ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/utils/GenericFactory.hpp
(Generate patch)

Comparing trunk/OOPSE-4/src/utils/GenericFactory.hpp (file contents):
Revision 1930 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
Revision 2204 by gezelter, Fri Apr 15 22:04:00 2005 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 54 | Line 54 | namespace oopse {
54  
55   namespace oopse {
56  
57 < /**
58 < * @class GenericFactory GenericFactory.hpp "utils/GenericFactory.hpp"
59 < * @brief GenericFactory is a template based Object Factory
60 < * Factory pattern is used to define an interface for creating an object.
61 < *
62 < * @param Object the base class of the hierarchy for which you provide the object factory.
63 < * @param IdentType the object that identifies the type of the concrete object. Default type is  std::string * @param Creator  the callable entity that creates objects. This type must support operator(),
64 < * taking no parameters and returning a pointer to Object. Default type is function pointer.
65 < *
66 < * Usage:
67 < * @code
68 < * //Shape class
69 < * class Shape {
70 < * ...
71 < * };
72 < *
73 < * //instantiating a new object factory
74 < * typedef GenericFactory<Shape> ShapeFactory;
75 < *
76 < * //Line class
77 < * class Line : public Shape{
78 < * ...
79 < * };
80 < *
81 < * //declare function to create Line
82 < * Shape* createLine() {
83 < *   return new Line;
84 < * }
85 < *
86 < * //register createLine
87 < * //note: must put ShapeFactory::getInstance()->registerCreator("Line", createLine) on the right
88 < * //hand side, otherwise the compiler will consider it as a function declaration
89 < * const bool registeredLine = ShapeFactory::getInstance()->registerCreator("Line", createLine);
90 < *
91 < * //Circle class
92 < * class Circle : public Shape{
93 < * ...
94 < * };
95 < *
96 < * //declare function to create Circle
97 < * Shape* createCircle() {
98 < *   return new Circle;
99 < * }
100 < *
101 < * //register createCircle
102 < * const bool registeredCircle = ShapeFactory::getInstance()->registerCreator("Circle", createCircle);
103 < *
104 < * //create object by ident
105 < * Line* line = ShapeFactory::getInstance()->createObject("Line");
106 < * Circle* circle = ShapeFactory::getInstance()->createObject("Circle");
107 < * @endcode
108 < *
109 < * Or the user can use predefined macro DECLARE_CREATOR and REGISTER_CREATOR
110 < * @code
111 < * //Shape class
112 < * class Shape {
113 < * ...
114 < * };
115 < *
116 < * //instantiating a new object factory
117 < * typedef GenericFactory<Shape> ShapeFactory;
118 < *
119 < * //Line class
120 < * class Line : public Shape{
121 < * ...
122 < * };
123 < *
124 < * //declare function using macro
125 < * DECLARE_CREATOR(Shape, Line)
126 < *
127 < * //register using macro
128 < * REGISTER_CREATOR(ShapeFactory, "Line", Line);
57 >  /**
58 >   * @class GenericFactory GenericFactory.hpp "utils/GenericFactory.hpp"
59 >   * @brief GenericFactory is a template based Object Factory
60 >   * Factory pattern is used to define an interface for creating an object.
61 >   *
62 >   * @param Object the base class of the hierarchy for which you provide the object factory.
63 >   * @param IdentType the object that identifies the type of the concrete object. Default type is  std::string * @param Creator  the callable entity that creates objects. This type must support operator(),
64 >   * taking no parameters and returning a pointer to Object. Default type is function pointer.
65 >   *
66 >   * Usage:
67 >   * @code
68 >   * //Shape class
69 >   * class Shape {
70 >   * ...
71 >   * };
72 >   *
73 >   * //instantiating a new object factory
74 >   * typedef GenericFactory<Shape> ShapeFactory;
75 >   *
76 >   * //Line class
77 >   * class Line : public Shape{
78 >   * ...
79 >   * };
80 >   *
81 >   * //declare function to create Line
82 >   * Shape* createLine() {
83 >   *   return new Line;
84 >   * }
85 >   *
86 >   * //register createLine
87 >   * //note: must put ShapeFactory::getInstance()->registerCreator("Line", createLine) on the right
88 >   * //hand side, otherwise the compiler will consider it as a function declaration
89 >   * const bool registeredLine = ShapeFactory::getInstance()->registerCreator("Line", createLine);
90 >   *
91 >   * //Circle class
92 >   * class Circle : public Shape{
93 >   * ...
94 >   * };
95 >   *
96 >   * //declare function to create Circle
97 >   * Shape* createCircle() {
98 >   *   return new Circle;
99 >   * }
100 >   *
101 >   * //register createCircle
102 >   * const bool registeredCircle = ShapeFactory::getInstance()->registerCreator("Circle", createCircle);
103 >   *
104 >   * //create object by ident
105 >   * Line* line = ShapeFactory::getInstance()->createObject("Line");
106 >   * Circle* circle = ShapeFactory::getInstance()->createObject("Circle");
107 >   * @endcode
108 >   *
109 >   * Or the user can use predefined macro DECLARE_CREATOR and REGISTER_CREATOR
110 >   * @code
111 >   * //Shape class
112 >   * class Shape {
113 >   * ...
114 >   * };
115 >   *
116 >   * //instantiating a new object factory
117 >   * typedef GenericFactory<Shape> ShapeFactory;
118 >   *
119 >   * //Line class
120 >   * class Line : public Shape{
121 >   * ...
122 >   * };
123 >   *
124 >   * //declare function using macro
125 >   * DECLARE_CREATOR(Shape, Line)
126 >   *
127 >   * //register using macro
128 >   * REGISTER_CREATOR(ShapeFactory, "Line", Line);
129  
130 < * //Circle class
131 < * class Circle : public Shape{
132 < * ...
133 < * };
134 < *
135 < * //declare function using macro
136 < * DECLARE_CREATOR(Shape, Circle)
137 < *
138 < * //register using macro
139 < * REGISTER_CREATOR(ShapeFactory, "Circle", Circle);
140 < * @endcode
141 < */
142 < template<class Object, typename IdentType = std::string, typename Creator = Object* (*)()>
143 < class GenericFactory {
144 <    public:
145 <        typedef GenericFactory<Object, IdentType, Creator> FactoryType;
146 <        typedef std::map<IdentType, Creator> CreatorMapType;
130 >   * //Circle class
131 >   * class Circle : public Shape{
132 >   * ...
133 >   * };
134 >   *
135 >   * //declare function using macro
136 >   * DECLARE_CREATOR(Shape, Circle)
137 >   *
138 >   * //register using macro
139 >   * REGISTER_CREATOR(ShapeFactory, "Circle", Circle);
140 >   * @endcode
141 >   */
142 >  template<class Object, typename IdentType = std::string, typename Creator = Object* (*)()>
143 >  class GenericFactory {
144 >  public:
145 >    typedef GenericFactory<Object, IdentType, Creator> FactoryType;
146 >    typedef std::map<IdentType, Creator> CreatorMapType;
147          
148 <        /**
149 <         * Returns an instance of object factory
150 <         * @return an instance of object factory
151 <         */        
152 <        static FactoryType* getInstance(){
153 <            if (instance_ == NULL)
154 <                instance_ = new FactoryType;
155 <            return instance_;
156 <        }
148 >    /**
149 >     * Returns an instance of object factory
150 >     * @return an instance of object factory
151 >     */        
152 >    static FactoryType* getInstance(){
153 >      if (instance_ == NULL)
154 >        instance_ = new FactoryType;
155 >      return instance_;
156 >    }
157  
158 <        /**
159 <         * Registers a creator with a type identifier
160 <         * @return true if registration is succeed, otherwise return false
161 <         * @id the identification of the concrete object
162 <         * @creator the object responsible to create the concrete object
163 <         */
164 <        bool registerCreator(const IdentType& id, Creator creator) {
165 <            return creatorMap_.insert(
166 <                CreatorMapType::value_type(id, creator)).second;
167 <        }
158 >    /**
159 >     * Registers a creator with a type identifier
160 >     * @return true if registration is succeed, otherwise return false
161 >     * @id the identification of the concrete object
162 >     * @creator the object responsible to create the concrete object
163 >     */
164 >    bool registerCreator(const IdentType& id, Creator creator) {
165 >      return creatorMap_.insert(
166 >                                CreatorMapType::value_type(id, creator)).second;
167 >    }
168  
169 <        /**
170 <         * Unregisters the creator for the given type identifier. If the type identifier
171 <         * was previously registered, the function returns true.
172 <         * @return truethe type identifier was previously registered and the creator is removed,
173 <         * otherwise return false
174 <         * @id the identification of the concrete object
175 <         */
176 <        bool unregisterCreator(const IdentType& id) {
177 <            return creatorMap_.erase(id) == 1;
178 <        }
169 >    /**
170 >     * Unregisters the creator for the given type identifier. If the type identifier
171 >     * was previously registered, the function returns true.
172 >     * @return truethe type identifier was previously registered and the creator is removed,
173 >     * otherwise return false
174 >     * @id the identification of the concrete object
175 >     */
176 >    bool unregisterCreator(const IdentType& id) {
177 >      return creatorMap_.erase(id) == 1;
178 >    }
179  
180 <        /**
181 <         * Looks up the type identifier in the internal map. If it is found, it invokes the
182 <         * corresponding creator for the type identifier and returns its result.
183 <         * @return a pointer of the concrete object, return NULL if no creator is registed for
184 <         * creating this concrete object
185 <         * @param id the identification of the concrete object
186 <         */
187 <        Object* createObject(const IdentType& id) {
188 <            typename CreatorMapType::iterator i = creatorMap_.find(id);
189 <            if (i != creatorMap_.end()) {
190 <                //invoke functor to create object
191 <                return (i->second)();
192 <            } else {
193 <                return NULL;
194 <            }
195 <        }
180 >    /**
181 >     * Looks up the type identifier in the internal map. If it is found, it invokes the
182 >     * corresponding creator for the type identifier and returns its result.
183 >     * @return a pointer of the concrete object, return NULL if no creator is registed for
184 >     * creating this concrete object
185 >     * @param id the identification of the concrete object
186 >     */
187 >    Object* createObject(const IdentType& id) {
188 >      typename CreatorMapType::iterator i = creatorMap_.find(id);
189 >      if (i != creatorMap_.end()) {
190 >        //invoke functor to create object
191 >        return (i->second)();
192 >      } else {
193 >        return NULL;
194 >      }
195 >    }
196  
197 <        /**
198 <         *  Returns all of the registed  type identifiers
199 <         * @return all of the registed  type identifiers
200 <         */
201 <        std::vector<IdentType> getIdents() {
202 <            std::vector<IdentType> idents;
203 <            typename CreatorMapType::iterator i;
197 >    /**
198 >     *  Returns all of the registed  type identifiers
199 >     * @return all of the registed  type identifiers
200 >     */
201 >    std::vector<IdentType> getIdents() {
202 >      std::vector<IdentType> idents;
203 >      typename CreatorMapType::iterator i;
204  
205 <            for (i = creatorMap_.begin(); i != creatorMap_.end(); ++i) {
206 <                idents.push_back(i->first);
207 <            }
205 >      for (i = creatorMap_.begin(); i != creatorMap_.end(); ++i) {
206 >        idents.push_back(i->first);
207 >      }
208              
209 <            return idents;
210 <        }
209 >      return idents;
210 >    }
211  
212 <    public:
213 <        static FactoryType* instance_;
214 <        CreatorMapType creatorMap_;
215 < };
212 >  public:
213 >    static FactoryType* instance_;
214 >    CreatorMapType creatorMap_;
215 >  };
216  
217 < /** write out all of the type identifiers to an output stream */
218 < template<typename O, typename I, typename C>
219 < std::ostream& operator <<(std::ostream& o, GenericFactory<O, I, C>& factory) {
217 >  /** write out all of the type identifiers to an output stream */
218 >  template<typename O, typename I, typename C>
219 >  std::ostream& operator <<(std::ostream& o, GenericFactory<O, I, C>& factory) {
220      std::vector<I> idents;
221      std::vector<I>::iterator i;
222  
# Line 224 | Line 224 | std::ostream& operator <<(std::ostream& o, GenericFact
224  
225      o << "Avaliable type identifiers in this factory: " << std::endl;
226      for (i = idents.begin(); i != idents.end(); ++i) {
227 <        o << *i << std::endl;
227 >      o << *i << std::endl;
228      }
229  
230      return o;
231 < }
231 >  }
232  
233 < //static template class member
234 < template<class Object, typename IdentType,typename Creator>
235 < GenericFactory<Object,IdentType,Creator>* GenericFactory<Object,IdentType,Creator>::instance_ ;
233 >  //static template class member
234 >  template<class Object, typename IdentType,typename Creator>
235 >  GenericFactory<Object,IdentType,Creator>* GenericFactory<Object,IdentType,Creator>::instance_ ;
236  
237  
238   #define DECLARE_CREATOR(abstractObject, concreteObject) \
239 <    inline abstractObject* create##concreteObject(){\
240 <        return new concreteObject;\
241 <    }
239 >  inline abstractObject* create##concreteObject(){      \
240 >    return new concreteObject;                          \
241 >  }
242  
243 < #define REGISTER_CREATOR(factory, ident, concreteObject) \
244 <        const bool registered##concreteObject = factory::getInstance()->registerCreator(ident, create##concreteObject);
243 > #define REGISTER_CREATOR(factory, ident, concreteObject)                \
244 >  const bool registered##concreteObject = factory::getInstance()->registerCreator(ident, create##concreteObject);
245  
246  
247   }//namespace oopse

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines