data_[0][2] + data_[2][0]) / s;
183 q[1] = (data_[0][1] + data_[1][0]) / s;
184 q[2] = 0.5 / s;
185 q[3] = (data_[1][2] + data_[2][1]) / s;
186 } else {
187
188 s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0;
189 q[0] = (data_[0][1] + data_[1][0]) / s;
190 q[1] = (data_[0][2] + data_[2][0]) / s;
191 q[2] = (data_[1][2] + data_[2][1]) / s;
192 q[3] = 0.5 / s;
193 }
194 }
195
196 return q;
197
198 }
199
200 /**
201 * Returns the euler angles from this rotation matrix
202 * @return the euler angles in a vector
203 * @exception invalid rotation matrix
204 * We use so-called "x-convention", which is the most common definition.
205 * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first
206 * rotation is by an angle phi about the z-axis, the second is by an angle
207 * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the
208 * z-axis (again).
209 */
210 Vector3<Real> toEulerAngles() {
211 Vector3<Real> myEuler;
212 Real phi,theta,psi,eps;
213 Real ctheta,stheta;
214
215 // set the tolerance for Euler angles and rotation elements
216
217 theta = acos(std::min(1.0, std::max(-1.0,data_[2][2])));
218 ctheta = data_[2][2];
219 stheta = sqrt(1.0 - ctheta * ctheta);
220
221 // when sin(theta) is close to 0, we need to consider singularity
222 // In this case, we can assign an arbitary value to phi (or psi), and then determine
223 // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0
224 // in cases of singularity.
225 // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.
226 // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never
227 // change the sign of both of the parameters passed to atan2.
228
229 if (fabs(stheta) <= oopse::epsilon){
230 psi = 0.0;
231 phi = atan2(-data_[1][0], data_[0][0]);
232 }
233 // we only have one unique solution
234 else{
235 phi = atan2(data_[2][0], -data_[2][1]);
236 psi = atan2(data_[0][2], data_[1][2]);
237 }
238
239 //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
240 if (phi < 0)
241 phi += M_PI;
242
243 if (psi < 0)
244 psi += M_PI;
245
246 myEuler[0] = phi;
247 myEuler[1] = theta;
248 myEuler[2] = psi;
249
250 return myEuler;
251 }
252
253 /** Returns the determinant of this matrix. */
254 Real determinant() const {
255 Real x,y,z;
256
257 x = data_[0][0] * (data_[1][1] * data_[2][2] - data_[1][2] * data_[2][1]);
258 y = data_[0][1] * (data_[1][2] * data_[2][0] - data_[1][0] * data_[2][2]);
259 z = data_[0][2] * (data_[1][0] * data_[2][1] - data_[1][1] * data_[2][0]);
260
261 return(x + y + z);
262 }
263
264 /**
265 * Sets the value of this matrix to the inversion of itself.
266 * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the
267 * implementation of inverse in SquareMatrix class
268 */
269 SquareMatrix3<Real> inverse() {
270 SquareMatrix3<Real> m;
271 double det = determinant();
272 if (fabs(det) <= oopse::epsilon) {
273 //"The method was called on a matrix with |determinant| <= 1e-6.",
274 //"This is a runtime or a programming error in your application.");
275 }
276
277 m(0, 0) = data_[1][1]*data_[2][2] - data_[1][2]*data_[2][1];
278 m(1, 0) = data_[1][2]*data_[2][0] - data_[1][0]*data_[2][2];
279 m(2, 0) = data_[1][0]*data_[2][1] - data_[1][1]*data_[2][0];
280 m(0, 1) = data_[2][1]*data_[0][2] - data_[2][2]*data_[0][1];
281 m(1, 1) = data_[2][2]*data_[0][0] - data_[2][0]*data_[0][2];
282 m(2, 1) = data_[2][0]*data_[0][1] - data_[2][1]*data_[0][0];
283 m(0, 2) = data_[0][1]*data_[1][2] - data_[0][2]*data_[1][1];
284 m(1, 2) = data_[0][2]*data_[1][0] - data_[0][0]*data_[1][2];
285 m(2, 2) = data_[0][0]*data_[1][1] - data_[0][1]*data_[1][0];
286
287 m /= det;
288 return m;
289 }
290 /**
291 * Extract the eigenvalues and eigenvectors from a 3x3 matrix.
292 * The eigenvectors (the columns of V) will be normalized.
293 * The eigenvectors are aligned optimally with the x, y, and z
294 * axes respectively.
295 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
296 * overwritten
297 * @param w will contain the eigenvalues of the matrix On return of this function
298 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
299 * normalized and mutually orthogonal.
300 * @warning a will be overwritten
301 */
302 static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);
303 };
304 /*=========================================================================
305
306 Program: Visualization Toolkit
307 Module: $RCSfile: SquareMatrix3.hpp,v $
308
309 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
310 All rights reserved.
311 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
312
313 This software is distributed WITHOUT ANY WARRANTY; without even
314 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
315 PURPOSE. See the above copyright notice for more information.
316
317 =========================================================================*/
318 template<typename Real>
319 void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,
320 SquareMatrix3<Real>& v) {
321 int i,j,k,maxI;
322 Real tmp, maxVal;
323 Vector3<Real> v_maxI, v_k, v_j;
324
325 // diagonalize using Jacobi
326 jacobi(a, w, v);
327 // if all the eigenvalues are the same, return identity matrix
328 if (w[0] == w[1] && w[0] == w[2] ) {
329 v = SquareMatrix3<Real>::identity();
330 return;
331 }
332
333 // transpose temporarily, it makes it easier to sort the eigenvectors
334 v = v.transpose();
335
336 // if two eigenvalues are the same, re-orthogonalize to optimally line
337 // up the eigenvectors with the x, y, and z axes
338 for (i = 0; i < 3; i++) {
339 if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same
340 // find maximum element of the independant eigenvector
341 maxVal = fabs(v(i, 0));
342 maxI = 0;
343 for (j = 1; j < 3; j++) {
344 if (maxVal < (tmp = fabs(v(i, j)))){
345 maxVal = tmp;
346 maxI = j;
347 }
348 }
349
350 // swap the eigenvector into its proper position
351 if (maxI != i) {
352 tmp = w(maxI);
353 w(maxI) = w(i);
354 w(i) = tmp;
355
356 v.swapRow(i, maxI);
357 }
358 // maximum element of eigenvector should be positive
359 if (v(maxI, maxI) < 0) {
360 v(maxI, 0) = -v(maxI, 0);
361 v(maxI, 1) = -v(maxI, 1);
362 v(maxI, 2) = -v(maxI, 2);
363 }
364
365 // re-orthogonalize the other two eigenvectors
366 j = (maxI+1)%3;
367 k = (maxI+2)%3;
368
369 v(j, 0) = 0.0;
370 v(j, 1) = 0.0;
371 v(j, 2) = 0.0;
372 v(j, j) = 1.0;
373
374 /** @todo */
375 v_maxI = v.getRow(maxI);
376 v_j = v.getRow(j);
377 v_k = cross(v_maxI, v_j);
378 v_k.normalize();
379 v_j = cross(v_k, v_maxI);
380 v.setRow(j, v_j);
381 v.setRow(k, v_k);
382
383
384 // transpose vectors back to columns
385 v = v.transpose();
386 return;
387 }
388 }
389
390 // the three eigenvalues are different, just sort the eigenvectors
391 // to align them with the x, y, and z axes
392
393 // find the vector with the largest x element, make that vector
394 // the first vector
395 maxVal = fabs(v(0, 0));
396 maxI = 0;
397 for (i = 1; i < 3; i++) {
398 if (maxVal < (tmp = fabs(v(i, 0)))) {
399 maxVal = tmp;
400 maxI = i;
401 }
402 }
403
404 // swap eigenvalue and eigenvector
405 if (maxI != 0) {
406 tmp = w(maxI);
407 w(maxI) = w(0);
408 w(0) = tmp;
409 v.swapRow(maxI, 0);
410 }
411 // do the same for the y element
412 if (fabs(v(1, 1)) < fabs(v(2, 1))) {
413 tmp = w(2);
414 w(2) = w(1);
415 w(1) = tmp;
416 v.swapRow(2, 1);
417 }
418
419 // ensure that the sign of the eigenvectors is correct
420 for (i = 0; i < 2; i++) {
421 if (v(i, i) < 0) {
422 v(i, 0) = -v(i, 0);
423 v(i, 1) = -v(i, 1);
424 v(i, 2) = -v(i, 2);
425 }
426 }
427
428 // set sign of final eigenvector to ensure that determinant is positive
429 if (v.determinant() < 0) {
430 v(2, 0) = -v(2, 0);
431 v(2, 1) = -v(2, 1);
432 v(2, 2) = -v(2, 2);
433 }
434
435 // transpose the eigenvectors back again
436 v = v.transpose();
437 return ;
438 }
439 typedef SquareMatrix3<double> Mat3x3d;
440 typedef SquareMatrix3<double> RotMat3x3d;
441
442 } //namespace oopse
443 #endif // MATH_SQUAREMATRIX_HPP
444