ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/primitives/DirectionalAtom.cpp
Revision: 2341
Committed: Mon Oct 3 15:54:23 2005 UTC (18 years, 9 months ago) by tim
File size: 5274 byte(s)
Log Message:
fix a bug in projecting the inertia tensor of
directional atom in rigibody into rigidbody's body frame (previous commit is wrong)

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42 tim 1492 #include "primitives/DirectionalAtom.hpp"
43 tim 1957 #include "utils/simError.h"
44 gezelter 1930 namespace oopse {
45 gezelter 1490
46 gezelter 2204 DirectionalAtom::DirectionalAtom(DirectionalAtomType* dAtomType)
47     : Atom(dAtomType){
48     objType_= otDAtom;
49     if (dAtomType->isMultipole()) {
50 gezelter 1930 electroBodyFrame_ = dAtomType->getElectroBodyFrame();
51 gezelter 2204 }
52 tim 1957
53 gezelter 2204 //check if one of the diagonal inertia tensor of this directional atom is zero
54     int nLinearAxis = 0;
55     Mat3x3d inertiaTensor = getI();
56     for (int i = 0; i < 3; i++) {
57 tim 1957 if (fabs(inertiaTensor(i, i)) < oopse::epsilon) {
58 gezelter 2204 linear_ = true;
59     linearAxis_ = i;
60     ++ nLinearAxis;
61 tim 1957 }
62 gezelter 2204 }
63 tim 1957
64 gezelter 2204 if (nLinearAxis > 1) {
65 tim 1957 sprintf( painCave.errMsg,
66 gezelter 2204 "Directional Atom error.\n"
67     "\tOOPSE found more than one axis in this directional atom with a vanishing \n"
68     "\tmoment of inertia.");
69 tim 1957 painCave.isFatal = 1;
70     simError();
71 gezelter 2204 }
72    
73 tim 1957 }
74 gezelter 1490
75 gezelter 2204 Mat3x3d DirectionalAtom::getI() {
76 gezelter 1930 return static_cast<DirectionalAtomType*>(getAtomType())->getI();
77 gezelter 2204 }
78 gezelter 1490
79 gezelter 2204 void DirectionalAtom::setPrevA(const RotMat3x3d& a) {
80 gezelter 1930 ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a;
81     if (atomType_->isMultipole()) {
82 gezelter 2204 ((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_;
83 gezelter 1709 }
84 gezelter 2204 }
85 gezelter 1490
86 gezelter 1930
87 gezelter 2204 void DirectionalAtom::setA(const RotMat3x3d& a) {
88 gezelter 1930 ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a;
89 gezelter 1490
90 gezelter 1930 if (atomType_->isMultipole()) {
91 gezelter 2204 ((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_;
92 gezelter 1490 }
93 gezelter 2204 }
94 gezelter 1490
95 gezelter 2204 void DirectionalAtom::setA(const RotMat3x3d& a, int snapshotNo) {
96 gezelter 1930 ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a;
97 gezelter 1490
98 gezelter 1930 if (atomType_->isMultipole()) {
99 gezelter 2204 ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_;
100 gezelter 1490 }
101 gezelter 2204 }
102 gezelter 1490
103 gezelter 2204 void DirectionalAtom::rotateBy(const RotMat3x3d& m) {
104 gezelter 1930 setA(m *getA());
105 gezelter 2204 }
106 gezelter 1490
107 gezelter 2204 std::vector<double> DirectionalAtom::getGrad() {
108 gezelter 1930 std::vector<double> grad(6, 0.0);
109     Vector3d force;
110     Vector3d torque;
111     Vector3d myEuler;
112     double phi, theta, psi;
113     double cphi, sphi, ctheta, stheta;
114     Vector3d ephi;
115     Vector3d etheta;
116     Vector3d epsi;
117 gezelter 1490
118 gezelter 1930 force = getFrc();
119     torque =getTrq();
120     myEuler = getA().toEulerAngles();
121 gezelter 1490
122 gezelter 1930 phi = myEuler[0];
123     theta = myEuler[1];
124     psi = myEuler[2];
125 gezelter 1490
126 gezelter 1930 cphi = cos(phi);
127     sphi = sin(phi);
128     ctheta = cos(theta);
129     stheta = sin(theta);
130 gezelter 1490
131 gezelter 1930 // get unit vectors along the phi, theta and psi rotation axes
132 gezelter 1490
133 gezelter 1930 ephi[0] = 0.0;
134     ephi[1] = 0.0;
135     ephi[2] = 1.0;
136 gezelter 1490
137 gezelter 1930 etheta[0] = cphi;
138     etheta[1] = sphi;
139     etheta[2] = 0.0;
140 gezelter 1490
141 gezelter 1930 epsi[0] = stheta * cphi;
142     epsi[1] = stheta * sphi;
143     epsi[2] = ctheta;
144 gezelter 1490
145 gezelter 1930 //gradient is equal to -force
146     for (int j = 0 ; j<3; j++)
147 gezelter 2204 grad[j] = -force[j];
148 gezelter 1490
149 gezelter 1930 for (int j = 0; j < 3; j++ ) {
150 gezelter 1490
151 tim 2341 grad[3] -= torque[j]*ephi[j];
152     grad[4] -= torque[j]*etheta[j];
153     grad[5] -= torque[j]*epsi[j];
154 gezelter 1490
155 gezelter 1930 }
156 gezelter 1490
157 gezelter 1930 return grad;
158 gezelter 2204 }
159 gezelter 1490
160 gezelter 2204 void DirectionalAtom::accept(BaseVisitor* v) {
161 gezelter 1930 v->visit(this);
162 gezelter 2204 }
163 gezelter 1490
164     }
165