| 1 | !! | 
| 2 | !! Copyright (c) 2006 The University of Notre Dame. All Rights Reserved. | 
| 3 | !! | 
| 4 | !! The University of Notre Dame grants you ("Licensee") a | 
| 5 | !! non-exclusive, royalty free, license to use, modify and | 
| 6 | !! redistribute this software in source and binary code form, provided | 
| 7 | !! that the following conditions are met: | 
| 8 | !! | 
| 9 | !! 1. Acknowledgement of the program authors must be made in any | 
| 10 | !!    publication of scientific results based in part on use of the | 
| 11 | !!    program.  An acceptable form of acknowledgement is citation of | 
| 12 | !!    the article in which the program was described (Matthew | 
| 13 | !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | !!    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | !!    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | !! | 
| 18 | !! 2. Redistributions of source code must retain the above copyright | 
| 19 | !!    notice, this list of conditions and the following disclaimer. | 
| 20 | !! | 
| 21 | !! 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | !!    notice, this list of conditions and the following disclaimer in the | 
| 23 | !!    documentation and/or other materials provided with the | 
| 24 | !!    distribution. | 
| 25 | !! | 
| 26 | !! This software is provided "AS IS," without a warranty of any | 
| 27 | !! kind. All express or implied conditions, representations and | 
| 28 | !! warranties, including any implied warranty of merchantability, | 
| 29 | !! fitness for a particular purpose or non-infringement, are hereby | 
| 30 | !! excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | !! be liable for any damages suffered by licensee as a result of | 
| 32 | !! using, modifying or distributing the software or its | 
| 33 | !! derivatives. In no event will the University of Notre Dame or its | 
| 34 | !! licensors be liable for any lost revenue, profit or data, or for | 
| 35 | !! direct, indirect, special, consequential, incidental or punitive | 
| 36 | !! damages, however caused and regardless of the theory of liability, | 
| 37 | !! arising out of the use of or inability to use software, even if the | 
| 38 | !! University of Notre Dame has been advised of the possibility of | 
| 39 | !! such damages. | 
| 40 | !! | 
| 41 | !! | 
| 42 | !!  interpolation.F90 | 
| 43 | !! | 
| 44 | !!  Created by Charles F. Vardeman II on 03 Apr 2006. | 
| 45 | !! | 
| 46 | !!  PURPOSE: Generic Spline interpolation routines. These routines | 
| 47 | !!           assume that we are on a uniform grid for precomputation of | 
| 48 | !!           spline parameters. | 
| 49 | !! | 
| 50 | !! @author Charles F. Vardeman II | 
| 51 | !! @version $Id: interpolation.F90,v 1.5 2006-04-14 21:59:23 gezelter Exp $ | 
| 52 |  | 
| 53 |  | 
| 54 | module  INTERPOLATION | 
| 55 | use definitions | 
| 56 | use status | 
| 57 | implicit none | 
| 58 | PRIVATE | 
| 59 |  | 
| 60 | character(len = statusMsgSize) :: errMSG | 
| 61 |  | 
| 62 | type, public :: cubicSpline | 
| 63 | private | 
| 64 | logical :: isUniform = .false. | 
| 65 | integer :: np = 0 | 
| 66 | real(kind=dp) :: dx_i | 
| 67 | real (kind=dp), pointer,dimension(:)   :: x => null() | 
| 68 | real (kind=dp), pointer,dimension(:,:) :: c => null() | 
| 69 | end type cubicSpline | 
| 70 |  | 
| 71 | public :: newSpline | 
| 72 | public :: deleteSpline | 
| 73 | public :: lookup_spline | 
| 74 | public :: lookup_uniform_spline | 
| 75 | public :: lookup_nonuniform_spline | 
| 76 |  | 
| 77 | contains | 
| 78 |  | 
| 79 |  | 
| 80 | subroutine newSpline(cs, x, y, yp1, ypn, isUniform) | 
| 81 |  | 
| 82 | !************************************************************************ | 
| 83 | ! | 
| 84 | ! newSpline solves for slopes defining a cubic spline. | 
| 85 | ! | 
| 86 | !  Discussion: | 
| 87 | ! | 
| 88 | !    A tridiagonal linear system for the unknown slopes S(I) of | 
| 89 | !    F at x(I), I=1,..., N, is generated and then solved by Gauss | 
| 90 | !    elimination, with S(I) ending up in cs%C(2,I), for all I. | 
| 91 | ! | 
| 92 | !  Reference: | 
| 93 | ! | 
| 94 | !    Carl DeBoor, | 
| 95 | !    A Practical Guide to Splines, | 
| 96 | !    Springer Verlag. | 
| 97 | ! | 
| 98 | !  Parameters: | 
| 99 | ! | 
| 100 | !    Input, real x(N), the abscissas or X values of | 
| 101 | !    the data points.  The entries of x are assumed to be | 
| 102 | !    strictly increasing. | 
| 103 | ! | 
| 104 | !    Input, real y(I), contains the function value at x(I) for | 
| 105 | !      I = 1, N. | 
| 106 | ! | 
| 107 | !    Input, real yp1 contains the slope at x(1) | 
| 108 | !    Input, real ypn contains the slope at x(N) | 
| 109 | ! | 
| 110 | !    On output, the slopes at x(I) have been stored in | 
| 111 | !               cs%C(2,I), for I = 1 to N. | 
| 112 |  | 
| 113 | implicit none | 
| 114 |  | 
| 115 | type (cubicSpline), intent(inout) :: cs | 
| 116 | real( kind = DP ), intent(in) :: x(:), y(:) | 
| 117 | real( kind = DP ), intent(in) :: yp1, ypn | 
| 118 | logical, intent(in) :: isUniform | 
| 119 | real( kind = DP ) :: g, divdif1, divdif3, dx | 
| 120 | integer :: i, alloc_error, np | 
| 121 |  | 
| 122 | alloc_error = 0 | 
| 123 |  | 
| 124 | if (cs%np .ne. 0) then | 
| 125 | call handleWarning("interpolation::newSpline", & | 
| 126 | "cubicSpline struct was already created") | 
| 127 | call deleteSpline(cs) | 
| 128 | end if | 
| 129 |  | 
| 130 | ! make sure the sizes match | 
| 131 |  | 
| 132 | np = size(x) | 
| 133 |  | 
| 134 | if ( size(y) .ne. np ) then | 
| 135 | call handleError("interpolation::newSpline", & | 
| 136 | "Array size mismatch") | 
| 137 | end if | 
| 138 |  | 
| 139 | cs%np = np | 
| 140 | cs%isUniform = isUniform | 
| 141 |  | 
| 142 | allocate(cs%x(np), stat=alloc_error) | 
| 143 | if(alloc_error .ne. 0) then | 
| 144 | call handleError("interpolation::newSpline", & | 
| 145 | "Error in allocating storage for x") | 
| 146 | endif | 
| 147 |  | 
| 148 | allocate(cs%c(4,np), stat=alloc_error) | 
| 149 | if(alloc_error .ne. 0) then | 
| 150 | call handleError("interpolation::newSpline", & | 
| 151 | "Error in allocating storage for c") | 
| 152 | endif | 
| 153 |  | 
| 154 | do i = 1, np | 
| 155 | cs%x(i) = x(i) | 
| 156 | cs%c(1,i) = y(i) | 
| 157 | enddo | 
| 158 |  | 
| 159 | ! Set the first derivative of the function to the second coefficient of | 
| 160 | ! each of the endpoints | 
| 161 |  | 
| 162 | cs%c(2,1) = yp1 | 
| 163 | cs%c(2,np) = ypn | 
| 164 |  | 
| 165 | ! | 
| 166 | !  Set up the right hand side of the linear system. | 
| 167 | ! | 
| 168 |  | 
| 169 | do i = 2, cs%np - 1 | 
| 170 | cs%c(2,i) = 3.0_DP * ( & | 
| 171 | (x(i) - x(i-1)) * (cs%c(1,i+1) - cs%c(1,i)) / (x(i+1) - x(i)) + & | 
| 172 | (x(i+1) - x(i)) * (cs%c(1,i) - cs%c(1,i-1)) / (x(i) - x(i-1))) | 
| 173 | end do | 
| 174 |  | 
| 175 | ! | 
| 176 | !  Set the diagonal coefficients. | 
| 177 | ! | 
| 178 | cs%c(4,1) = 1.0_DP | 
| 179 | do i = 2, cs%np - 1 | 
| 180 | cs%c(4,i) = 2.0_DP * ( x(i+1) - x(i-1) ) | 
| 181 | end do | 
| 182 | cs%c(4,cs%np) = 1.0_DP | 
| 183 | ! | 
| 184 | !  Set the off-diagonal coefficients. | 
| 185 | ! | 
| 186 | cs%c(3,1) = 0.0_DP | 
| 187 | do i = 2, cs%np | 
| 188 | cs%c(3,i) = x(i) - x(i-1) | 
| 189 | end do | 
| 190 | ! | 
| 191 | !  Forward elimination. | 
| 192 | ! | 
| 193 | do i = 2, cs%np - 1 | 
| 194 | g = -cs%c(3,i+1) / cs%c(4,i-1) | 
| 195 | cs%c(4,i) = cs%c(4,i) + g * cs%c(3,i-1) | 
| 196 | cs%c(2,i) = cs%c(2,i) + g * cs%c(2,i-1) | 
| 197 | end do | 
| 198 | ! | 
| 199 | !  Back substitution for the interior slopes. | 
| 200 | ! | 
| 201 | do i = cs%np - 1, 2, -1 | 
| 202 | cs%c(2,i) = ( cs%c(2,i) - cs%c(3,i) * cs%c(2,i+1) ) / cs%c(4,i) | 
| 203 | end do | 
| 204 | ! | 
| 205 | !  Now compute the quadratic and cubic coefficients used in the | 
| 206 | !  piecewise polynomial representation. | 
| 207 | ! | 
| 208 | do i = 1, cs%np - 1 | 
| 209 | dx = x(i+1) - x(i) | 
| 210 | divdif1 = ( cs%c(1,i+1) - cs%c(1,i) ) / dx | 
| 211 | divdif3 = cs%c(2,i) + cs%c(2,i+1) - 2.0_DP * divdif1 | 
| 212 | cs%c(3,i) = ( divdif1 - cs%c(2,i) - divdif3 ) / dx | 
| 213 | cs%c(4,i) = divdif3 / ( dx * dx ) | 
| 214 | end do | 
| 215 |  | 
| 216 | cs%c(3,cs%np) = 0.0_DP | 
| 217 | cs%c(4,cs%np) = 0.0_DP | 
| 218 |  | 
| 219 | cs%dx_i = 1.0_DP / dx | 
| 220 |  | 
| 221 | return | 
| 222 | end subroutine newSpline | 
| 223 |  | 
| 224 | subroutine deleteSpline(this) | 
| 225 |  | 
| 226 | type(cubicSpline) :: this | 
| 227 |  | 
| 228 | if(associated(this%x)) then | 
| 229 | deallocate(this%x) | 
| 230 | this%x => null() | 
| 231 | end if | 
| 232 | if(associated(this%c)) then | 
| 233 | deallocate(this%c) | 
| 234 | this%c => null() | 
| 235 | end if | 
| 236 |  | 
| 237 | this%np = 0 | 
| 238 |  | 
| 239 | end subroutine deleteSpline | 
| 240 |  | 
| 241 | subroutine lookup_nonuniform_spline(cs, xval, yval) | 
| 242 |  | 
| 243 | !************************************************************************* | 
| 244 | ! | 
| 245 | ! lookup_nonuniform_spline evaluates a piecewise cubic Hermite interpolant. | 
| 246 | ! | 
| 247 | !  Discussion: | 
| 248 | ! | 
| 249 | !    newSpline must be called first, to set up the | 
| 250 | !    spline data from the raw function and derivative data. | 
| 251 | ! | 
| 252 | !  Modified: | 
| 253 | ! | 
| 254 | !    06 April 1999 | 
| 255 | ! | 
| 256 | !  Reference: | 
| 257 | ! | 
| 258 | !    Conte and de Boor, | 
| 259 | !    Algorithm PCUBIC, | 
| 260 | !    Elementary Numerical Analysis, | 
| 261 | !    1973, page 234. | 
| 262 | ! | 
| 263 | !  Parameters: | 
| 264 | ! | 
| 265 | implicit none | 
| 266 |  | 
| 267 | type (cubicSpline), intent(in) :: cs | 
| 268 | real( kind = DP ), intent(in)  :: xval | 
| 269 | real( kind = DP ), intent(out) :: yval | 
| 270 | real( kind = DP ) :: dx | 
| 271 | integer :: i, j | 
| 272 | ! | 
| 273 | !  Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains | 
| 274 | !  or is nearest to xval. | 
| 275 | ! | 
| 276 | j = cs%np - 1 | 
| 277 |  | 
| 278 | do i = 1, cs%np - 2 | 
| 279 |  | 
| 280 | if ( xval < cs%x(i+1) ) then | 
| 281 | j = i | 
| 282 | exit | 
| 283 | end if | 
| 284 |  | 
| 285 | end do | 
| 286 | ! | 
| 287 | !  Evaluate the cubic polynomial. | 
| 288 | ! | 
| 289 | dx = xval - cs%x(j) | 
| 290 |  | 
| 291 | yval = cs%c(1,j) + dx * ( cs%c(2,j) + dx * ( cs%c(3,j) + dx * cs%c(4,j) ) ) | 
| 292 |  | 
| 293 | return | 
| 294 | end subroutine lookup_nonuniform_spline | 
| 295 |  | 
| 296 | subroutine lookup_uniform_spline(cs, xval, yval) | 
| 297 |  | 
| 298 | !************************************************************************* | 
| 299 | ! | 
| 300 | ! lookup_uniform_spline evaluates a piecewise cubic Hermite interpolant. | 
| 301 | ! | 
| 302 | !  Discussion: | 
| 303 | ! | 
| 304 | !    newSpline must be called first, to set up the | 
| 305 | !    spline data from the raw function and derivative data. | 
| 306 | ! | 
| 307 | !  Modified: | 
| 308 | ! | 
| 309 | !    06 April 1999 | 
| 310 | ! | 
| 311 | !  Reference: | 
| 312 | ! | 
| 313 | !    Conte and de Boor, | 
| 314 | !    Algorithm PCUBIC, | 
| 315 | !    Elementary Numerical Analysis, | 
| 316 | !    1973, page 234. | 
| 317 | ! | 
| 318 | !  Parameters: | 
| 319 | ! | 
| 320 | implicit none | 
| 321 |  | 
| 322 | type (cubicSpline), intent(in) :: cs | 
| 323 | real( kind = DP ), intent(in)  :: xval | 
| 324 | real( kind = DP ), intent(out) :: yval | 
| 325 | real( kind = DP ) :: dx | 
| 326 | integer :: i, j | 
| 327 | ! | 
| 328 | !  Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains | 
| 329 | !  or is nearest to xval. | 
| 330 |  | 
| 331 | j = MAX(1, MIN(cs%np, idint((xval-cs%x(1)) * cs%dx_i) + 1)) | 
| 332 |  | 
| 333 | dx = xval - cs%x(j) | 
| 334 |  | 
| 335 | yval = cs%c(1,j) + dx * ( cs%c(2,j) + dx * ( cs%c(3,j) + dx * cs%c(4,j) ) ) | 
| 336 |  | 
| 337 | return | 
| 338 | end subroutine lookup_uniform_spline | 
| 339 |  | 
| 340 | subroutine lookup_spline(cs, xval, yval) | 
| 341 |  | 
| 342 | type (cubicSpline), intent(in) :: cs | 
| 343 | real( kind = DP ), intent(inout) :: xval | 
| 344 | real( kind = DP ), intent(inout) :: yval | 
| 345 |  | 
| 346 | if (cs%isUniform) then | 
| 347 | call lookup_uniform_spline(cs, xval, yval) | 
| 348 | else | 
| 349 | call lookup_nonuniform_spline(cs, xval, yval) | 
| 350 | endif | 
| 351 |  | 
| 352 | return | 
| 353 | end subroutine lookup_spline | 
| 354 |  | 
| 355 | end module INTERPOLATION |