| 1 |
gezelter |
2708 |
!! |
| 2 |
|
|
!! Copyright (c) 2006 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
!! |
| 4 |
|
|
!! The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
!! non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
!! redistribute this software in source and binary code form, provided |
| 7 |
|
|
!! that the following conditions are met: |
| 8 |
|
|
!! |
| 9 |
|
|
!! 1. Acknowledgement of the program authors must be made in any |
| 10 |
|
|
!! publication of scientific results based in part on use of the |
| 11 |
|
|
!! program. An acceptable form of acknowledgement is citation of |
| 12 |
|
|
!! the article in which the program was described (Matthew |
| 13 |
|
|
!! A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
|
|
!! J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
|
|
!! Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
|
|
!! J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
|
|
!! |
| 18 |
|
|
!! 2. Redistributions of source code must retain the above copyright |
| 19 |
|
|
!! notice, this list of conditions and the following disclaimer. |
| 20 |
|
|
!! |
| 21 |
|
|
!! 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
|
|
!! notice, this list of conditions and the following disclaimer in the |
| 23 |
|
|
!! documentation and/or other materials provided with the |
| 24 |
|
|
!! distribution. |
| 25 |
|
|
!! |
| 26 |
|
|
!! This software is provided "AS IS," without a warranty of any |
| 27 |
|
|
!! kind. All express or implied conditions, representations and |
| 28 |
|
|
!! warranties, including any implied warranty of merchantability, |
| 29 |
|
|
!! fitness for a particular purpose or non-infringement, are hereby |
| 30 |
|
|
!! excluded. The University of Notre Dame and its licensors shall not |
| 31 |
|
|
!! be liable for any damages suffered by licensee as a result of |
| 32 |
|
|
!! using, modifying or distributing the software or its |
| 33 |
|
|
!! derivatives. In no event will the University of Notre Dame or its |
| 34 |
|
|
!! licensors be liable for any lost revenue, profit or data, or for |
| 35 |
|
|
!! direct, indirect, special, consequential, incidental or punitive |
| 36 |
|
|
!! damages, however caused and regardless of the theory of liability, |
| 37 |
|
|
!! arising out of the use of or inability to use software, even if the |
| 38 |
|
|
!! University of Notre Dame has been advised of the possibility of |
| 39 |
|
|
!! such damages. |
| 40 |
|
|
!! |
| 41 |
|
|
!! |
| 42 |
|
|
!! interpolation.F90 |
| 43 |
|
|
!! |
| 44 |
|
|
!! Created by Charles F. Vardeman II on 03 Apr 2006. |
| 45 |
|
|
!! |
| 46 |
|
|
!! PURPOSE: Generic Spline interplelation routines. These routines assume that we are on a uniform grid for |
| 47 |
|
|
!! precomputation of spline parameters. |
| 48 |
|
|
!! |
| 49 |
|
|
!! @author Charles F. Vardeman II |
| 50 |
gezelter |
2709 |
!! @version $Id: interpolation.F90,v 1.2 2006-04-14 20:04:31 gezelter Exp $ |
| 51 |
gezelter |
2708 |
|
| 52 |
|
|
|
| 53 |
|
|
module INTERPOLATION |
| 54 |
|
|
use definitions |
| 55 |
|
|
use status |
| 56 |
|
|
implicit none |
| 57 |
|
|
PRIVATE |
| 58 |
|
|
|
| 59 |
|
|
character(len = statusMsgSize) :: errMSG |
| 60 |
|
|
|
| 61 |
|
|
type, public :: cubicSpline |
| 62 |
|
|
private |
| 63 |
|
|
integer :: np = 0 |
| 64 |
|
|
real(kind=dp) :: dx |
| 65 |
|
|
real(kind=dp) :: dx_i |
| 66 |
|
|
real (kind=dp), pointer,dimension(:) :: x => null() |
| 67 |
gezelter |
2709 |
real (kind=dp), pointer,dimension(:,:) :: c => null() |
| 68 |
gezelter |
2708 |
end type cubicSpline |
| 69 |
|
|
|
| 70 |
|
|
interface newSpline |
| 71 |
|
|
module procedure newSplineWithoutDerivs |
| 72 |
|
|
module procedure newSplineWithDerivs |
| 73 |
|
|
end interface |
| 74 |
|
|
|
| 75 |
|
|
public :: deleteSpline |
| 76 |
|
|
|
| 77 |
|
|
contains |
| 78 |
|
|
|
| 79 |
|
|
|
| 80 |
|
|
subroutine newSplineWithoutDerivs(cs, x, y, yp1, ypn, boundary) |
| 81 |
|
|
|
| 82 |
|
|
!************************************************************************ |
| 83 |
|
|
! |
| 84 |
|
|
! newSplineWithoutDerivs solves for slopes defining a cubic spline. |
| 85 |
|
|
! |
| 86 |
|
|
! Discussion: |
| 87 |
|
|
! |
| 88 |
|
|
! A tridiagonal linear system for the unknown slopes S(I) of |
| 89 |
|
|
! F at x(I), I=1,..., N, is generated and then solved by Gauss |
| 90 |
|
|
! elimination, with S(I) ending up in cs%C(2,I), for all I. |
| 91 |
|
|
! |
| 92 |
|
|
! Reference: |
| 93 |
|
|
! |
| 94 |
|
|
! Carl DeBoor, |
| 95 |
|
|
! A Practical Guide to Splines, |
| 96 |
|
|
! Springer Verlag. |
| 97 |
|
|
! |
| 98 |
|
|
! Parameters: |
| 99 |
|
|
! |
| 100 |
|
|
! Input, real x(N), the abscissas or X values of |
| 101 |
|
|
! the data points. The entries of TAU are assumed to be |
| 102 |
|
|
! strictly increasing. |
| 103 |
|
|
! |
| 104 |
|
|
! Input, real y(I), contains the function value at x(I) for |
| 105 |
|
|
! I = 1, N. |
| 106 |
|
|
! |
| 107 |
|
|
! yp1 contains the slope at x(1) and ypn contains |
| 108 |
|
|
! the slope at x(N). |
| 109 |
|
|
! |
| 110 |
|
|
! On output, the intermediate slopes at x(I) have been |
| 111 |
|
|
! stored in cs%C(2,I), for I = 2 to N-1. |
| 112 |
|
|
|
| 113 |
|
|
implicit none |
| 114 |
|
|
|
| 115 |
|
|
type (cubicSpline), intent(inout) :: cs |
| 116 |
|
|
real( kind = DP ), intent(in) :: x(:), y(:) |
| 117 |
|
|
real( kind = DP ), intent(in) :: yp1, ypn |
| 118 |
|
|
character(len=*), intent(in) :: boundary |
| 119 |
|
|
real( kind = DP ) :: g, divdif1, divdif3, dx |
| 120 |
|
|
integer :: i, alloc_error, np |
| 121 |
|
|
|
| 122 |
|
|
alloc_error = 0 |
| 123 |
|
|
|
| 124 |
|
|
if (cs%np .ne. 0) then |
| 125 |
|
|
call handleWarning("interpolation::newSplineWithoutDerivs", & |
| 126 |
|
|
"Type was already created") |
| 127 |
|
|
call deleteSpline(cs) |
| 128 |
|
|
end if |
| 129 |
|
|
|
| 130 |
|
|
! make sure the sizes match |
| 131 |
|
|
|
| 132 |
|
|
if (size(x) .ne. size(y)) then |
| 133 |
|
|
call handleError("interpolation::newSplineWithoutDerivs", & |
| 134 |
|
|
"Array size mismatch") |
| 135 |
|
|
end if |
| 136 |
|
|
|
| 137 |
|
|
np = size(x) |
| 138 |
|
|
cs%np = np |
| 139 |
|
|
|
| 140 |
|
|
allocate(cs%x(np), stat=alloc_error) |
| 141 |
|
|
if(alloc_error .ne. 0) then |
| 142 |
|
|
call handleError("interpolation::newSplineWithoutDerivs", & |
| 143 |
|
|
"Error in allocating storage for x") |
| 144 |
|
|
endif |
| 145 |
|
|
|
| 146 |
|
|
allocate(cs%c(4,np), stat=alloc_error) |
| 147 |
|
|
if(alloc_error .ne. 0) then |
| 148 |
|
|
call handleError("interpolation::newSplineWithoutDerivs", & |
| 149 |
|
|
"Error in allocating storage for c") |
| 150 |
|
|
endif |
| 151 |
|
|
|
| 152 |
|
|
do i = 1, np |
| 153 |
|
|
cs%x(i) = x(i) |
| 154 |
|
|
cs%c(1,i) = y(i) |
| 155 |
|
|
enddo |
| 156 |
|
|
|
| 157 |
|
|
if ((boundary.eq.'l').or.(boundary.eq.'L').or. & |
| 158 |
|
|
(boundary.eq.'b').or.(boundary.eq.'B')) then |
| 159 |
|
|
cs%c(2,1) = yp1 |
| 160 |
|
|
else |
| 161 |
|
|
cs%c(2,1) = 0.0_DP |
| 162 |
|
|
endif |
| 163 |
|
|
if ((boundary.eq.'u').or.(boundary.eq.'U').or. & |
| 164 |
|
|
(boundary.eq.'b').or.(boundary.eq.'B')) then |
| 165 |
|
|
cs%c(2,1) = ypn |
| 166 |
|
|
else |
| 167 |
|
|
cs%c(2,1) = 0.0_DP |
| 168 |
|
|
endif |
| 169 |
|
|
|
| 170 |
|
|
! |
| 171 |
|
|
! Set up the right hand side of the linear system. |
| 172 |
|
|
! |
| 173 |
|
|
do i = 2, cs%np - 1 |
| 174 |
|
|
cs%c(2,i) = 3.0_DP * ( & |
| 175 |
|
|
(x(i) - x(i-1)) * (cs%c(1,i+1) - cs%c(1,i)) / (x(i+1) - x(i)) + & |
| 176 |
|
|
(x(i+1) - x(i)) * (cs%c(1,i) - cs%c(1,i-1)) / (x(i) - x(i-1))) |
| 177 |
|
|
end do |
| 178 |
|
|
! |
| 179 |
|
|
! Set the diagonal coefficients. |
| 180 |
|
|
! |
| 181 |
|
|
cs%c(4,1) = 1.0_DP |
| 182 |
|
|
do i = 2, cs%np - 1 |
| 183 |
|
|
cs%c(4,i) = 2.0_DP * ( x(i+1) - x(i-1) ) |
| 184 |
|
|
end do |
| 185 |
gezelter |
2709 |
cs%c(4,cs%np) = 1.0_DP |
| 186 |
gezelter |
2708 |
! |
| 187 |
|
|
! Set the off-diagonal coefficients. |
| 188 |
|
|
! |
| 189 |
|
|
cs%c(3,1) = 0.0_DP |
| 190 |
|
|
do i = 2, cs%np |
| 191 |
|
|
cs%c(3,i) = x(i) - x(i-1) |
| 192 |
|
|
end do |
| 193 |
|
|
! |
| 194 |
|
|
! Forward elimination. |
| 195 |
|
|
! |
| 196 |
|
|
do i = 2, cs%np - 1 |
| 197 |
|
|
g = -cs%c(3,i+1) / cs%c(4,i-1) |
| 198 |
|
|
cs%c(4,i) = cs%c(4,i) + g * cs%c(3,i-1) |
| 199 |
|
|
cs%c(2,i) = cs%c(2,i) + g * cs%c(2,i-1) |
| 200 |
|
|
end do |
| 201 |
|
|
! |
| 202 |
|
|
! Back substitution for the interior slopes. |
| 203 |
|
|
! |
| 204 |
|
|
do i = cs%np - 1, 2, -1 |
| 205 |
|
|
cs%c(2,i) = ( cs%c(2,i) - cs%c(3,i) * cs%c(2,i+1) ) / cs%c(4,i) |
| 206 |
|
|
end do |
| 207 |
|
|
! |
| 208 |
|
|
! Now compute the quadratic and cubic coefficients used in the |
| 209 |
|
|
! piecewise polynomial representation. |
| 210 |
|
|
! |
| 211 |
|
|
do i = 1, cs%np - 1 |
| 212 |
|
|
dx = x(i+1) - x(i) |
| 213 |
|
|
divdif1 = ( cs%c(1,i+1) - cs%c(1,i) ) / dx |
| 214 |
|
|
divdif3 = cs%c(2,i) + cs%c(2,i+1) - 2.0_DP * divdif1 |
| 215 |
|
|
cs%c(3,i) = ( divdif1 - cs%c(2,i) - divdif3 ) / dx |
| 216 |
|
|
cs%c(4,i) = divdif3 / ( dx * dx ) |
| 217 |
|
|
end do |
| 218 |
|
|
|
| 219 |
gezelter |
2709 |
cs%c(3,cs%np) = 0.0_DP |
| 220 |
|
|
cs%c(4,cs%np) = 0.0_DP |
| 221 |
gezelter |
2708 |
|
| 222 |
|
|
cs%dx = dx |
| 223 |
gezelter |
2709 |
cs%dx_i = 1.0_DP / dx |
| 224 |
gezelter |
2708 |
return |
| 225 |
|
|
end subroutine newSplineWithoutDerivs |
| 226 |
|
|
|
| 227 |
|
|
subroutine newSplineWithDerivs(cs, x, y, yp) |
| 228 |
|
|
|
| 229 |
|
|
!************************************************************************ |
| 230 |
|
|
! |
| 231 |
|
|
! newSplineWithDerivs |
| 232 |
|
|
|
| 233 |
|
|
implicit none |
| 234 |
|
|
|
| 235 |
|
|
type (cubicSpline), intent(inout) :: cs |
| 236 |
|
|
real( kind = DP ), intent(in) :: x(:), y(:), yp(:) |
| 237 |
|
|
real( kind = DP ) :: g, divdif1, divdif3, dx |
| 238 |
|
|
integer :: i, alloc_error, np |
| 239 |
|
|
|
| 240 |
|
|
alloc_error = 0 |
| 241 |
|
|
|
| 242 |
|
|
if (cs%np .ne. 0) then |
| 243 |
|
|
call handleWarning("interpolation::newSplineWithDerivs", & |
| 244 |
|
|
"Type was already created") |
| 245 |
|
|
call deleteSpline(cs) |
| 246 |
|
|
end if |
| 247 |
|
|
|
| 248 |
|
|
! make sure the sizes match |
| 249 |
|
|
|
| 250 |
|
|
if ((size(x) .ne. size(y)).or.(size(x) .ne. size(yp))) then |
| 251 |
|
|
call handleError("interpolation::newSplineWithDerivs", & |
| 252 |
|
|
"Array size mismatch") |
| 253 |
|
|
end if |
| 254 |
|
|
|
| 255 |
|
|
np = size(x) |
| 256 |
|
|
cs%np = np |
| 257 |
|
|
|
| 258 |
|
|
allocate(cs%x(np), stat=alloc_error) |
| 259 |
|
|
if(alloc_error .ne. 0) then |
| 260 |
|
|
call handleError("interpolation::newSplineWithDerivs", & |
| 261 |
|
|
"Error in allocating storage for x") |
| 262 |
|
|
endif |
| 263 |
|
|
|
| 264 |
|
|
allocate(cs%c(4,np), stat=alloc_error) |
| 265 |
|
|
if(alloc_error .ne. 0) then |
| 266 |
|
|
call handleError("interpolation::newSplineWithDerivs", & |
| 267 |
|
|
"Error in allocating storage for c") |
| 268 |
|
|
endif |
| 269 |
|
|
|
| 270 |
|
|
do i = 1, np |
| 271 |
|
|
cs%x(i) = x(i) |
| 272 |
|
|
cs%c(1,i) = y(i) |
| 273 |
|
|
cs%c(2,i) = yp(i) |
| 274 |
|
|
enddo |
| 275 |
|
|
! |
| 276 |
|
|
! Set the diagonal coefficients. |
| 277 |
|
|
! |
| 278 |
|
|
cs%c(4,1) = 1.0_DP |
| 279 |
|
|
do i = 2, cs%np - 1 |
| 280 |
|
|
cs%c(4,i) = 2.0_DP * ( x(i+1) - x(i-1) ) |
| 281 |
|
|
end do |
| 282 |
gezelter |
2709 |
cs%c(4,cs%np) = 1.0_DP |
| 283 |
gezelter |
2708 |
! |
| 284 |
|
|
! Set the off-diagonal coefficients. |
| 285 |
|
|
! |
| 286 |
|
|
cs%c(3,1) = 0.0_DP |
| 287 |
|
|
do i = 2, cs%np |
| 288 |
|
|
cs%c(3,i) = x(i) - x(i-1) |
| 289 |
|
|
end do |
| 290 |
|
|
! |
| 291 |
|
|
! Forward elimination. |
| 292 |
|
|
! |
| 293 |
|
|
do i = 2, cs%np - 1 |
| 294 |
|
|
g = -cs%c(3,i+1) / cs%c(4,i-1) |
| 295 |
|
|
cs%c(4,i) = cs%c(4,i) + g * cs%c(3,i-1) |
| 296 |
|
|
cs%c(2,i) = cs%c(2,i) + g * cs%c(2,i-1) |
| 297 |
|
|
end do |
| 298 |
|
|
! |
| 299 |
|
|
! Back substitution for the interior slopes. |
| 300 |
|
|
! |
| 301 |
|
|
do i = cs%np - 1, 2, -1 |
| 302 |
|
|
cs%c(2,i) = ( cs%c(2,i) - cs%c(3,i) * cs%c(2,i+1) ) / cs%c(4,i) |
| 303 |
|
|
end do |
| 304 |
|
|
! |
| 305 |
|
|
! Now compute the quadratic and cubic coefficients used in the |
| 306 |
|
|
! piecewise polynomial representation. |
| 307 |
|
|
! |
| 308 |
|
|
do i = 1, cs%np - 1 |
| 309 |
|
|
dx = x(i+1) - x(i) |
| 310 |
|
|
divdif1 = ( cs%c(1,i+1) - cs%c(1,i) ) / dx |
| 311 |
|
|
divdif3 = cs%c(2,i) + cs%c(2,i+1) - 2.0_DP * divdif1 |
| 312 |
|
|
cs%c(3,i) = ( divdif1 - cs%c(2,i) - divdif3 ) / dx |
| 313 |
|
|
cs%c(4,i) = divdif3 / ( dx * dx ) |
| 314 |
|
|
end do |
| 315 |
|
|
|
| 316 |
gezelter |
2709 |
cs%c(3,cs%np) = 0.0_DP |
| 317 |
|
|
cs%c(4,cs%np) = 0.0_DP |
| 318 |
gezelter |
2708 |
|
| 319 |
|
|
cs%dx = dx |
| 320 |
gezelter |
2709 |
cs%dx_i = 1.0_DP / dx |
| 321 |
gezelter |
2708 |
|
| 322 |
|
|
return |
| 323 |
gezelter |
2709 |
end subroutine newSplineWithDerivs |
| 324 |
gezelter |
2708 |
|
| 325 |
|
|
subroutine deleteSpline(this) |
| 326 |
|
|
|
| 327 |
|
|
type(cubicSpline) :: this |
| 328 |
|
|
|
| 329 |
|
|
if(associated(this%x)) then |
| 330 |
|
|
deallocate(this%x) |
| 331 |
|
|
this%x => null() |
| 332 |
|
|
end if |
| 333 |
|
|
if(associated(this%c)) then |
| 334 |
|
|
deallocate(this%c) |
| 335 |
|
|
this%c => null() |
| 336 |
|
|
end if |
| 337 |
|
|
|
| 338 |
|
|
this%np = 0 |
| 339 |
|
|
|
| 340 |
|
|
end subroutine deleteSpline |
| 341 |
|
|
|
| 342 |
|
|
subroutine lookup_nonuniform_spline(cs, xval, yval) |
| 343 |
|
|
|
| 344 |
|
|
!************************************************************************* |
| 345 |
|
|
! |
| 346 |
|
|
! lookup_nonuniform_spline evaluates a piecewise cubic Hermite interpolant. |
| 347 |
|
|
! |
| 348 |
|
|
! Discussion: |
| 349 |
|
|
! |
| 350 |
|
|
! newSpline must be called first, to set up the |
| 351 |
|
|
! spline data from the raw function and derivative data. |
| 352 |
|
|
! |
| 353 |
|
|
! Modified: |
| 354 |
|
|
! |
| 355 |
|
|
! 06 April 1999 |
| 356 |
|
|
! |
| 357 |
|
|
! Reference: |
| 358 |
|
|
! |
| 359 |
|
|
! Conte and de Boor, |
| 360 |
|
|
! Algorithm PCUBIC, |
| 361 |
|
|
! Elementary Numerical Analysis, |
| 362 |
|
|
! 1973, page 234. |
| 363 |
|
|
! |
| 364 |
|
|
! Parameters: |
| 365 |
|
|
! |
| 366 |
|
|
implicit none |
| 367 |
|
|
|
| 368 |
|
|
type (cubicSpline), intent(in) :: cs |
| 369 |
|
|
real( kind = DP ), intent(in) :: xval |
| 370 |
|
|
real( kind = DP ), intent(out) :: yval |
| 371 |
gezelter |
2709 |
real( kind = DP ) :: dx |
| 372 |
gezelter |
2708 |
integer :: i, j |
| 373 |
|
|
! |
| 374 |
|
|
! Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains |
| 375 |
|
|
! or is nearest to xval. |
| 376 |
|
|
! |
| 377 |
|
|
j = cs%np - 1 |
| 378 |
|
|
|
| 379 |
|
|
do i = 1, cs%np - 2 |
| 380 |
|
|
|
| 381 |
|
|
if ( xval < cs%x(i+1) ) then |
| 382 |
|
|
j = i |
| 383 |
|
|
exit |
| 384 |
|
|
end if |
| 385 |
|
|
|
| 386 |
|
|
end do |
| 387 |
|
|
! |
| 388 |
|
|
! Evaluate the cubic polynomial. |
| 389 |
|
|
! |
| 390 |
|
|
dx = xval - cs%x(j) |
| 391 |
|
|
|
| 392 |
|
|
yval = cs%c(1,j) + dx * ( cs%c(2,j) + dx * ( cs%c(3,j) + dx * cs%c(4,j) ) ) |
| 393 |
|
|
|
| 394 |
|
|
return |
| 395 |
|
|
end subroutine lookup_nonuniform_spline |
| 396 |
|
|
|
| 397 |
|
|
subroutine lookup_uniform_spline(cs, xval, yval) |
| 398 |
|
|
|
| 399 |
|
|
!************************************************************************* |
| 400 |
|
|
! |
| 401 |
|
|
! lookup_uniform_spline evaluates a piecewise cubic Hermite interpolant. |
| 402 |
|
|
! |
| 403 |
|
|
! Discussion: |
| 404 |
|
|
! |
| 405 |
|
|
! newSpline must be called first, to set up the |
| 406 |
|
|
! spline data from the raw function and derivative data. |
| 407 |
|
|
! |
| 408 |
|
|
! Modified: |
| 409 |
|
|
! |
| 410 |
|
|
! 06 April 1999 |
| 411 |
|
|
! |
| 412 |
|
|
! Reference: |
| 413 |
|
|
! |
| 414 |
|
|
! Conte and de Boor, |
| 415 |
|
|
! Algorithm PCUBIC, |
| 416 |
|
|
! Elementary Numerical Analysis, |
| 417 |
|
|
! 1973, page 234. |
| 418 |
|
|
! |
| 419 |
|
|
! Parameters: |
| 420 |
|
|
! |
| 421 |
|
|
implicit none |
| 422 |
|
|
|
| 423 |
|
|
type (cubicSpline), intent(in) :: cs |
| 424 |
|
|
real( kind = DP ), intent(in) :: xval |
| 425 |
|
|
real( kind = DP ), intent(out) :: yval |
| 426 |
gezelter |
2709 |
real( kind = DP ) :: dx |
| 427 |
gezelter |
2708 |
integer :: i, j |
| 428 |
|
|
! |
| 429 |
|
|
! Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains |
| 430 |
|
|
! or is nearest to xval. |
| 431 |
|
|
|
| 432 |
gezelter |
2709 |
j = MAX(1, MIN(cs%np, idint((xval-cs%x(1)) * cs%dx_i) + 1)) |
| 433 |
gezelter |
2708 |
|
| 434 |
|
|
dx = xval - cs%x(j) |
| 435 |
|
|
|
| 436 |
|
|
yval = cs%c(1,j) + dx * ( cs%c(2,j) + dx * ( cs%c(3,j) + dx * cs%c(4,j) ) ) |
| 437 |
|
|
|
| 438 |
|
|
return |
| 439 |
|
|
end subroutine lookup_uniform_spline |
| 440 |
|
|
|
| 441 |
|
|
end module INTERPOLATION |