| 1 | gezelter | 2708 | !! | 
| 2 |  |  | !! Copyright (c) 2006 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | !! | 
| 4 |  |  | !! The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | !! non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | !! redistribute this software in source and binary code form, provided | 
| 7 |  |  | !! that the following conditions are met: | 
| 8 |  |  | !! | 
| 9 |  |  | !! 1. Acknowledgement of the program authors must be made in any | 
| 10 |  |  | !!    publication of scientific results based in part on use of the | 
| 11 |  |  | !!    program.  An acceptable form of acknowledgement is citation of | 
| 12 |  |  | !!    the article in which the program was described (Matthew | 
| 13 |  |  | !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 |  |  | !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 |  |  | !!    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 |  |  | !!    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 |  |  | !! | 
| 18 |  |  | !! 2. Redistributions of source code must retain the above copyright | 
| 19 |  |  | !!    notice, this list of conditions and the following disclaimer. | 
| 20 |  |  | !! | 
| 21 |  |  | !! 3. Redistributions in binary form must reproduce the above copyright | 
| 22 |  |  | !!    notice, this list of conditions and the following disclaimer in the | 
| 23 |  |  | !!    documentation and/or other materials provided with the | 
| 24 |  |  | !!    distribution. | 
| 25 |  |  | !! | 
| 26 |  |  | !! This software is provided "AS IS," without a warranty of any | 
| 27 |  |  | !! kind. All express or implied conditions, representations and | 
| 28 |  |  | !! warranties, including any implied warranty of merchantability, | 
| 29 |  |  | !! fitness for a particular purpose or non-infringement, are hereby | 
| 30 |  |  | !! excluded.  The University of Notre Dame and its licensors shall not | 
| 31 |  |  | !! be liable for any damages suffered by licensee as a result of | 
| 32 |  |  | !! using, modifying or distributing the software or its | 
| 33 |  |  | !! derivatives. In no event will the University of Notre Dame or its | 
| 34 |  |  | !! licensors be liable for any lost revenue, profit or data, or for | 
| 35 |  |  | !! direct, indirect, special, consequential, incidental or punitive | 
| 36 |  |  | !! damages, however caused and regardless of the theory of liability, | 
| 37 |  |  | !! arising out of the use of or inability to use software, even if the | 
| 38 |  |  | !! University of Notre Dame has been advised of the possibility of | 
| 39 |  |  | !! such damages. | 
| 40 |  |  | !! | 
| 41 |  |  | !! | 
| 42 |  |  | !!  interpolation.F90 | 
| 43 |  |  | !! | 
| 44 |  |  | !!  Created by Charles F. Vardeman II on 03 Apr 2006. | 
| 45 |  |  | !! | 
| 46 | gezelter | 2722 | !!  PURPOSE: Generic Spline interpolation routines. | 
| 47 | gezelter | 2708 | !! | 
| 48 |  |  | !! @author Charles F. Vardeman II | 
| 49 | gezelter | 2756 | !! @version $Id: interpolation.F90,v 1.8 2006-05-17 15:37:15 gezelter Exp $ | 
| 50 | gezelter | 2708 |  | 
| 51 |  |  |  | 
| 52 | gezelter | 2717 | module interpolation | 
| 53 | gezelter | 2708 | use definitions | 
| 54 |  |  | use status | 
| 55 |  |  | implicit none | 
| 56 |  |  | PRIVATE | 
| 57 |  |  |  | 
| 58 |  |  | type, public :: cubicSpline | 
| 59 | gezelter | 2711 | logical :: isUniform = .false. | 
| 60 | gezelter | 2722 | integer :: n = 0 | 
| 61 | gezelter | 2708 | real(kind=dp) :: dx_i | 
| 62 |  |  | real (kind=dp), pointer,dimension(:)   :: x => null() | 
| 63 | gezelter | 2722 | real (kind=dp), pointer,dimension(:)   :: y => null() | 
| 64 |  |  | real (kind=dp), pointer,dimension(:)   :: b => null() | 
| 65 |  |  | real (kind=dp), pointer,dimension(:)   :: c => null() | 
| 66 |  |  | real (kind=dp), pointer,dimension(:)   :: d => null() | 
| 67 | gezelter | 2708 | end type cubicSpline | 
| 68 |  |  |  | 
| 69 | gezelter | 2711 | public :: newSpline | 
| 70 | gezelter | 2708 | public :: deleteSpline | 
| 71 | gezelter | 2717 | public :: lookupSpline | 
| 72 |  |  | public :: lookupUniformSpline | 
| 73 |  |  | public :: lookupNonuniformSpline | 
| 74 |  |  | public :: lookupUniformSpline1d | 
| 75 | gezelter | 2711 |  | 
| 76 | gezelter | 2708 | contains | 
| 77 | gezelter | 2711 |  | 
| 78 | gezelter | 2708 |  | 
| 79 | gezelter | 2722 | subroutine newSpline(cs, x, y, isUniform) | 
| 80 | gezelter | 2711 |  | 
| 81 | gezelter | 2708 | implicit none | 
| 82 |  |  |  | 
| 83 |  |  | type (cubicSpline), intent(inout) :: cs | 
| 84 |  |  | real( kind = DP ), intent(in) :: x(:), y(:) | 
| 85 | gezelter | 2722 | real( kind = DP ) :: fp1, fpn, p | 
| 86 |  |  | REAL( KIND = DP), DIMENSION(size(x)-1) :: diff_y, H | 
| 87 |  |  |  | 
| 88 | gezelter | 2711 | logical, intent(in) :: isUniform | 
| 89 | gezelter | 2722 | integer :: i, alloc_error, n, k | 
| 90 | gezelter | 2708 |  | 
| 91 |  |  | alloc_error = 0 | 
| 92 |  |  |  | 
| 93 | gezelter | 2722 | if (cs%n .ne. 0) then | 
| 94 | gezelter | 2711 | call handleWarning("interpolation::newSpline", & | 
| 95 |  |  | "cubicSpline struct was already created") | 
| 96 | gezelter | 2708 | call deleteSpline(cs) | 
| 97 |  |  | end if | 
| 98 |  |  |  | 
| 99 |  |  | ! make sure the sizes match | 
| 100 |  |  |  | 
| 101 | gezelter | 2722 | n = size(x) | 
| 102 |  |  |  | 
| 103 |  |  | if ( size(y) .ne. size(x) ) then | 
| 104 | gezelter | 2711 | call handleError("interpolation::newSpline", & | 
| 105 | gezelter | 2708 | "Array size mismatch") | 
| 106 |  |  | end if | 
| 107 | gezelter | 2711 |  | 
| 108 | gezelter | 2722 | cs%n = n | 
| 109 | gezelter | 2711 | cs%isUniform = isUniform | 
| 110 | gezelter | 2708 |  | 
| 111 | gezelter | 2722 | allocate(cs%x(n), stat=alloc_error) | 
| 112 | gezelter | 2708 | if(alloc_error .ne. 0) then | 
| 113 | gezelter | 2711 | call handleError("interpolation::newSpline", & | 
| 114 | gezelter | 2708 | "Error in allocating storage for x") | 
| 115 |  |  | endif | 
| 116 |  |  |  | 
| 117 | gezelter | 2722 | allocate(cs%y(n), stat=alloc_error) | 
| 118 | gezelter | 2708 | if(alloc_error .ne. 0) then | 
| 119 | gezelter | 2711 | call handleError("interpolation::newSpline", & | 
| 120 | gezelter | 2722 | "Error in allocating storage for y") | 
| 121 |  |  | endif | 
| 122 |  |  |  | 
| 123 |  |  | allocate(cs%b(n), stat=alloc_error) | 
| 124 |  |  | if(alloc_error .ne. 0) then | 
| 125 |  |  | call handleError("interpolation::newSpline", & | 
| 126 |  |  | "Error in allocating storage for b") | 
| 127 |  |  | endif | 
| 128 |  |  |  | 
| 129 |  |  | allocate(cs%c(n), stat=alloc_error) | 
| 130 |  |  | if(alloc_error .ne. 0) then | 
| 131 |  |  | call handleError("interpolation::newSpline", & | 
| 132 | gezelter | 2708 | "Error in allocating storage for c") | 
| 133 |  |  | endif | 
| 134 | gezelter | 2722 |  | 
| 135 |  |  | allocate(cs%d(n), stat=alloc_error) | 
| 136 |  |  | if(alloc_error .ne. 0) then | 
| 137 |  |  | call handleError("interpolation::newSpline", & | 
| 138 |  |  | "Error in allocating storage for d") | 
| 139 |  |  | endif | 
| 140 |  |  |  | 
| 141 |  |  | ! make sure we are monotinically increasing in x: | 
| 142 |  |  |  | 
| 143 |  |  | h = diff(x) | 
| 144 |  |  | if (any(h <= 0)) then | 
| 145 |  |  | call handleError("interpolation::newSpline", & | 
| 146 |  |  | "Negative dx interval found") | 
| 147 |  |  | end if | 
| 148 |  |  |  | 
| 149 |  |  | ! load x and y values into the cubicSpline structure: | 
| 150 |  |  |  | 
| 151 |  |  | do i = 1, n | 
| 152 | gezelter | 2708 | cs%x(i) = x(i) | 
| 153 | gezelter | 2722 | cs%y(i) = y(i) | 
| 154 |  |  | end do | 
| 155 | gezelter | 2708 |  | 
| 156 | gezelter | 2722 | ! Calculate coefficients for the tridiagonal system: store | 
| 157 |  |  | ! sub-diagonal in B, diagonal in D, difference quotient in C. | 
| 158 | gezelter | 2708 |  | 
| 159 | gezelter | 2722 | cs%b(1:n-1) = h | 
| 160 |  |  | diff_y = diff(y) | 
| 161 |  |  | cs%c(1:n-1) = diff_y / h | 
| 162 |  |  |  | 
| 163 |  |  | if (n == 2) then | 
| 164 |  |  | ! Assume the derivatives at both endpoints are zero | 
| 165 |  |  | ! another assumption could be made to have a linear interpolant | 
| 166 |  |  | ! between the two points.  In that case, the b coefficients | 
| 167 |  |  | ! below would be diff_y(1)/h(1) and the c and d coefficients would | 
| 168 |  |  | ! both be zero. | 
| 169 |  |  | cs%b(1) = 0.0_dp | 
| 170 |  |  | cs%c(1) = -3.0_dp * (diff_y(1)/h(1))**2 | 
| 171 |  |  | cs%d(1) = -2.0_dp * (diff_y(1)/h(1))**3 | 
| 172 |  |  | cs%b(2) = cs%b(1) | 
| 173 |  |  | cs%c(2) = 0.0_dp | 
| 174 |  |  | cs%d(2) = 0.0_dp | 
| 175 |  |  | cs%dx_i = 1.0_dp / h(1) | 
| 176 |  |  | return | 
| 177 |  |  | end if | 
| 178 |  |  |  | 
| 179 |  |  | cs%d(1) = 2.0_dp * cs%b(1) | 
| 180 |  |  | do i = 2, n-1 | 
| 181 |  |  | cs%d(i) = 2.0_dp * (cs%b(i) + cs%b(i-1)) | 
| 182 |  |  | end do | 
| 183 |  |  | cs%d(n) = 2.0_dp * cs%b(n-1) | 
| 184 |  |  |  | 
| 185 |  |  | ! Calculate estimates for the end slopes using polynomials | 
| 186 |  |  | ! that interpolate the data nearest the end. | 
| 187 | chrisfen | 2710 |  | 
| 188 | gezelter | 2722 | fp1 = cs%c(1) - cs%b(1)*(cs%c(2) - cs%c(1))/(cs%b(1) + cs%b(2)) | 
| 189 |  |  | if (n > 3) then | 
| 190 |  |  | fp1 = fp1 + cs%b(1)*((cs%b(1) + cs%b(2))*(cs%c(3) - cs%c(2))/ & | 
| 191 |  |  | (cs%b(2) + cs%b(3)) - cs%c(2) + cs%c(1))/(x(4) - x(1)) | 
| 192 |  |  | end if | 
| 193 |  |  |  | 
| 194 |  |  | fpn = cs%c(n-1) + cs%b(n-1)*(cs%c(n-1) - cs%c(n-2))/(cs%b(n-2) + cs%b(n-1)) | 
| 195 |  |  | if (n > 3) then | 
| 196 |  |  | fpn = fpn + cs%b(n-1)*(cs%c(n-1) - cs%c(n-2) - (cs%b(n-2) + cs%b(n-1))* & | 
| 197 |  |  | (cs%c(n-2) - cs%c(n-3))/(cs%b(n-2) + cs%b(n-3)))/(x(n) - x(n-3)) | 
| 198 |  |  | end if | 
| 199 | gezelter | 2711 |  | 
| 200 | gezelter | 2722 | ! Calculate the right hand side and store it in C. | 
| 201 |  |  |  | 
| 202 |  |  | cs%c(n) = 3.0_dp * (fpn - cs%c(n-1)) | 
| 203 |  |  | do i = n-1,2,-1 | 
| 204 |  |  | cs%c(i) = 3.0_dp * (cs%c(i) - cs%c(i-1)) | 
| 205 | gezelter | 2708 | end do | 
| 206 | gezelter | 2722 | cs%c(1) = 3.0_dp * (cs%c(1) - fp1) | 
| 207 | gezelter | 2711 |  | 
| 208 | gezelter | 2722 | ! Solve the tridiagonal system. | 
| 209 |  |  |  | 
| 210 |  |  | do k = 2, n | 
| 211 |  |  | p = cs%b(k-1) / cs%d(k-1) | 
| 212 |  |  | cs%d(k) = cs%d(k) - p*cs%b(k-1) | 
| 213 |  |  | cs%c(k) = cs%c(k) - p*cs%c(k-1) | 
| 214 | gezelter | 2708 | end do | 
| 215 | gezelter | 2722 | cs%c(n) = cs%c(n) / cs%d(n) | 
| 216 |  |  | do k = n-1, 1, -1 | 
| 217 |  |  | cs%c(k) = (cs%c(k) - cs%b(k) * cs%c(k+1)) / cs%d(k) | 
| 218 | gezelter | 2708 | end do | 
| 219 |  |  |  | 
| 220 | gezelter | 2722 | ! Calculate the coefficients defining the spline. | 
| 221 | gezelter | 2708 |  | 
| 222 | gezelter | 2722 | cs%d(1:n-1) = diff(cs%c) / (3.0_dp * h) | 
| 223 |  |  | cs%b(1:n-1) = diff_y / h - h * (cs%c(1:n-1) + h * cs%d(1:n-1)) | 
| 224 |  |  | cs%b(n) = cs%b(n-1) + h(n-1) * (2.0_dp*cs%c(n-1) + h(n-1)*3.0_dp*cs%d(n-1)) | 
| 225 | gezelter | 2711 |  | 
| 226 | gezelter | 2722 | if (isUniform) then | 
| 227 | gezelter | 2756 | cs%dx_i = 1.0_dp / (x(2) - x(1)) | 
| 228 | gezelter | 2722 | endif | 
| 229 |  |  |  | 
| 230 | gezelter | 2708 | return | 
| 231 | gezelter | 2722 |  | 
| 232 |  |  | contains | 
| 233 |  |  |  | 
| 234 |  |  | function diff(v) | 
| 235 |  |  | ! Auxiliary function to compute the forward difference | 
| 236 |  |  | ! of data stored in a vector v. | 
| 237 |  |  |  | 
| 238 |  |  | implicit none | 
| 239 |  |  | real (kind = dp), dimension(:), intent(in) :: v | 
| 240 |  |  | real (kind = dp), dimension(size(v)-1) :: diff | 
| 241 |  |  |  | 
| 242 |  |  | integer :: n | 
| 243 |  |  |  | 
| 244 |  |  | n = size(v) | 
| 245 |  |  | diff = v(2:n) - v(1:n-1) | 
| 246 |  |  | return | 
| 247 |  |  | end function diff | 
| 248 |  |  |  | 
| 249 | gezelter | 2712 | end subroutine newSpline | 
| 250 | gezelter | 2722 |  | 
| 251 | gezelter | 2708 | subroutine deleteSpline(this) | 
| 252 |  |  |  | 
| 253 |  |  | type(cubicSpline) :: this | 
| 254 |  |  |  | 
| 255 |  |  | if(associated(this%x)) then | 
| 256 |  |  | deallocate(this%x) | 
| 257 |  |  | this%x => null() | 
| 258 |  |  | end if | 
| 259 |  |  | if(associated(this%c)) then | 
| 260 |  |  | deallocate(this%c) | 
| 261 |  |  | this%c => null() | 
| 262 |  |  | end if | 
| 263 |  |  |  | 
| 264 | gezelter | 2722 | this%n = 0 | 
| 265 | gezelter | 2708 |  | 
| 266 |  |  | end subroutine deleteSpline | 
| 267 |  |  |  | 
| 268 | gezelter | 2717 | subroutine lookupNonuniformSpline(cs, xval, yval) | 
| 269 | gezelter | 2708 |  | 
| 270 |  |  | implicit none | 
| 271 |  |  |  | 
| 272 |  |  | type (cubicSpline), intent(in) :: cs | 
| 273 |  |  | real( kind = DP ), intent(in)  :: xval | 
| 274 |  |  | real( kind = DP ), intent(out) :: yval | 
| 275 | gezelter | 2722 | real( kind = DP ) ::  dx | 
| 276 | gezelter | 2708 | integer :: i, j | 
| 277 |  |  | ! | 
| 278 |  |  | !  Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains | 
| 279 |  |  | !  or is nearest to xval. | 
| 280 |  |  | ! | 
| 281 | gezelter | 2722 | j = cs%n - 1 | 
| 282 | gezelter | 2708 |  | 
| 283 | gezelter | 2722 | do i = 0, cs%n - 2 | 
| 284 | gezelter | 2708 |  | 
| 285 |  |  | if ( xval < cs%x(i+1) ) then | 
| 286 |  |  | j = i | 
| 287 |  |  | exit | 
| 288 |  |  | end if | 
| 289 |  |  |  | 
| 290 |  |  | end do | 
| 291 |  |  | ! | 
| 292 |  |  | !  Evaluate the cubic polynomial. | 
| 293 |  |  | ! | 
| 294 |  |  | dx = xval - cs%x(j) | 
| 295 | gezelter | 2722 | yval = cs%y(j) + dx*(cs%b(j) + dx*(cs%c(j) + dx*cs%d(j))) | 
| 296 | gezelter | 2708 |  | 
| 297 |  |  | return | 
| 298 | gezelter | 2717 | end subroutine lookupNonuniformSpline | 
| 299 | gezelter | 2708 |  | 
| 300 | gezelter | 2717 | subroutine lookupUniformSpline(cs, xval, yval) | 
| 301 | gezelter | 2708 |  | 
| 302 |  |  | implicit none | 
| 303 |  |  |  | 
| 304 |  |  | type (cubicSpline), intent(in) :: cs | 
| 305 |  |  | real( kind = DP ), intent(in)  :: xval | 
| 306 |  |  | real( kind = DP ), intent(out) :: yval | 
| 307 | gezelter | 2722 | real( kind = DP ) ::  dx | 
| 308 | gezelter | 2708 | integer :: i, j | 
| 309 |  |  | ! | 
| 310 |  |  | !  Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains | 
| 311 |  |  | !  or is nearest to xval. | 
| 312 | gezelter | 2722 |  | 
| 313 | gezelter | 2756 | j = MAX(1, MIN(cs%n-1, int((xval-cs%x(1)) * cs%dx_i) + 1)) | 
| 314 | gezelter | 2722 |  | 
| 315 | gezelter | 2708 | dx = xval - cs%x(j) | 
| 316 | gezelter | 2722 | yval = cs%y(j) + dx*(cs%b(j) + dx*(cs%c(j) + dx*cs%d(j))) | 
| 317 | gezelter | 2708 |  | 
| 318 |  |  | return | 
| 319 | gezelter | 2717 | end subroutine lookupUniformSpline | 
| 320 | gezelter | 2711 |  | 
| 321 | gezelter | 2717 | subroutine lookupUniformSpline1d(cs, xval, yval, dydx) | 
| 322 |  |  |  | 
| 323 |  |  | implicit none | 
| 324 | gezelter | 2711 |  | 
| 325 |  |  | type (cubicSpline), intent(in) :: cs | 
| 326 | gezelter | 2717 | real( kind = DP ), intent(in)  :: xval | 
| 327 |  |  | real( kind = DP ), intent(out) :: yval, dydx | 
| 328 | gezelter | 2722 | real( kind = DP ) :: dx | 
| 329 | gezelter | 2717 | integer :: i, j | 
| 330 |  |  |  | 
| 331 |  |  | !  Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains | 
| 332 |  |  | !  or is nearest to xval. | 
| 333 |  |  |  | 
| 334 |  |  |  | 
| 335 | gezelter | 2756 | j = MAX(1, MIN(cs%n-1, int((xval-cs%x(1)) * cs%dx_i) + 1)) | 
| 336 | gezelter | 2722 |  | 
| 337 | gezelter | 2717 | dx = xval - cs%x(j) | 
| 338 | gezelter | 2722 | yval = cs%y(j) + dx*(cs%b(j) + dx*(cs%c(j) + dx*cs%d(j))) | 
| 339 | gezelter | 2717 |  | 
| 340 | gezelter | 2756 | dydx = cs%b(j) + dx*(2.0_dp * cs%c(j) + 3.0_dp * dx * cs%d(j)) | 
| 341 | gezelter | 2717 |  | 
| 342 |  |  | return | 
| 343 |  |  | end subroutine lookupUniformSpline1d | 
| 344 |  |  |  | 
| 345 |  |  | subroutine lookupSpline(cs, xval, yval) | 
| 346 |  |  |  | 
| 347 |  |  | type (cubicSpline), intent(in) :: cs | 
| 348 | gezelter | 2711 | real( kind = DP ), intent(inout) :: xval | 
| 349 |  |  | real( kind = DP ), intent(inout) :: yval | 
| 350 |  |  |  | 
| 351 |  |  | if (cs%isUniform) then | 
| 352 | gezelter | 2717 | call lookupUniformSpline(cs, xval, yval) | 
| 353 | gezelter | 2711 | else | 
| 354 | gezelter | 2717 | call lookupNonuniformSpline(cs, xval, yval) | 
| 355 | gezelter | 2711 | endif | 
| 356 |  |  |  | 
| 357 |  |  | return | 
| 358 | gezelter | 2717 | end subroutine lookupSpline | 
| 359 | gezelter | 2708 |  | 
| 360 | gezelter | 2717 | end module interpolation |