| 1 | !! | 
| 2 | !! Copyright (c) 2006 The University of Notre Dame. All Rights Reserved. | 
| 3 | !! | 
| 4 | !! The University of Notre Dame grants you ("Licensee") a | 
| 5 | !! non-exclusive, royalty free, license to use, modify and | 
| 6 | !! redistribute this software in source and binary code form, provided | 
| 7 | !! that the following conditions are met: | 
| 8 | !! | 
| 9 | !! 1. Acknowledgement of the program authors must be made in any | 
| 10 | !!    publication of scientific results based in part on use of the | 
| 11 | !!    program.  An acceptable form of acknowledgement is citation of | 
| 12 | !!    the article in which the program was described (Matthew | 
| 13 | !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | !!    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | !!    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | !! | 
| 18 | !! 2. Redistributions of source code must retain the above copyright | 
| 19 | !!    notice, this list of conditions and the following disclaimer. | 
| 20 | !! | 
| 21 | !! 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | !!    notice, this list of conditions and the following disclaimer in the | 
| 23 | !!    documentation and/or other materials provided with the | 
| 24 | !!    distribution. | 
| 25 | !! | 
| 26 | !! This software is provided "AS IS," without a warranty of any | 
| 27 | !! kind. All express or implied conditions, representations and | 
| 28 | !! warranties, including any implied warranty of merchantability, | 
| 29 | !! fitness for a particular purpose or non-infringement, are hereby | 
| 30 | !! excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | !! be liable for any damages suffered by licensee as a result of | 
| 32 | !! using, modifying or distributing the software or its | 
| 33 | !! derivatives. In no event will the University of Notre Dame or its | 
| 34 | !! licensors be liable for any lost revenue, profit or data, or for | 
| 35 | !! direct, indirect, special, consequential, incidental or punitive | 
| 36 | !! damages, however caused and regardless of the theory of liability, | 
| 37 | !! arising out of the use of or inability to use software, even if the | 
| 38 | !! University of Notre Dame has been advised of the possibility of | 
| 39 | !! such damages. | 
| 40 | !! | 
| 41 | !! | 
| 42 | !!  interpolation.F90 | 
| 43 | !! | 
| 44 | !!  Created by Charles F. Vardeman II on 03 Apr 2006. | 
| 45 | !! | 
| 46 | !!  PURPOSE: Generic Spline interplelation routines. These routines assume that we are on a uniform grid for | 
| 47 | !!           precomputation of spline parameters. | 
| 48 | !! | 
| 49 | !! @author Charles F. Vardeman II | 
| 50 | !! @version $Id: interpolation.F90,v 1.3 2006-04-14 21:06:55 chrisfen Exp $ | 
| 51 |  | 
| 52 |  | 
| 53 | module  INTERPOLATION | 
| 54 | use definitions | 
| 55 | use status | 
| 56 | implicit none | 
| 57 | PRIVATE | 
| 58 |  | 
| 59 | character(len = statusMsgSize) :: errMSG | 
| 60 |  | 
| 61 | type, public :: cubicSpline | 
| 62 | private | 
| 63 | integer :: np = 0 | 
| 64 | real(kind=dp) :: dx | 
| 65 | real(kind=dp) :: dx_i | 
| 66 | real (kind=dp), pointer,dimension(:)   :: x => null() | 
| 67 | real (kind=dp), pointer,dimension(:,:) :: c => null() | 
| 68 | end type cubicSpline | 
| 69 |  | 
| 70 | interface newSpline | 
| 71 | module procedure newSpline | 
| 72 | end interface | 
| 73 |  | 
| 74 | public :: deleteSpline | 
| 75 |  | 
| 76 | contains | 
| 77 |  | 
| 78 |  | 
| 79 | subroutine newSpline(cs, x, y, yp1, ypn) | 
| 80 |  | 
| 81 | !************************************************************************ | 
| 82 | ! | 
| 83 | ! newSplineWithoutDerivs solves for slopes defining a cubic spline. | 
| 84 | ! | 
| 85 | !  Discussion: | 
| 86 | ! | 
| 87 | !    A tridiagonal linear system for the unknown slopes S(I) of | 
| 88 | !    F at x(I), I=1,..., N, is generated and then solved by Gauss | 
| 89 | !    elimination, with S(I) ending up in cs%C(2,I), for all I. | 
| 90 | ! | 
| 91 | !  Reference: | 
| 92 | ! | 
| 93 | !    Carl DeBoor, | 
| 94 | !    A Practical Guide to Splines, | 
| 95 | !    Springer Verlag. | 
| 96 | ! | 
| 97 | !  Parameters: | 
| 98 | ! | 
| 99 | !    Input, real x(N), the abscissas or X values of | 
| 100 | !    the data points.  The entries of x are assumed to be | 
| 101 | !    strictly increasing. | 
| 102 | ! | 
| 103 | !    Input, real y(I), contains the function value at x(I) for | 
| 104 | !      I = 1, N. | 
| 105 | ! | 
| 106 | !    yp1 contains the slope at x(1) and ypn contains | 
| 107 | !    the slope at x(N). | 
| 108 | ! | 
| 109 | !    On output, the intermediate slopes at x(I) have been | 
| 110 | !    stored in cs%C(2,I), for I = 2 to N-1. | 
| 111 |  | 
| 112 | implicit none | 
| 113 |  | 
| 114 | type (cubicSpline), intent(inout) :: cs | 
| 115 | real( kind = DP ), intent(in) :: x(:), y(:) | 
| 116 | real( kind = DP ), intent(in) :: yp1, ypn | 
| 117 | real( kind = DP ) :: g, divdif1, divdif3, dx | 
| 118 | integer :: i, alloc_error, np | 
| 119 |  | 
| 120 | alloc_error = 0 | 
| 121 |  | 
| 122 | if (cs%np .ne. 0) then | 
| 123 | call handleWarning("interpolation::newSplineWithoutDerivs", & | 
| 124 | "Type was already created") | 
| 125 | call deleteSpline(cs) | 
| 126 | end if | 
| 127 |  | 
| 128 | ! make sure the sizes match | 
| 129 |  | 
| 130 | if (size(x) .ne. size(y)) then | 
| 131 | call handleError("interpolation::newSplineWithoutDerivs", & | 
| 132 | "Array size mismatch") | 
| 133 | end if | 
| 134 |  | 
| 135 | np = size(x) | 
| 136 | cs%np = np | 
| 137 |  | 
| 138 | allocate(cs%x(np), stat=alloc_error) | 
| 139 | if(alloc_error .ne. 0) then | 
| 140 | call handleError("interpolation::newSplineWithoutDerivs", & | 
| 141 | "Error in allocating storage for x") | 
| 142 | endif | 
| 143 |  | 
| 144 | allocate(cs%c(4,np), stat=alloc_error) | 
| 145 | if(alloc_error .ne. 0) then | 
| 146 | call handleError("interpolation::newSplineWithoutDerivs", & | 
| 147 | "Error in allocating storage for c") | 
| 148 | endif | 
| 149 |  | 
| 150 | do i = 1, np | 
| 151 | cs%x(i) = x(i) | 
| 152 | cs%c(1,i) = y(i) | 
| 153 | enddo | 
| 154 |  | 
| 155 | ! Set the first derivative of the function to the second coefficient of | 
| 156 | ! each of the endpoints | 
| 157 |  | 
| 158 | cs%c(2,1) = yp1 | 
| 159 | cs%c(2,np) = ypn | 
| 160 |  | 
| 161 |  | 
| 162 | ! | 
| 163 | !  Set up the right hand side of the linear system. | 
| 164 | ! | 
| 165 | do i = 2, cs%np - 1 | 
| 166 | cs%c(2,i) = 3.0_DP * ( & | 
| 167 | (x(i) - x(i-1)) * (cs%c(1,i+1) - cs%c(1,i)) / (x(i+1) - x(i)) + & | 
| 168 | (x(i+1) - x(i)) * (cs%c(1,i) - cs%c(1,i-1)) / (x(i) - x(i-1))) | 
| 169 | end do | 
| 170 | ! | 
| 171 | !  Set the diagonal coefficients. | 
| 172 | ! | 
| 173 | cs%c(4,1) = 1.0_DP | 
| 174 | do i = 2, cs%np - 1 | 
| 175 | cs%c(4,i) = 2.0_DP * ( x(i+1) - x(i-1) ) | 
| 176 | end do | 
| 177 | cs%c(4,cs%np) = 1.0_DP | 
| 178 | ! | 
| 179 | !  Set the off-diagonal coefficients. | 
| 180 | ! | 
| 181 | cs%c(3,1) = 0.0_DP | 
| 182 | do i = 2, cs%np | 
| 183 | cs%c(3,i) = x(i) - x(i-1) | 
| 184 | end do | 
| 185 | ! | 
| 186 | !  Forward elimination. | 
| 187 | ! | 
| 188 | do i = 2, cs%np - 1 | 
| 189 | g = -cs%c(3,i+1) / cs%c(4,i-1) | 
| 190 | cs%c(4,i) = cs%c(4,i) + g * cs%c(3,i-1) | 
| 191 | cs%c(2,i) = cs%c(2,i) + g * cs%c(2,i-1) | 
| 192 | end do | 
| 193 | ! | 
| 194 | !  Back substitution for the interior slopes. | 
| 195 | ! | 
| 196 | do i = cs%np - 1, 2, -1 | 
| 197 | cs%c(2,i) = ( cs%c(2,i) - cs%c(3,i) * cs%c(2,i+1) ) / cs%c(4,i) | 
| 198 | end do | 
| 199 | ! | 
| 200 | !  Now compute the quadratic and cubic coefficients used in the | 
| 201 | !  piecewise polynomial representation. | 
| 202 | ! | 
| 203 | do i = 1, cs%np - 1 | 
| 204 | dx = x(i+1) - x(i) | 
| 205 | divdif1 = ( cs%c(1,i+1) - cs%c(1,i) ) / dx | 
| 206 | divdif3 = cs%c(2,i) + cs%c(2,i+1) - 2.0_DP * divdif1 | 
| 207 | cs%c(3,i) = ( divdif1 - cs%c(2,i) - divdif3 ) / dx | 
| 208 | cs%c(4,i) = divdif3 / ( dx * dx ) | 
| 209 | end do | 
| 210 |  | 
| 211 | cs%c(3,cs%np) = 0.0_DP | 
| 212 | cs%c(4,cs%np) = 0.0_DP | 
| 213 |  | 
| 214 | cs%dx = dx | 
| 215 | cs%dx_i = 1.0_DP / dx | 
| 216 | return | 
| 217 | end subroutine newSplineWithoutDerivs | 
| 218 |  | 
| 219 | subroutine deleteSpline(this) | 
| 220 |  | 
| 221 | type(cubicSpline) :: this | 
| 222 |  | 
| 223 | if(associated(this%x)) then | 
| 224 | deallocate(this%x) | 
| 225 | this%x => null() | 
| 226 | end if | 
| 227 | if(associated(this%c)) then | 
| 228 | deallocate(this%c) | 
| 229 | this%c => null() | 
| 230 | end if | 
| 231 |  | 
| 232 | this%np = 0 | 
| 233 |  | 
| 234 | end subroutine deleteSpline | 
| 235 |  | 
| 236 | subroutine lookup_nonuniform_spline(cs, xval, yval) | 
| 237 |  | 
| 238 | !************************************************************************* | 
| 239 | ! | 
| 240 | ! lookup_nonuniform_spline evaluates a piecewise cubic Hermite interpolant. | 
| 241 | ! | 
| 242 | !  Discussion: | 
| 243 | ! | 
| 244 | !    newSpline must be called first, to set up the | 
| 245 | !    spline data from the raw function and derivative data. | 
| 246 | ! | 
| 247 | !  Modified: | 
| 248 | ! | 
| 249 | !    06 April 1999 | 
| 250 | ! | 
| 251 | !  Reference: | 
| 252 | ! | 
| 253 | !    Conte and de Boor, | 
| 254 | !    Algorithm PCUBIC, | 
| 255 | !    Elementary Numerical Analysis, | 
| 256 | !    1973, page 234. | 
| 257 | ! | 
| 258 | !  Parameters: | 
| 259 | ! | 
| 260 | implicit none | 
| 261 |  | 
| 262 | type (cubicSpline), intent(in) :: cs | 
| 263 | real( kind = DP ), intent(in)  :: xval | 
| 264 | real( kind = DP ), intent(out) :: yval | 
| 265 | real( kind = DP ) :: dx | 
| 266 | integer :: i, j | 
| 267 | ! | 
| 268 | !  Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains | 
| 269 | !  or is nearest to xval. | 
| 270 | ! | 
| 271 | j = cs%np - 1 | 
| 272 |  | 
| 273 | do i = 1, cs%np - 2 | 
| 274 |  | 
| 275 | if ( xval < cs%x(i+1) ) then | 
| 276 | j = i | 
| 277 | exit | 
| 278 | end if | 
| 279 |  | 
| 280 | end do | 
| 281 | ! | 
| 282 | !  Evaluate the cubic polynomial. | 
| 283 | ! | 
| 284 | dx = xval - cs%x(j) | 
| 285 |  | 
| 286 | yval = cs%c(1,j) + dx * ( cs%c(2,j) + dx * ( cs%c(3,j) + dx * cs%c(4,j) ) ) | 
| 287 |  | 
| 288 | return | 
| 289 | end subroutine lookup_nonuniform_spline | 
| 290 |  | 
| 291 | subroutine lookup_uniform_spline(cs, xval, yval) | 
| 292 |  | 
| 293 | !************************************************************************* | 
| 294 | ! | 
| 295 | ! lookup_uniform_spline evaluates a piecewise cubic Hermite interpolant. | 
| 296 | ! | 
| 297 | !  Discussion: | 
| 298 | ! | 
| 299 | !    newSpline must be called first, to set up the | 
| 300 | !    spline data from the raw function and derivative data. | 
| 301 | ! | 
| 302 | !  Modified: | 
| 303 | ! | 
| 304 | !    06 April 1999 | 
| 305 | ! | 
| 306 | !  Reference: | 
| 307 | ! | 
| 308 | !    Conte and de Boor, | 
| 309 | !    Algorithm PCUBIC, | 
| 310 | !    Elementary Numerical Analysis, | 
| 311 | !    1973, page 234. | 
| 312 | ! | 
| 313 | !  Parameters: | 
| 314 | ! | 
| 315 | implicit none | 
| 316 |  | 
| 317 | type (cubicSpline), intent(in) :: cs | 
| 318 | real( kind = DP ), intent(in)  :: xval | 
| 319 | real( kind = DP ), intent(out) :: yval | 
| 320 | real( kind = DP ) :: dx | 
| 321 | integer :: i, j | 
| 322 | ! | 
| 323 | !  Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains | 
| 324 | !  or is nearest to xval. | 
| 325 |  | 
| 326 | j = MAX(1, MIN(cs%np, idint((xval-cs%x(1)) * cs%dx_i) + 1)) | 
| 327 |  | 
| 328 | dx = xval - cs%x(j) | 
| 329 |  | 
| 330 | yval = cs%c(1,j) + dx * ( cs%c(2,j) + dx * ( cs%c(3,j) + dx * cs%c(4,j) ) ) | 
| 331 |  | 
| 332 | return | 
| 333 | end subroutine lookup_uniform_spline | 
| 334 |  | 
| 335 | end module INTERPOLATION |