| 43 |  | !! | 
| 44 |  | !!  Created by Charles F. Vardeman II on 03 Apr 2006. | 
| 45 |  | !! | 
| 46 | < | !!  PURPOSE: Generic Spline interplelation routines. These routines assume that we are on a uniform grid for | 
| 47 | < | !!           precomputation of spline parameters. | 
| 46 | > | !!  PURPOSE: Generic Spline interpolation routines. These routines | 
| 47 | > | !!           assume that we are on a uniform grid for precomputation of | 
| 48 | > | !!           spline parameters. | 
| 49 |  | !! | 
| 50 |  | !! @author Charles F. Vardeman II | 
| 51 | < | !! @version $Id: interpolation.F90,v 1.3 2006-04-14 21:06:55 chrisfen Exp $ | 
| 51 | > | !! @version $Id: interpolation.F90,v 1.4 2006-04-14 21:49:54 gezelter Exp $ | 
| 52 |  |  | 
| 53 |  |  | 
| 54 |  | module  INTERPOLATION | 
| 61 |  |  | 
| 62 |  | type, public :: cubicSpline | 
| 63 |  | private | 
| 64 | + | logical :: isUniform = .false. | 
| 65 |  | integer :: np = 0 | 
| 64 | – | real(kind=dp) :: dx | 
| 66 |  | real(kind=dp) :: dx_i | 
| 67 |  | real (kind=dp), pointer,dimension(:)   :: x => null() | 
| 68 |  | real (kind=dp), pointer,dimension(:,:) :: c => null() | 
| 69 |  | end type cubicSpline | 
| 70 |  |  | 
| 71 | < | interface newSpline | 
| 71 | < | module procedure newSpline | 
| 72 | < | end interface | 
| 73 | < |  | 
| 71 | > | public :: newSpline | 
| 72 |  | public :: deleteSpline | 
| 73 | < |  | 
| 73 | > | public :: lookup_spline | 
| 74 | > | public :: lookup_uniform_spline | 
| 75 | > | public :: lookup_nonuniform_spline | 
| 76 | > |  | 
| 77 |  | contains | 
| 78 | + |  | 
| 79 |  |  | 
| 80 | < |  | 
| 81 | < | subroutine newSpline(cs, x, y, yp1, ypn) | 
| 80 | < |  | 
| 80 | > | subroutine newSpline(cs, x, y, yp1, ypn, isUniform) | 
| 81 | > |  | 
| 82 |  | !************************************************************************ | 
| 83 |  | ! | 
| 84 | < | ! newSplineWithoutDerivs solves for slopes defining a cubic spline. | 
| 84 | > | ! newSpline solves for slopes defining a cubic spline. | 
| 85 |  | ! | 
| 86 |  | !  Discussion: | 
| 87 |  | ! | 
| 104 |  | !    Input, real y(I), contains the function value at x(I) for | 
| 105 |  | !      I = 1, N. | 
| 106 |  | ! | 
| 107 | < | !    yp1 contains the slope at x(1) and ypn contains | 
| 108 | < | !    the slope at x(N). | 
| 107 | > | !    Input, real yp1 contains the slope at x(1) | 
| 108 | > | !    Input, real ypn contains the slope at x(N) | 
| 109 |  | ! | 
| 110 | < | !    On output, the intermediate slopes at x(I) have been | 
| 111 | < | !    stored in cs%C(2,I), for I = 2 to N-1. | 
| 110 | > | !    On output, the slopes at x(I) have been stored in | 
| 111 | > | !               cs%C(2,I), for I = 1 to N. | 
| 112 |  |  | 
| 113 |  | implicit none | 
| 114 |  |  | 
| 115 |  | type (cubicSpline), intent(inout) :: cs | 
| 116 |  | real( kind = DP ), intent(in) :: x(:), y(:) | 
| 117 |  | real( kind = DP ), intent(in) :: yp1, ypn | 
| 118 | + | logical, intent(in) :: isUniform | 
| 119 |  | real( kind = DP ) :: g, divdif1, divdif3, dx | 
| 120 |  | integer :: i, alloc_error, np | 
| 121 |  |  | 
| 122 |  | alloc_error = 0 | 
| 123 |  |  | 
| 124 |  | if (cs%np .ne. 0) then | 
| 125 | < | call handleWarning("interpolation::newSplineWithoutDerivs", & | 
| 126 | < | "Type was already created") | 
| 125 | > | call handleWarning("interpolation::newSpline", & | 
| 126 | > | "cubicSpline struct was already created") | 
| 127 |  | call deleteSpline(cs) | 
| 128 |  | end if | 
| 129 |  |  | 
| 130 |  | ! make sure the sizes match | 
| 131 |  |  | 
| 132 | < | if (size(x) .ne. size(y)) then | 
| 133 | < | call handleError("interpolation::newSplineWithoutDerivs", & | 
| 132 | > | np = size(x) | 
| 133 | > |  | 
| 134 | > | if ( size(y) .ne. np ) then | 
| 135 | > | call handleError("interpolation::newSpline", & | 
| 136 |  | "Array size mismatch") | 
| 137 |  | end if | 
| 138 | < |  | 
| 135 | < | np = size(x) | 
| 138 | > |  | 
| 139 |  | cs%np = np | 
| 140 | + | cs%isUniform = isUniform | 
| 141 |  |  | 
| 142 |  | allocate(cs%x(np), stat=alloc_error) | 
| 143 |  | if(alloc_error .ne. 0) then | 
| 144 | < | call handleError("interpolation::newSplineWithoutDerivs", & | 
| 144 | > | call handleError("interpolation::newSpline", & | 
| 145 |  | "Error in allocating storage for x") | 
| 146 |  | endif | 
| 147 |  |  | 
| 148 |  | allocate(cs%c(4,np), stat=alloc_error) | 
| 149 |  | if(alloc_error .ne. 0) then | 
| 150 | < | call handleError("interpolation::newSplineWithoutDerivs", & | 
| 150 | > | call handleError("interpolation::newSpline", & | 
| 151 |  | "Error in allocating storage for c") | 
| 152 |  | endif | 
| 153 |  |  | 
| 162 |  | cs%c(2,1) = yp1 | 
| 163 |  | cs%c(2,np) = ypn | 
| 164 |  |  | 
| 161 | – |  | 
| 165 |  | ! | 
| 166 |  | !  Set up the right hand side of the linear system. | 
| 167 |  | ! | 
| 168 | + |  | 
| 169 |  | do i = 2, cs%np - 1 | 
| 170 |  | cs%c(2,i) = 3.0_DP * ( & | 
| 171 |  | (x(i) - x(i-1)) * (cs%c(1,i+1) - cs%c(1,i)) / (x(i+1) - x(i)) + & | 
| 172 |  | (x(i+1) - x(i)) * (cs%c(1,i) - cs%c(1,i-1)) / (x(i) - x(i-1))) | 
| 173 |  | end do | 
| 174 | + |  | 
| 175 |  | ! | 
| 176 |  | !  Set the diagonal coefficients. | 
| 177 |  | ! | 
| 216 |  | cs%c(3,cs%np) = 0.0_DP | 
| 217 |  | cs%c(4,cs%np) = 0.0_DP | 
| 218 |  |  | 
| 214 | – | cs%dx = dx | 
| 219 |  | cs%dx_i = 1.0_DP / dx | 
| 220 | + |  | 
| 221 |  | return | 
| 222 |  | end subroutine newSplineWithoutDerivs | 
| 223 |  |  | 
| 336 |  |  | 
| 337 |  | return | 
| 338 |  | end subroutine lookup_uniform_spline | 
| 339 | + |  | 
| 340 | + | subroutine lookup_spline(cs, xval, yval) | 
| 341 | + |  | 
| 342 | + | type (cubicSpline), intent(in) :: cs | 
| 343 | + | real( kind = DP ), intent(inout) :: xval | 
| 344 | + | real( kind = DP ), intent(inout) :: yval | 
| 345 | + |  | 
| 346 | + | if (cs%isUniform) then | 
| 347 | + | call lookup_uniform_spline(cs, xval, yval) | 
| 348 | + | else | 
| 349 | + | call lookup_nonuniform_spline(cs, xval, yval) | 
| 350 | + | endif | 
| 351 | + |  | 
| 352 | + | return | 
| 353 | + | end subroutine lookup_spline | 
| 354 |  |  | 
| 355 |  | end module INTERPOLATION |