ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/math/SquareMatrix3.hpp
Revision: 2611
Committed: Mon Mar 13 22:42:40 2006 UTC (18 years, 3 months ago) by tim
File size: 18463 byte(s)
Log Message:
LangevinDynamics in progress

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SquareMatrix3.hpp
44 * @author Teng Lin
45 * @date 10/11/2004
46 * @version 1.0
47 */
48 #ifndef MATH_SQUAREMATRIX3_HPP
49 #define MATH_SQUAREMATRIX3_HPP
50 #include <vector>
51 #include "Quaternion.hpp"
52 #include "SquareMatrix.hpp"
53 #include "Vector3.hpp"
54 #include "utils/NumericConstant.hpp"
55 namespace oopse {
56
57 template<typename Real>
58 class SquareMatrix3 : public SquareMatrix<Real, 3> {
59 public:
60
61 typedef Real ElemType;
62 typedef Real* ElemPoinerType;
63
64 /** default constructor */
65 SquareMatrix3() : SquareMatrix<Real, 3>() {
66 }
67
68 /** Constructs and initializes every element of this matrix to a scalar */
69 SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){
70 }
71
72 /** Constructs and initializes from an array */
73 SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){
74 }
75
76
77 /** copy constructor */
78 SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) {
79 }
80
81 SquareMatrix3( const Vector3<Real>& eulerAngles) {
82 setupRotMat(eulerAngles);
83 }
84
85 SquareMatrix3(Real phi, Real theta, Real psi) {
86 setupRotMat(phi, theta, psi);
87 }
88
89 SquareMatrix3(const Quaternion<Real>& q) {
90 setupRotMat(q);
91
92 }
93
94 SquareMatrix3(Real w, Real x, Real y, Real z) {
95 setupRotMat(w, x, y, z);
96 }
97
98 /** copy assignment operator */
99 SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) {
100 if (this == &m)
101 return *this;
102 SquareMatrix<Real, 3>::operator=(m);
103 return *this;
104 }
105
106
107 SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) {
108 this->setupRotMat(q);
109 return *this;
110 }
111
112 /**
113 * Sets this matrix to a rotation matrix by three euler angles
114 * @ param euler
115 */
116 void setupRotMat(const Vector3<Real>& eulerAngles) {
117 setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]);
118 }
119
120 /**
121 * Sets this matrix to a rotation matrix by three euler angles
122 * @param phi
123 * @param theta
124 * @psi theta
125 */
126 void setupRotMat(Real phi, Real theta, Real psi) {
127 Real sphi, stheta, spsi;
128 Real cphi, ctheta, cpsi;
129
130 sphi = sin(phi);
131 stheta = sin(theta);
132 spsi = sin(psi);
133 cphi = cos(phi);
134 ctheta = cos(theta);
135 cpsi = cos(psi);
136
137 this->data_[0][0] = cpsi * cphi - ctheta * sphi * spsi;
138 this->data_[0][1] = cpsi * sphi + ctheta * cphi * spsi;
139 this->data_[0][2] = spsi * stheta;
140
141 this->data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi;
142 this->data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi;
143 this->data_[1][2] = cpsi * stheta;
144
145 this->data_[2][0] = stheta * sphi;
146 this->data_[2][1] = -stheta * cphi;
147 this->data_[2][2] = ctheta;
148 }
149
150
151 /**
152 * Sets this matrix to a rotation matrix by quaternion
153 * @param quat
154 */
155 void setupRotMat(const Quaternion<Real>& quat) {
156 setupRotMat(quat.w(), quat.x(), quat.y(), quat.z());
157 }
158
159 /**
160 * Sets this matrix to a rotation matrix by quaternion
161 * @param w the first element
162 * @param x the second element
163 * @param y the third element
164 * @param z the fourth element
165 */
166 void setupRotMat(Real w, Real x, Real y, Real z) {
167 Quaternion<Real> q(w, x, y, z);
168 *this = q.toRotationMatrix3();
169 }
170
171 void setupSkewMat(Vector3<Real> v) {
172 setupSkewMat(v[0], v[1], v[2]);
173 }
174
175 void setupSkewMat(Real v1, Real v2, Real v3) {
176 this->data_[0][0] = 0;
177 this->data_[0][1] = -v3;
178 this->data_[0][2] = v2;
179 this->data_[1][0] = v3;
180 this->data_[1][1] = 0;
181 this->data_[1][2] = -v1;
182 this->data_[2][0] = -v2;
183 this->data_[2][1] = v1;
184 this->data_[2][2] = 0;
185
186
187 }
188
189
190
191 /**
192 * Returns the quaternion from this rotation matrix
193 * @return the quaternion from this rotation matrix
194 * @exception invalid rotation matrix
195 */
196 Quaternion<Real> toQuaternion() {
197 Quaternion<Real> q;
198 Real t, s;
199 Real ad1, ad2, ad3;
200 t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0;
201
202 if( t > NumericConstant::epsilon ){
203
204 s = 0.5 / sqrt( t );
205 q[0] = 0.25 / s;
206 q[1] = (this->data_[1][2] - this->data_[2][1]) * s;
207 q[2] = (this->data_[2][0] - this->data_[0][2]) * s;
208 q[3] = (this->data_[0][1] - this->data_[1][0]) * s;
209 } else {
210
211 ad1 = this->data_[0][0];
212 ad2 = this->data_[1][1];
213 ad3 = this->data_[2][2];
214
215 if( ad1 >= ad2 && ad1 >= ad3 ){
216
217 s = 0.5 / sqrt( 1.0 + this->data_[0][0] - this->data_[1][1] - this->data_[2][2] );
218 q[0] = (this->data_[1][2] - this->data_[2][1]) * s;
219 q[1] = 0.25 / s;
220 q[2] = (this->data_[0][1] + this->data_[1][0]) * s;
221 q[3] = (this->data_[0][2] + this->data_[2][0]) * s;
222 } else if ( ad2 >= ad1 && ad2 >= ad3 ) {
223 s = 0.5 / sqrt( 1.0 + this->data_[1][1] - this->data_[0][0] - this->data_[2][2] );
224 q[0] = (this->data_[2][0] - this->data_[0][2] ) * s;
225 q[1] = (this->data_[0][1] + this->data_[1][0]) * s;
226 q[2] = 0.25 / s;
227 q[3] = (this->data_[1][2] + this->data_[2][1]) * s;
228 } else {
229
230 s = 0.5 / sqrt( 1.0 + this->data_[2][2] - this->data_[0][0] - this->data_[1][1] );
231 q[0] = (this->data_[0][1] - this->data_[1][0]) * s;
232 q[1] = (this->data_[0][2] + this->data_[2][0]) * s;
233 q[2] = (this->data_[1][2] + this->data_[2][1]) * s;
234 q[3] = 0.25 / s;
235 }
236 }
237
238 return q;
239
240 }
241
242 /**
243 * Returns the euler angles from this rotation matrix
244 * @return the euler angles in a vector
245 * @exception invalid rotation matrix
246 * We use so-called "x-convention", which is the most common definition.
247 * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first
248 * rotation is by an angle phi about the z-axis, the second is by an angle
249 * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the
250 * z-axis (again).
251 */
252 Vector3<Real> toEulerAngles() {
253 Vector3<Real> myEuler;
254 Real phi;
255 Real theta;
256 Real psi;
257 Real ctheta;
258 Real stheta;
259
260 // set the tolerance for Euler angles and rotation elements
261
262 theta = acos(std::min(1.0, std::max(-1.0,this->data_[2][2])));
263 ctheta = this->data_[2][2];
264 stheta = sqrt(1.0 - ctheta * ctheta);
265
266 // when sin(theta) is close to 0, we need to consider singularity
267 // In this case, we can assign an arbitary value to phi (or psi), and then determine
268 // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0
269 // in cases of singularity.
270 // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.
271 // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never
272 // change the sign of both of the parameters passed to atan2.
273
274 if (fabs(stheta) <= oopse::epsilon){
275 psi = 0.0;
276 phi = atan2(-this->data_[1][0], this->data_[0][0]);
277 }
278 // we only have one unique solution
279 else{
280 phi = atan2(this->data_[2][0], -this->data_[2][1]);
281 psi = atan2(this->data_[0][2], this->data_[1][2]);
282 }
283
284 //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
285 if (phi < 0)
286 phi += M_PI;
287
288 if (psi < 0)
289 psi += M_PI;
290
291 myEuler[0] = phi;
292 myEuler[1] = theta;
293 myEuler[2] = psi;
294
295 return myEuler;
296 }
297
298 /** Returns the determinant of this matrix. */
299 Real determinant() const {
300 Real x,y,z;
301
302 x = this->data_[0][0] * (this->data_[1][1] * this->data_[2][2] - this->data_[1][2] * this->data_[2][1]);
303 y = this->data_[0][1] * (this->data_[1][2] * this->data_[2][0] - this->data_[1][0] * this->data_[2][2]);
304 z = this->data_[0][2] * (this->data_[1][0] * this->data_[2][1] - this->data_[1][1] * this->data_[2][0]);
305
306 return(x + y + z);
307 }
308
309 /** Returns the trace of this matrix. */
310 Real trace() const {
311 return this->data_[0][0] + this->data_[1][1] + this->data_[2][2];
312 }
313
314 /**
315 * Sets the value of this matrix to the inversion of itself.
316 * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the
317 * implementation of inverse in SquareMatrix class
318 */
319 SquareMatrix3<Real> inverse() const {
320 SquareMatrix3<Real> m;
321 double det = determinant();
322 if (fabs(det) <= oopse::epsilon) {
323 //"The method was called on a matrix with |determinant| <= 1e-6.",
324 //"This is a runtime or a programming error in your application.");
325 std::vector<int> zeroDiagElementIndex;
326 for (int i =0; i < 3; ++i) {
327 if (fabs(this->data_[i][i]) <= oopse::epsilon) {
328 zeroDiagElementIndex.push_back(i);
329 }
330 }
331
332 if (zeroDiagElementIndex.size() == 2) {
333 int index = zeroDiagElementIndex[0];
334 m(index, index) = 1.0 / this->data_[index][index];
335 }else if (zeroDiagElementIndex.size() == 1) {
336
337 int a = (zeroDiagElementIndex[0] + 1) % 3;
338 int b = (zeroDiagElementIndex[0] + 2) %3;
339 double denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b];
340 m(a, a) = this->data_[b][b] /denom;
341 m(b, a) = -this->data_[b][a]/denom;
342
343 m(a,b) = -this->data_[a][b]/denom;
344 m(b, b) = this->data_[a][a]/denom;
345
346 }
347
348 /*
349 for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) {
350 if (this->data_[*iter][0] > oopse::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] ||
351 this->data_[0][*iter] > oopse::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) {
352 std::cout << "can not inverse matrix" << std::endl;
353 }
354 }
355 */
356 } else {
357
358 m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1];
359 m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2];
360 m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0];
361 m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1];
362 m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2];
363 m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0];
364 m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1];
365 m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2];
366 m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0];
367
368 m /= det;
369 }
370 return m;
371 }
372
373 SquareMatrix3<Real> transpose() const{
374 SquareMatrix3<Real> result;
375
376 for (unsigned int i = 0; i < 3; i++)
377 for (unsigned int j = 0; j < 3; j++)
378 result(j, i) = this->data_[i][j];
379
380 return result;
381 }
382 /**
383 * Extract the eigenvalues and eigenvectors from a 3x3 matrix.
384 * The eigenvectors (the columns of V) will be normalized.
385 * The eigenvectors are aligned optimally with the x, y, and z
386 * axes respectively.
387 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
388 * overwritten
389 * @param w will contain the eigenvalues of the matrix On return of this function
390 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
391 * normalized and mutually orthogonal.
392 * @warning a will be overwritten
393 */
394 static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);
395 };
396 /*=========================================================================
397
398 Program: Visualization Toolkit
399 Module: $RCSfile: SquareMatrix3.hpp,v $
400
401 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
402 All rights reserved.
403 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
404
405 This software is distributed WITHOUT ANY WARRANTY; without even
406 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
407 PURPOSE. See the above copyright notice for more information.
408
409 =========================================================================*/
410 template<typename Real>
411 void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,
412 SquareMatrix3<Real>& v) {
413 int i,j,k,maxI;
414 Real tmp, maxVal;
415 Vector3<Real> v_maxI, v_k, v_j;
416
417 // diagonalize using Jacobi
418 jacobi(a, w, v);
419 // if all the eigenvalues are the same, return identity matrix
420 if (w[0] == w[1] && w[0] == w[2] ) {
421 v = SquareMatrix3<Real>::identity();
422 return;
423 }
424
425 // transpose temporarily, it makes it easier to sort the eigenvectors
426 v = v.transpose();
427
428 // if two eigenvalues are the same, re-orthogonalize to optimally line
429 // up the eigenvectors with the x, y, and z axes
430 for (i = 0; i < 3; i++) {
431 if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same
432 // find maximum element of the independant eigenvector
433 maxVal = fabs(v(i, 0));
434 maxI = 0;
435 for (j = 1; j < 3; j++) {
436 if (maxVal < (tmp = fabs(v(i, j)))){
437 maxVal = tmp;
438 maxI = j;
439 }
440 }
441
442 // swap the eigenvector into its proper position
443 if (maxI != i) {
444 tmp = w(maxI);
445 w(maxI) = w(i);
446 w(i) = tmp;
447
448 v.swapRow(i, maxI);
449 }
450 // maximum element of eigenvector should be positive
451 if (v(maxI, maxI) < 0) {
452 v(maxI, 0) = -v(maxI, 0);
453 v(maxI, 1) = -v(maxI, 1);
454 v(maxI, 2) = -v(maxI, 2);
455 }
456
457 // re-orthogonalize the other two eigenvectors
458 j = (maxI+1)%3;
459 k = (maxI+2)%3;
460
461 v(j, 0) = 0.0;
462 v(j, 1) = 0.0;
463 v(j, 2) = 0.0;
464 v(j, j) = 1.0;
465
466 /** @todo */
467 v_maxI = v.getRow(maxI);
468 v_j = v.getRow(j);
469 v_k = cross(v_maxI, v_j);
470 v_k.normalize();
471 v_j = cross(v_k, v_maxI);
472 v.setRow(j, v_j);
473 v.setRow(k, v_k);
474
475
476 // transpose vectors back to columns
477 v = v.transpose();
478 return;
479 }
480 }
481
482 // the three eigenvalues are different, just sort the eigenvectors
483 // to align them with the x, y, and z axes
484
485 // find the vector with the largest x element, make that vector
486 // the first vector
487 maxVal = fabs(v(0, 0));
488 maxI = 0;
489 for (i = 1; i < 3; i++) {
490 if (maxVal < (tmp = fabs(v(i, 0)))) {
491 maxVal = tmp;
492 maxI = i;
493 }
494 }
495
496 // swap eigenvalue and eigenvector
497 if (maxI != 0) {
498 tmp = w(maxI);
499 w(maxI) = w(0);
500 w(0) = tmp;
501 v.swapRow(maxI, 0);
502 }
503 // do the same for the y element
504 if (fabs(v(1, 1)) < fabs(v(2, 1))) {
505 tmp = w(2);
506 w(2) = w(1);
507 w(1) = tmp;
508 v.swapRow(2, 1);
509 }
510
511 // ensure that the sign of the eigenvectors is correct
512 for (i = 0; i < 2; i++) {
513 if (v(i, i) < 0) {
514 v(i, 0) = -v(i, 0);
515 v(i, 1) = -v(i, 1);
516 v(i, 2) = -v(i, 2);
517 }
518 }
519
520 // set sign of final eigenvector to ensure that determinant is positive
521 if (v.determinant() < 0) {
522 v(2, 0) = -v(2, 0);
523 v(2, 1) = -v(2, 1);
524 v(2, 2) = -v(2, 2);
525 }
526
527 // transpose the eigenvectors back again
528 v = v.transpose();
529 return ;
530 }
531
532 /**
533 * Return the multiplication of two matrixes (m1 * m2).
534 * @return the multiplication of two matrixes
535 * @param m1 the first matrix
536 * @param m2 the second matrix
537 */
538 template<typename Real>
539 inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) {
540 SquareMatrix3<Real> result;
541
542 for (unsigned int i = 0; i < 3; i++)
543 for (unsigned int j = 0; j < 3; j++)
544 for (unsigned int k = 0; k < 3; k++)
545 result(i, j) += m1(i, k) * m2(k, j);
546
547 return result;
548 }
549
550 template<typename Real>
551 inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) {
552 SquareMatrix3<Real> result;
553
554 for (unsigned int i = 0; i < 3; i++) {
555 for (unsigned int j = 0; j < 3; j++) {
556 result(i, j) = v1[i] * v2[j];
557 }
558 }
559
560 return result;
561 }
562
563
564 typedef SquareMatrix3<double> Mat3x3d;
565 typedef SquareMatrix3<double> RotMat3x3d;
566
567 } //namespace oopse
568 #endif // MATH_SQUAREMATRIX_HPP
569