ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/primitives/RigidBody.cpp
(Generate patch)

Comparing trunk/OOPSE-4/src/primitives/RigidBody.cpp (file contents):
Revision 1490 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 2018 by tim, Mon Feb 14 17:57:01 2005 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Acknowledgement of the program authors must be made in any
10 + *    publication of scientific results based in part on use of the
11 + *    program.  An acceptable form of acknowledgement is citation of
12 + *    the article in which the program was described (Matthew
13 + *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + *    Parallel Simulation Engine for Molecular Dynamics,"
16 + *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + *
18 + * 2. Redistributions of source code must retain the above copyright
19 + *    notice, this list of conditions and the following disclaimer.
20 + *
21 + * 3. Redistributions in binary form must reproduce the above copyright
22 + *    notice, this list of conditions and the following disclaimer in the
23 + *    documentation and/or other materials provided with the
24 + *    distribution.
25 + *
26 + * This software is provided "AS IS," without a warranty of any
27 + * kind. All express or implied conditions, representations and
28 + * warranties, including any implied warranty of merchantability,
29 + * fitness for a particular purpose or non-infringement, are hereby
30 + * excluded.  The University of Notre Dame and its licensors shall not
31 + * be liable for any damages suffered by licensee as a result of
32 + * using, modifying or distributing the software or its
33 + * derivatives. In no event will the University of Notre Dame or its
34 + * licensors be liable for any lost revenue, profit or data, or for
35 + * direct, indirect, special, consequential, incidental or punitive
36 + * damages, however caused and regardless of the theory of liability,
37 + * arising out of the use of or inability to use software, even if the
38 + * University of Notre Dame has been advised of the possibility of
39 + * such damages.
40 + */
41 + #include <algorithm>
42   #include <math.h>
43 < #include "RigidBody.hpp"
44 < #include "DirectionalAtom.hpp"
45 < #include "simError.h"
5 < #include "MatVec3.h"
43 > #include "primitives/RigidBody.hpp"
44 > #include "utils/simError.h"
45 > namespace oopse {
46  
47 < RigidBody::RigidBody() : StuntDouble() {
8 <  objType = OT_RIGIDBODY;
9 <  is_linear = false;
10 <  linear_axis =  -1;
11 <  momIntTol = 1e-6;
12 < }
47 > RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), inertiaTensor_(0.0){
48  
14 RigidBody::~RigidBody() {
49   }
50  
51 < void RigidBody::addAtom(Atom* at, AtomStamp* ats) {
51 > void RigidBody::setPrevA(const RotMat3x3d& a) {
52 >    ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a;
53 >    //((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;
54  
55 <  vec3 coords;
56 <  vec3 euler;
57 <  mat3x3 Atmp;
55 >    for (int i =0 ; i < atoms_.size(); ++i){
56 >        if (atoms_[i]->isDirectional()) {
57 >            atoms_[i]->setPrevA(a * refOrients_[i]);
58 >        }
59 >    }
60  
61 <  myAtoms.push_back(at);
24 <
25 <  if( !ats->havePosition() ){
26 <    sprintf( painCave.errMsg,
27 <             "RigidBody error.\n"
28 <             "\tAtom %s does not have a position specified.\n"
29 <             "\tThis means RigidBody cannot set up reference coordinates.\n",
30 <             ats->getType() );
31 <    painCave.isFatal = 1;
32 <    simError();
33 <  }
34 <  
35 <  coords[0] = ats->getPosX();
36 <  coords[1] = ats->getPosY();
37 <  coords[2] = ats->getPosZ();
61 > }
62  
63 <  refCoords.push_back(coords);
64 <  
65 <  if (at->isDirectional()) {  
63 >      
64 > void RigidBody::setA(const RotMat3x3d& a) {
65 >    ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a;
66 >    //((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;
67  
68 <    if( !ats->haveOrientation() ){
69 <      sprintf( painCave.errMsg,
70 <               "RigidBody error.\n"
71 <               "\tAtom %s does not have an orientation specified.\n"
72 <               "\tThis means RigidBody cannot set up reference orientations.\n",
73 <               ats->getType() );
49 <      painCave.isFatal = 1;
50 <      simError();
51 <    }    
68 >    for (int i =0 ; i < atoms_.size(); ++i){
69 >        if (atoms_[i]->isDirectional()) {
70 >            atoms_[i]->setA(a * refOrients_[i]);
71 >        }
72 >    }
73 > }    
74      
75 <    euler[0] = ats->getEulerPhi();
76 <    euler[1] = ats->getEulerTheta();
77 <    euler[2] = ats->getEulerPsi();
56 <    
57 <    doEulerToRotMat(euler, Atmp);
58 <    
59 <    refOrients.push_back(Atmp);
60 <    
61 <  }
62 < }
75 > void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) {
76 >    ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a;
77 >    //((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;    
78  
79 < void RigidBody::getPos(double theP[3]){
80 <  for (int i = 0; i < 3 ; i++)
81 <    theP[i] = pos[i];
82 < }      
79 >    for (int i =0 ; i < atoms_.size(); ++i){
80 >        if (atoms_[i]->isDirectional()) {
81 >            atoms_[i]->setA(a * refOrients_[i], snapshotNo);
82 >        }
83 >    }
84  
85 < void RigidBody::setPos(double theP[3]){
70 <  for (int i = 0; i < 3 ; i++)
71 <    pos[i] = theP[i];
72 < }      
85 > }  
86  
87 < void RigidBody::getVel(double theV[3]){
88 <  for (int i = 0; i < 3 ; i++)
76 <    theV[i] = vel[i];
77 < }      
78 <
79 < void RigidBody::setVel(double theV[3]){
80 <  for (int i = 0; i < 3 ; i++)
81 <    vel[i] = theV[i];
82 < }      
83 <
84 < void RigidBody::getFrc(double theF[3]){
85 <  for (int i = 0; i < 3 ; i++)
86 <    theF[i] = frc[i];
87 < }      
88 <
89 < void RigidBody::addFrc(double theF[3]){
90 <  for (int i = 0; i < 3 ; i++)
91 <    frc[i] += theF[i];
87 > Mat3x3d RigidBody::getI() {
88 >    return inertiaTensor_;
89   }    
90  
91 < void RigidBody::zeroForces() {
91 > std::vector<double> RigidBody::getGrad() {
92 >     std::vector<double> grad(6, 0.0);
93 >    Vector3d force;
94 >    Vector3d torque;
95 >    Vector3d myEuler;
96 >    double phi, theta, psi;
97 >    double cphi, sphi, ctheta, stheta;
98 >    Vector3d ephi;
99 >    Vector3d etheta;
100 >    Vector3d epsi;
101  
102 <  for (int i = 0; i < 3; i++) {
103 <    frc[i] = 0.0;
104 <    trq[i] = 0.0;
99 <  }
102 >    force = getFrc();
103 >    torque =getTrq();
104 >    myEuler = getA().toEulerAngles();
105  
106 < }
106 >    phi = myEuler[0];
107 >    theta = myEuler[1];
108 >    psi = myEuler[2];
109  
110 < void RigidBody::setEuler( double phi, double theta, double psi ){
111 <  
112 <    A[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi));
113 <    A[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi));
107 <    A[0][2] = sin(theta) * sin(psi);
108 <    
109 <    A[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi));
110 <    A[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi));
111 <    A[1][2] = sin(theta) * cos(psi);
112 <    
113 <    A[2][0] = sin(phi) * sin(theta);
114 <    A[2][1] = -cos(phi) * sin(theta);
115 <    A[2][2] = cos(theta);
110 >    cphi = cos(phi);
111 >    sphi = sin(phi);
112 >    ctheta = cos(theta);
113 >    stheta = sin(theta);
114  
115 < }
115 >    // get unit vectors along the phi, theta and psi rotation axes
116  
117 < void RigidBody::getQ( double q[4] ){
118 <  
119 <  double t, s;
122 <  double ad1, ad2, ad3;
123 <    
124 <  t = A[0][0] + A[1][1] + A[2][2] + 1.0;
125 <  if( t > 0.0 ){
126 <    
127 <    s = 0.5 / sqrt( t );
128 <    q[0] = 0.25 / s;
129 <    q[1] = (A[1][2] - A[2][1]) * s;
130 <    q[2] = (A[2][0] - A[0][2]) * s;
131 <    q[3] = (A[0][1] - A[1][0]) * s;
132 <  }
133 <  else{
134 <    
135 <    ad1 = fabs( A[0][0] );
136 <    ad2 = fabs( A[1][1] );
137 <    ad3 = fabs( A[2][2] );
138 <    
139 <    if( ad1 >= ad2 && ad1 >= ad3 ){
140 <      
141 <      s = 2.0 * sqrt( 1.0 + A[0][0] - A[1][1] - A[2][2] );
142 <      q[0] = (A[1][2] + A[2][1]) / s;
143 <      q[1] = 0.5 / s;
144 <      q[2] = (A[0][1] + A[1][0]) / s;
145 <      q[3] = (A[0][2] + A[2][0]) / s;
146 <    }
147 <    else if( ad2 >= ad1 && ad2 >= ad3 ){
148 <      
149 <      s = sqrt( 1.0 + A[1][1] - A[0][0] - A[2][2] ) * 2.0;
150 <      q[0] = (A[0][2] + A[2][0]) / s;
151 <      q[1] = (A[0][1] + A[1][0]) / s;
152 <      q[2] = 0.5 / s;
153 <      q[3] = (A[1][2] + A[2][1]) / s;
154 <    }
155 <    else{
156 <      
157 <      s = sqrt( 1.0 + A[2][2] - A[0][0] - A[1][1] ) * 2.0;
158 <      q[0] = (A[0][1] + A[1][0]) / s;
159 <      q[1] = (A[0][2] + A[2][0]) / s;
160 <      q[2] = (A[1][2] + A[2][1]) / s;
161 <      q[3] = 0.5 / s;
162 <    }
163 <  }
164 < }
117 >    ephi[0] = 0.0;
118 >    ephi[1] = 0.0;
119 >    ephi[2] = 1.0;
120  
121 < void RigidBody::setQ( double the_q[4] ){
121 >    etheta[0] = cphi;
122 >    etheta[1] = sphi;
123 >    etheta[2] = 0.0;
124  
125 <  double q0Sqr, q1Sqr, q2Sqr, q3Sqr;
126 <  
127 <  q0Sqr = the_q[0] * the_q[0];
171 <  q1Sqr = the_q[1] * the_q[1];
172 <  q2Sqr = the_q[2] * the_q[2];
173 <  q3Sqr = the_q[3] * the_q[3];
174 <  
175 <  A[0][0] = q0Sqr + q1Sqr - q2Sqr - q3Sqr;
176 <  A[0][1] = 2.0 * ( the_q[1] * the_q[2] + the_q[0] * the_q[3] );
177 <  A[0][2] = 2.0 * ( the_q[1] * the_q[3] - the_q[0] * the_q[2] );
178 <  
179 <  A[1][0] = 2.0 * ( the_q[1] * the_q[2] - the_q[0] * the_q[3] );
180 <  A[1][1] = q0Sqr - q1Sqr + q2Sqr - q3Sqr;
181 <  A[1][2] = 2.0 * ( the_q[2] * the_q[3] + the_q[0] * the_q[1] );
182 <  
183 <  A[2][0] = 2.0 * ( the_q[1] * the_q[3] + the_q[0] * the_q[2] );
184 <  A[2][1] = 2.0 * ( the_q[2] * the_q[3] - the_q[0] * the_q[1] );
185 <  A[2][2] = q0Sqr - q1Sqr -q2Sqr +q3Sqr;  
125 >    epsi[0] = stheta * cphi;
126 >    epsi[1] = stheta * sphi;
127 >    epsi[2] = ctheta;
128  
129 < }
129 >    //gradient is equal to -force
130 >    for (int j = 0 ; j<3; j++)
131 >        grad[j] = -force[j];
132  
133 < void RigidBody::getA( double the_A[3][3] ){
190 <  
191 <  for (int i = 0; i < 3; i++)
192 <    for (int j = 0; j < 3; j++)
193 <      the_A[i][j] = A[i][j];
133 >    for (int j = 0; j < 3; j++ ) {
134  
135 < }
135 >        grad[3] += torque[j]*ephi[j];
136 >        grad[4] += torque[j]*etheta[j];
137 >        grad[5] += torque[j]*epsi[j];
138  
139 < void RigidBody::setA( double the_A[3][3] ){
139 >    }
140 >    
141 >    return grad;
142 > }    
143  
144 <  for (int i = 0; i < 3; i++)
145 <    for (int j = 0; j < 3; j++)
146 <      A[i][j] = the_A[i][j];
202 <  
203 < }
144 > void RigidBody::accept(BaseVisitor* v) {
145 >    v->visit(this);
146 > }    
147  
148 < void RigidBody::getJ( double theJ[3] ){
149 <  
150 <  for (int i = 0; i < 3; i++)
151 <    theJ[i] = ji[i];
148 > /**@todo need modification */
149 > void  RigidBody::calcRefCoords() {
150 >    double mtmp;
151 >    Vector3d refCOM(0.0);
152 >    mass_ = 0.0;
153 >    for (std::size_t i = 0; i < atoms_.size(); ++i) {
154 >        mtmp = atoms_[i]->getMass();
155 >        mass_ += mtmp;
156 >        refCOM += refCoords_[i]*mtmp;
157 >    }
158 >    refCOM /= mass_;
159  
160 < }
160 >    // Next, move the origin of the reference coordinate system to the COM:
161 >    for (std::size_t i = 0; i < atoms_.size(); ++i) {
162 >        refCoords_[i] -= refCOM;
163 >    }
164  
165 < void RigidBody::setJ( double theJ[3] ){
165 > // Moment of Inertia calculation
166 >    Mat3x3d Itmp(0.0);
167    
168 <  for (int i = 0; i < 3; i++)
169 <    ji[i] = theJ[i];
168 >    for (std::size_t i = 0; i < atoms_.size(); i++) {
169 >        mtmp = atoms_[i]->getMass();
170 >        Itmp -= outProduct(refCoords_[i], refCoords_[i]) * mtmp;
171 >        double r2 = refCoords_[i].lengthSquare();
172 >        Itmp(0, 0) += mtmp * r2;
173 >        Itmp(1, 1) += mtmp * r2;
174 >        Itmp(2, 2) += mtmp * r2;
175 >    }
176  
177 +    //project the inertial moment of directional atoms into this rigid body
178 +    for (std::size_t i = 0; i < atoms_.size(); i++) {
179 +        if (atoms_[i]->isDirectional()) {
180 +            RectMatrix<double, 3, 3> Iproject = refOrients_[i].transpose() * atoms_[i]->getI();
181 +            Itmp(0, 0) += Iproject(0, 0);
182 +            Itmp(1, 1) += Iproject(1, 1);
183 +            Itmp(2, 2) += Iproject(2, 2);
184 +        }
185 +    }
186 +
187 +    //diagonalize
188 +    Vector3d evals;
189 +    Mat3x3d::diagonalize(Itmp, evals, sU_);
190 +
191 +    // zero out I and then fill the diagonals with the moments of inertia:
192 +    inertiaTensor_(0, 0) = evals[0];
193 +    inertiaTensor_(1, 1) = evals[1];
194 +    inertiaTensor_(2, 2) = evals[2];
195 +        
196 +    int nLinearAxis = 0;
197 +    for (int i = 0; i < 3; i++) {    
198 +        if (fabs(evals[i]) < oopse::epsilon) {
199 +            linear_ = true;
200 +            linearAxis_ = i;
201 +            ++ nLinearAxis;
202 +        }
203 +    }
204 +
205 +    if (nLinearAxis > 1) {
206 +        sprintf( painCave.errMsg,
207 +            "RigidBody error.\n"
208 +            "\tOOPSE found more than one axis in this rigid body with a vanishing \n"
209 +            "\tmoment of inertia.  This can happen in one of three ways:\n"
210 +            "\t 1) Only one atom was specified, or \n"
211 +            "\t 2) All atoms were specified at the same location, or\n"
212 +            "\t 3) The programmers did something stupid.\n"
213 +            "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n"
214 +            );
215 +        painCave.isFatal = 1;
216 +        simError();
217 +    }
218 +  
219   }
220  
221 < void RigidBody::getTrq(double theT[3]){
222 <  for (int i = 0; i < 3 ; i++)
223 <    theT[i] = trq[i];
224 < }      
221 > void  RigidBody::calcForcesAndTorques() {
222 >    Vector3d afrc;
223 >    Vector3d atrq;
224 >    Vector3d apos;
225 >    Vector3d rpos;
226 >    Vector3d frc(0.0);
227 >    Vector3d trq(0.0);
228 >    Vector3d pos = this->getPos();
229 >    for (int i = 0; i < atoms_.size(); i++) {
230  
231 < void RigidBody::addTrq(double theT[3]){
232 <  for (int i = 0; i < 3 ; i++)
233 <    trq[i] += theT[i];
234 < }      
231 >        afrc = atoms_[i]->getFrc();
232 >        apos = atoms_[i]->getPos();
233 >        rpos = apos - pos;
234 >        
235 >        frc += afrc;
236  
237 < void RigidBody::getI( double the_I[3][3] ){  
237 >        trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1];
238 >        trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2];
239 >        trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0];
240  
241 <    for (int i = 0; i < 3; i++)
242 <      for (int j = 0; j < 3; j++)
233 <        the_I[i][j] = I[i][j];
241 >        // If the atom has a torque associated with it, then we also need to
242 >        // migrate the torques onto the center of mass:
243  
244 +        if (atoms_[i]->isDirectional()) {
245 +            atrq = atoms_[i]->getTrq();
246 +            trq += atrq;
247 +        }
248 +        
249 +    }
250 +    
251 +    setFrc(frc);
252 +    setTrq(trq);
253 +    
254   }
255  
256 < void RigidBody::lab2Body( double r[3] ){
256 > void  RigidBody::updateAtoms() {
257 >    unsigned int i;
258 >    Vector3d ref;
259 >    Vector3d apos;
260 >    DirectionalAtom* dAtom;
261 >    Vector3d pos = getPos();
262 >    RotMat3x3d a = getA();
263 >    
264 >    for (i = 0; i < atoms_.size(); i++) {
265 >    
266 >        ref = body2Lab(refCoords_[i]);
267  
268 <  double rl[3]; // the lab frame vector
240 <  
241 <  rl[0] = r[0];
242 <  rl[1] = r[1];
243 <  rl[2] = r[2];
244 <  
245 <  r[0] = (A[0][0] * rl[0]) + (A[0][1] * rl[1]) + (A[0][2] * rl[2]);
246 <  r[1] = (A[1][0] * rl[0]) + (A[1][1] * rl[1]) + (A[1][2] * rl[2]);
247 <  r[2] = (A[2][0] * rl[0]) + (A[2][1] * rl[1]) + (A[2][2] * rl[2]);
268 >        apos = pos + ref;
269  
270 < }
270 >        atoms_[i]->setPos(apos);
271  
272 < void RigidBody::body2Lab( double r[3] ){
272 >        if (atoms_[i]->isDirectional()) {
273 >          
274 >          dAtom = (DirectionalAtom *) atoms_[i];
275 >          dAtom->setA(a * refOrients_[i]);
276 >          //dAtom->rotateBy( A );      
277 >        }
278  
279 <  double rb[3]; // the body frame vector
279 >    }
280    
255  rb[0] = r[0];
256  rb[1] = r[1];
257  rb[2] = r[2];
258  
259  r[0] = (A[0][0] * rb[0]) + (A[1][0] * rb[1]) + (A[2][0] * rb[2]);
260  r[1] = (A[0][1] * rb[0]) + (A[1][1] * rb[1]) + (A[2][1] * rb[2]);
261  r[2] = (A[0][2] * rb[0]) + (A[1][2] * rb[1]) + (A[2][2] * rb[2]);
262
281   }
282  
265 double RigidBody::getZangle( ){
266    return zAngle;
267 }
283  
284 < void RigidBody::setZangle( double zAng ){
285 <    zAngle = zAng;
286 < }
284 > void  RigidBody::updateAtoms(int frame) {
285 >    unsigned int i;
286 >    Vector3d ref;
287 >    Vector3d apos;
288 >    DirectionalAtom* dAtom;
289 >    Vector3d pos = getPos(frame);
290 >    RotMat3x3d a = getA(frame);
291 >    
292 >    for (i = 0; i < atoms_.size(); i++) {
293 >    
294 >        ref = body2Lab(refCoords_[i], frame);
295  
296 < void RigidBody::addZangle( double zAng ){
274 <    zAngle += zAng;
275 < }
296 >        apos = pos + ref;
297  
298 < void RigidBody::calcRefCoords( ) {
298 >        atoms_[i]->setPos(apos, frame);
299  
300 <  int i,j,k, it, n_linear_coords;
301 <  double mtmp;
302 <  vec3 apos;
303 <  double refCOM[3];
304 <  vec3 ptmp;
284 <  double Itmp[3][3];
285 <  double evals[3];
286 <  double evects[3][3];
287 <  double r, r2, len;
300 >        if (atoms_[i]->isDirectional()) {
301 >          
302 >          dAtom = (DirectionalAtom *) atoms_[i];
303 >          dAtom->setA(a * refOrients_[i], frame);
304 >        }
305  
306 <  // First, find the center of mass:
306 >    }
307    
308 <  mass = 0.0;
292 <  for (j=0; j<3; j++)
293 <    refCOM[j] = 0.0;
294 <  
295 <  for (i = 0; i < myAtoms.size(); i++) {
296 <    mtmp = myAtoms[i]->getMass();
297 <    mass += mtmp;
308 > }
309  
310 <    apos = refCoords[i];
311 <    
301 <    for(j = 0; j < 3; j++) {
302 <      refCOM[j] += apos[j]*mtmp;    
303 <    }    
304 <  }
305 <  
306 <  for(j = 0; j < 3; j++)
307 <    refCOM[j] /= mass;
310 > void RigidBody::updateAtomVel() {
311 >    Mat3x3d skewMat;;
312  
313 < // Next, move the origin of the reference coordinate system to the COM:
313 >    Vector3d ji = getJ();
314 >    Mat3x3d I =  getI();
315  
316 <  for (i = 0; i < myAtoms.size(); i++) {
317 <    apos = refCoords[i];
318 <    for (j=0; j < 3; j++) {
319 <      apos[j] = apos[j] - refCOM[j];
316 >    skewMat(0, 0) =0;
317 >    skewMat(0, 1) = ji[2] /I(2, 2);
318 >    skewMat(0, 2) = -ji[1] /I(1, 1);
319 >
320 >    skewMat(1, 0) = -ji[2] /I(2, 2);
321 >    skewMat(1, 1) = 0;
322 >    skewMat(1, 2) = ji[0]/I(0, 0);
323 >
324 >    skewMat(2, 0) =ji[1] /I(1, 1);
325 >    skewMat(2, 1) = -ji[0]/I(0, 0);
326 >    skewMat(2, 2) = 0;
327 >
328 >    Mat3x3d mat = (getA() * skewMat).transpose();
329 >    Vector3d rbVel = getVel();
330 >
331 >
332 >    Vector3d velRot;        
333 >    for (int i =0 ; i < refCoords_.size(); ++i) {
334 >        atoms_[i]->setVel(rbVel + mat * refCoords_[i]);
335      }
316    refCoords[i] = apos;
317  }
336  
337 < // Moment of Inertia calculation
337 > }
338  
339 <  for (i = 0; i < 3; i++)
340 <    for (j = 0; j < 3; j++)
323 <      Itmp[i][j] = 0.0;  
324 <  
325 <  for (it = 0; it < myAtoms.size(); it++) {
339 > void RigidBody::updateAtomVel(int frame) {
340 >    Mat3x3d skewMat;;
341  
342 <    mtmp = myAtoms[it]->getMass();
343 <    ptmp = refCoords[it];
329 <    r= norm3(ptmp.vec);
330 <    r2 = r*r;
331 <    
332 <    for (i = 0; i < 3; i++) {
333 <      for (j = 0; j < 3; j++) {
334 <        
335 <        if (i==j) Itmp[i][j] += mtmp * r2;
342 >    Vector3d ji = getJ(frame);
343 >    Mat3x3d I =  getI();
344  
345 <        Itmp[i][j] -= mtmp * ptmp.vec[i]*ptmp.vec[j];
346 <      }
347 <    }
340 <  }
341 <  
342 <  diagonalize3x3(Itmp, evals, sU);
343 <  
344 <  // zero out I and then fill the diagonals with the moments of inertia:
345 >    skewMat(0, 0) =0;
346 >    skewMat(0, 1) = ji[2] /I(2, 2);
347 >    skewMat(0, 2) = -ji[1] /I(1, 1);
348  
349 <  n_linear_coords = 0;
349 >    skewMat(1, 0) = -ji[2] /I(2, 2);
350 >    skewMat(1, 1) = 0;
351 >    skewMat(1, 2) = ji[0]/I(0, 0);
352  
353 <  for (i = 0; i < 3; i++) {
354 <    for (j = 0; j < 3; j++) {
355 <      I[i][j] = 0.0;  
351 <    }
352 <    I[i][i] = evals[i];
353 >    skewMat(2, 0) =ji[1] /I(1, 1);
354 >    skewMat(2, 1) = -ji[0]/I(0, 0);
355 >    skewMat(2, 2) = 0;
356  
357 <    if (fabs(evals[i]) < momIntTol) {
358 <      is_linear = true;
356 <      n_linear_coords++;
357 <      linear_axis = i;
358 <    }
359 <  }
357 >    Mat3x3d mat = (getA(frame) * skewMat).transpose();
358 >    Vector3d rbVel = getVel(frame);
359  
360 <  if (n_linear_coords > 1) {
361 <          sprintf( painCave.errMsg,
362 <               "RigidBody error.\n"
363 <               "\tOOPSE found more than one axis in this rigid body with a vanishing \n"
365 <               "\tmoment of inertia.  This can happen in one of three ways:\n"
366 <               "\t 1) Only one atom was specified, or \n"
367 <               "\t 2) All atoms were specified at the same location, or\n"
368 <               "\t 3) The programmers did something stupid.\n"
369 <               "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n"
370 <               );
371 <      painCave.isFatal = 1;
372 <      simError();
373 <  }
374 <  
375 <  // renormalize column vectors:
376 <  
377 <  for (i=0; i < 3; i++) {
378 <    len = 0.0;
379 <    for (j = 0; j < 3; j++) {
380 <      len += sU[i][j]*sU[i][j];
360 >
361 >    Vector3d velRot;        
362 >    for (int i =0 ; i < refCoords_.size(); ++i) {
363 >        atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame);
364      }
365 <    len = sqrt(len);
383 <    for (j = 0; j < 3; j++) {
384 <      sU[i][j] /= len;
385 <    }
386 <  }
365 >
366   }
367  
368 < void RigidBody::doEulerToRotMat(vec3 &euler, mat3x3 &myA ){
368 >        
369  
370 <  double phi, theta, psi;
371 <  
393 <  phi = euler[0];
394 <  theta = euler[1];
395 <  psi = euler[2];
396 <  
397 <  myA[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi));
398 <  myA[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi));
399 <  myA[0][2] = sin(theta) * sin(psi);
400 <  
401 <  myA[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi));
402 <  myA[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi));
403 <  myA[1][2] = sin(theta) * cos(psi);
404 <  
405 <  myA[2][0] = sin(phi) * sin(theta);
406 <  myA[2][1] = -cos(phi) * sin(theta);
407 <  myA[2][2] = cos(theta);
370 > bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) {
371 >    if (index < atoms_.size()) {
372  
373 +        Vector3d ref = body2Lab(refCoords_[index]);
374 +        pos = getPos() + ref;
375 +        return true;
376 +    } else {
377 +        std::cerr << index << " is an invalid index, current rigid body contains "
378 +                      << atoms_.size() << "atoms" << std::endl;
379 +        return false;
380 +    }    
381   }
382  
383 < void RigidBody::calcForcesAndTorques() {
383 > bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) {
384 >    std::vector<Atom*>::iterator i;
385 >    i = std::find(atoms_.begin(), atoms_.end(), atom);
386 >    if (i != atoms_.end()) {
387 >        //RigidBody class makes sure refCoords_ and atoms_ match each other
388 >        Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]);
389 >        pos = getPos() + ref;
390 >        return true;
391 >    } else {
392 >        std::cerr << "Atom " << atom->getGlobalIndex()
393 >                      <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;
394 >        return false;
395 >    }
396 > }
397 > bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) {
398  
399 <  // Convert Atomic forces and torques to total forces and torques:
414 <  int i, j;
415 <  double apos[3];
416 <  double afrc[3];
417 <  double atrq[3];
418 <  double rpos[3];
399 >    //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$
400  
401 <  zeroForces();
421 <  
422 <  for (i = 0; i < myAtoms.size(); i++) {
401 >    if (index < atoms_.size()) {
402  
403 <    myAtoms[i]->getPos(apos);
404 <    myAtoms[i]->getFrc(afrc);
403 >        Vector3d velRot;
404 >        Mat3x3d skewMat;;
405 >        Vector3d ref = refCoords_[index];
406 >        Vector3d ji = getJ();
407 >        Mat3x3d I =  getI();
408  
409 <    for (j=0; j<3; j++) {
410 <      rpos[j] = apos[j] - pos[j];
411 <      frc[j] += afrc[j];
430 <    }
431 <    
432 <    trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1];
433 <    trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2];
434 <    trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0];
409 >        skewMat(0, 0) =0;
410 >        skewMat(0, 1) = ji[2] /I(2, 2);
411 >        skewMat(0, 2) = -ji[1] /I(1, 1);
412  
413 <    // If the atom has a torque associated with it, then we also need to
414 <    // migrate the torques onto the center of mass:
413 >        skewMat(1, 0) = -ji[2] /I(2, 2);
414 >        skewMat(1, 1) = 0;
415 >        skewMat(1, 2) = ji[0]/I(0, 0);
416  
417 <    if (myAtoms[i]->isDirectional()) {
417 >        skewMat(2, 0) =ji[1] /I(1, 1);
418 >        skewMat(2, 1) = -ji[0]/I(0, 0);
419 >        skewMat(2, 2) = 0;
420  
421 <      myAtoms[i]->getTrq(atrq);
422 <      
423 <      for (j=0; j<3; j++)
424 <        trq[j] += atrq[j];
421 >        velRot = (getA() * skewMat).transpose() * ref;
422 >
423 >        vel =getVel() + velRot;
424 >        return true;
425 >        
426 >    } else {
427 >        std::cerr << index << " is an invalid index, current rigid body contains "
428 >                      << atoms_.size() << "atoms" << std::endl;
429 >        return false;
430      }
431 <  }
431 > }
432  
433 <  // Convert Torque to Body-fixed coordinates:
449 <  // (Actually, on second thought, don't.  Integrator does this now.)
450 <  // lab2Body(trq);
433 > bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) {
434  
435 +    std::vector<Atom*>::iterator i;
436 +    i = std::find(atoms_.begin(), atoms_.end(), atom);
437 +    if (i != atoms_.end()) {
438 +        return getAtomVel(vel, i - atoms_.begin());
439 +    } else {
440 +        std::cerr << "Atom " << atom->getGlobalIndex()
441 +                      <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;    
442 +        return false;
443 +    }    
444   }
445  
446 < void RigidBody::updateAtoms() {
447 <  int i, j;
456 <  vec3 ref;
457 <  double apos[3];
458 <  DirectionalAtom* dAtom;
459 <  
460 <  for (i = 0; i < myAtoms.size(); i++) {
461 <    
462 <    ref = refCoords[i];
446 > bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) {
447 >    if (index < atoms_.size()) {
448  
449 <    body2Lab(ref.vec);
450 <    
451 <    for (j = 0; j<3; j++)
452 <      apos[j] = pos[j] + ref.vec[j];
453 <    
454 <    myAtoms[i]->setPos(apos);
470 <    
471 <    if (myAtoms[i]->isDirectional()) {
472 <      
473 <      dAtom = (DirectionalAtom *) myAtoms[i];
474 <      dAtom->rotateBy( A );
475 <      
449 >        coor = refCoords_[index];
450 >        return true;
451 >    } else {
452 >        std::cerr << index << " is an invalid index, current rigid body contains "
453 >                      << atoms_.size() << "atoms" << std::endl;
454 >        return false;
455      }
456 <  }  
456 >
457   }
458  
459 < void RigidBody::getGrad( double grad[6] ) {
459 > bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) {
460 >    std::vector<Atom*>::iterator i;
461 >    i = std::find(atoms_.begin(), atoms_.end(), atom);
462 >    if (i != atoms_.end()) {
463 >        //RigidBody class makes sure refCoords_ and atoms_ match each other
464 >        coor = refCoords_[i - atoms_.begin()];
465 >        return true;
466 >    } else {
467 >        std::cerr << "Atom " << atom->getGlobalIndex()
468 >                      <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;    
469 >        return false;
470 >    }
471  
472 <  double myEuler[3];
483 <  double phi, theta, psi;
484 <  double cphi, sphi, ctheta, stheta;
485 <  double ephi[3];
486 <  double etheta[3];
487 <  double epsi[3];
488 <  
489 <  this->getEulerAngles(myEuler);
472 > }
473  
491  phi = myEuler[0];
492  theta = myEuler[1];
493  psi = myEuler[2];
474  
475 <  cphi = cos(phi);
496 <  sphi = sin(phi);
497 <  ctheta = cos(theta);
498 <  stheta = sin(theta);
475 > void RigidBody::addAtom(Atom* at, AtomStamp* ats) {
476  
477 <  // get unit vectors along the phi, theta and psi rotation axes
477 >  Vector3d coords;
478 >  Vector3d euler;
479 >  
480  
481 <  ephi[0] = 0.0;
482 <  ephi[1] = 0.0;
483 <  ephi[2] = 1.0;
484 <
485 <  etheta[0] = cphi;
486 <  etheta[1] = sphi;
487 <  etheta[2] = 0.0;
488 <  
489 <  epsi[0] = stheta * cphi;
490 <  epsi[1] = stheta * sphi;
512 <  epsi[2] = ctheta;
513 <  
514 <  for (int j = 0 ; j<3; j++)
515 <    grad[j] = frc[j];
516 <
517 <  grad[3] = 0.0;
518 <  grad[4] = 0.0;
519 <  grad[5] = 0.0;
520 <  
521 <  for (int j = 0; j < 3; j++ ) {
522 <    
523 <    grad[3] += trq[j]*ephi[j];
524 <    grad[4] += trq[j]*etheta[j];
525 <    grad[5] += trq[j]*epsi[j];
526 <    
481 >  atoms_.push_back(at);
482 >
483 >  if( !ats->havePosition() ){
484 >    sprintf( painCave.errMsg,
485 >             "RigidBody error.\n"
486 >             "\tAtom %s does not have a position specified.\n"
487 >             "\tThis means RigidBody cannot set up reference coordinates.\n",
488 >             ats->getType() );
489 >    painCave.isFatal = 1;
490 >    simError();
491    }
492    
493 < }
493 >  coords[0] = ats->getPosX();
494 >  coords[1] = ats->getPosY();
495 >  coords[2] = ats->getPosZ();
496  
497 < /**
532 <  * getEulerAngles computes a set of Euler angle values consistent
533 <  * with an input rotation matrix.  They are returned in the following
534 <  * order:
535 <  *  myEuler[0] = phi;
536 <  *  myEuler[1] = theta;
537 <  *  myEuler[2] = psi;
538 < */
539 < void RigidBody::getEulerAngles(double myEuler[3]) {
497 >  refCoords_.push_back(coords);
498  
499 <  // We use so-called "x-convention", which is the most common
542 <  // definition.  In this convention, the rotation given by Euler
543 <  // angles (phi, theta, psi), where the first rotation is by an angle
544 <  // phi about the z-axis, the second is by an angle theta (0 <= theta
545 <  // <= 180) about the x-axis, and the third is by an angle psi about
546 <  // the z-axis (again).
499 >  RotMat3x3d identMat = RotMat3x3d::identity();
500    
501 <  
549 <  double phi,theta,psi,eps;
550 <  double pi;
551 <  double cphi,ctheta,cpsi;
552 <  double sphi,stheta,spsi;
553 <  double b[3];
554 <  int flip[3];
555 <  
556 <  // set the tolerance for Euler angles and rotation elements
557 <  
558 <  eps = 1.0e-8;
501 >  if (at->isDirectional()) {  
502  
503 <  theta = acos(min(1.0,max(-1.0,A[2][2])));
504 <  ctheta = A[2][2];
505 <  stheta = sqrt(1.0 - ctheta * ctheta);
503 >    if( !ats->haveOrientation() ){
504 >      sprintf( painCave.errMsg,
505 >               "RigidBody error.\n"
506 >               "\tAtom %s does not have an orientation specified.\n"
507 >               "\tThis means RigidBody cannot set up reference orientations.\n",
508 >               ats->getType() );
509 >      painCave.isFatal = 1;
510 >      simError();
511 >    }    
512 >    
513 >    euler[0] = ats->getEulerPhi();
514 >    euler[1] = ats->getEulerTheta();
515 >    euler[2] = ats->getEulerPsi();
516  
517 <  // when sin(theta) is close to 0, we need to consider the
518 <  // possibility of a singularity. In this case, we can assign an
566 <  // arbitary value to phi (or psi), and then determine the psi (or
567 <  // phi) or vice-versa.  We'll assume that phi always gets the
568 <  // rotation, and psi is 0 in cases of singularity.  we use atan2
569 <  // instead of atan, since atan2 will give us -Pi to Pi.  Since 0 <=
570 <  // theta <= 180, sin(theta) will be always non-negative. Therefore,
571 <  // it never changes the sign of both of the parameters passed to
572 <  // atan2.
573 <  
574 <  if (fabs(stheta) <= eps){
575 <    psi = 0.0;
576 <    phi = atan2(-A[1][0], A[0][0]);  
577 <  }
578 <  // we only have one unique solution
579 <  else{    
580 <    phi = atan2(A[2][0], -A[2][1]);
581 <    psi = atan2(A[0][2], A[1][2]);
582 <  }
583 <  
584 <  //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
585 <  //if (phi < 0)
586 <  //  phi += M_PI;
587 <  
588 <  //if (psi < 0)
589 <  //  psi += M_PI;
590 <  
591 <  myEuler[0] = phi;
592 <  myEuler[1] = theta;
593 <  myEuler[2] = psi;
594 <  
595 <  return;
596 < }
597 <
598 < double RigidBody::max(double x, double  y) {  
599 <  return (x > y) ? x : y;
600 < }
601 <
602 < double RigidBody::min(double x, double  y) {  
603 <  return (x > y) ? y : x;
604 < }
605 <
606 < void RigidBody::findCOM() {
607 <  
608 <  size_t i;
609 <  int j;
610 <  double mtmp;
611 <  double ptmp[3];
612 <  double vtmp[3];
613 <  
614 <  for(j = 0; j < 3; j++) {
615 <    pos[j] = 0.0;
616 <    vel[j] = 0.0;
617 <  }
618 <  mass = 0.0;
619 <  
620 <  for (i = 0; i < myAtoms.size(); i++) {
517 >    RotMat3x3d Atmp(euler);
518 >    refOrients_.push_back(Atmp);
519      
520 <    mtmp = myAtoms[i]->getMass();    
521 <    myAtoms[i]->getPos(ptmp);
624 <    myAtoms[i]->getVel(vtmp);
625 <    
626 <    mass += mtmp;
627 <    
628 <    for(j = 0; j < 3; j++) {
629 <      pos[j] += ptmp[j]*mtmp;
630 <      vel[j] += vtmp[j]*mtmp;
631 <    }
632 <    
520 >  }else {
521 >    refOrients_.push_back(identMat);
522    }
523    
635  for(j = 0; j < 3; j++) {
636    pos[j] /= mass;
637    vel[j] /= mass;
638  }
639
640 }
641
642 void RigidBody::accept(BaseVisitor* v){
643  vector<Atom*>::iterator atomIter;
644  v->visit(this);
645
646  //for(atomIter = myAtoms.begin(); atomIter != myAtoms.end(); ++atomIter)
647  //  (*atomIter)->accept(v);
648 }
649 void RigidBody::getAtomRefCoor(double pos[3], int index){
650  vec3 ref;
651
652  ref = refCoords[index];
653  pos[0] = ref[0];
654  pos[1] = ref[1];
655  pos[2] = ref[2];
524    
525   }
526  
659
660 void RigidBody::getAtomPos(double theP[3], int index){
661  vec3 ref;
662
663  if (index >= myAtoms.size())
664    cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl;
665
666  ref = refCoords[index];
667  body2Lab(ref.vec);
668  
669  theP[0] = pos[0] + ref[0];
670  theP[1] = pos[1] + ref[1];
671  theP[2] = pos[2] + ref[2];
527   }
528  
674
675 void RigidBody::getAtomVel(double theV[3], int index){
676  vec3 ref;
677  double velRot[3];
678  double skewMat[3][3];
679  double aSkewMat[3][3];
680  double aSkewTransMat[3][3];
681  
682  //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$
683
684  if (index >= myAtoms.size())
685    cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl;
686
687  ref = refCoords[index];
688
689  skewMat[0][0] =0;
690  skewMat[0][1] = ji[2] /I[2][2];
691  skewMat[0][2] = -ji[1] /I[1][1];
692
693  skewMat[1][0] = -ji[2] /I[2][2];
694  skewMat[1][1] = 0;
695  skewMat[1][2] = ji[0]/I[0][0];
696
697  skewMat[2][0] =ji[1] /I[1][1];
698  skewMat[2][1] = -ji[0]/I[0][0];
699  skewMat[2][2] = 0;
700  
701  matMul3(A, skewMat, aSkewMat);
702
703  transposeMat3(aSkewMat, aSkewTransMat);
704
705  matVecMul3(aSkewTransMat, ref.vec, velRot);
706  theV[0] = vel[0] + velRot[0];
707  theV[1] = vel[1] + velRot[1];
708  theV[2] = vel[2] + velRot[2];
709 }
710
711

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines