| 1 | !! | 
| 2 | !! Copyright (c) 2006 The University of Notre Dame. All Rights Reserved. | 
| 3 | !! | 
| 4 | !! The University of Notre Dame grants you ("Licensee") a | 
| 5 | !! non-exclusive, royalty free, license to use, modify and | 
| 6 | !! redistribute this software in source and binary code form, provided | 
| 7 | !! that the following conditions are met: | 
| 8 | !! | 
| 9 | !! 1. Acknowledgement of the program authors must be made in any | 
| 10 | !!    publication of scientific results based in part on use of the | 
| 11 | !!    program.  An acceptable form of acknowledgement is citation of | 
| 12 | !!    the article in which the program was described (Matthew | 
| 13 | !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | !!    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | !!    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | !! | 
| 18 | !! 2. Redistributions of source code must retain the above copyright | 
| 19 | !!    notice, this list of conditions and the following disclaimer. | 
| 20 | !! | 
| 21 | !! 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | !!    notice, this list of conditions and the following disclaimer in the | 
| 23 | !!    documentation and/or other materials provided with the | 
| 24 | !!    distribution. | 
| 25 | !! | 
| 26 | !! This software is provided "AS IS," without a warranty of any | 
| 27 | !! kind. All express or implied conditions, representations and | 
| 28 | !! warranties, including any implied warranty of merchantability, | 
| 29 | !! fitness for a particular purpose or non-infringement, are hereby | 
| 30 | !! excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | !! be liable for any damages suffered by licensee as a result of | 
| 32 | !! using, modifying or distributing the software or its | 
| 33 | !! derivatives. In no event will the University of Notre Dame or its | 
| 34 | !! licensors be liable for any lost revenue, profit or data, or for | 
| 35 | !! direct, indirect, special, consequential, incidental or punitive | 
| 36 | !! damages, however caused and regardless of the theory of liability, | 
| 37 | !! arising out of the use of or inability to use software, even if the | 
| 38 | !! University of Notre Dame has been advised of the possibility of | 
| 39 | !! such damages. | 
| 40 | !! | 
| 41 | !! | 
| 42 | !!  interpolation.F90 | 
| 43 | !! | 
| 44 | !!  Created by Charles F. Vardeman II on 03 Apr 2006. | 
| 45 | !! | 
| 46 | !!  PURPOSE: Generic Spline interpolation routines. | 
| 47 | !! | 
| 48 | !! @author Charles F. Vardeman II | 
| 49 | !! @version $Id: interpolation.F90,v 1.7 2006-04-20 18:24:24 gezelter Exp $ | 
| 50 |  | 
| 51 |  | 
| 52 | module interpolation | 
| 53 | use definitions | 
| 54 | use status | 
| 55 | implicit none | 
| 56 | PRIVATE | 
| 57 |  | 
| 58 | type, public :: cubicSpline | 
| 59 | logical :: isUniform = .false. | 
| 60 | integer :: n = 0 | 
| 61 | real(kind=dp) :: dx_i | 
| 62 | real (kind=dp), pointer,dimension(:)   :: x => null() | 
| 63 | real (kind=dp), pointer,dimension(:)   :: y => null() | 
| 64 | real (kind=dp), pointer,dimension(:)   :: b => null() | 
| 65 | real (kind=dp), pointer,dimension(:)   :: c => null() | 
| 66 | real (kind=dp), pointer,dimension(:)   :: d => null() | 
| 67 | end type cubicSpline | 
| 68 |  | 
| 69 | public :: newSpline | 
| 70 | public :: deleteSpline | 
| 71 | public :: lookupSpline | 
| 72 | public :: lookupUniformSpline | 
| 73 | public :: lookupNonuniformSpline | 
| 74 | public :: lookupUniformSpline1d | 
| 75 |  | 
| 76 | contains | 
| 77 |  | 
| 78 |  | 
| 79 | subroutine newSpline(cs, x, y, isUniform) | 
| 80 |  | 
| 81 | implicit none | 
| 82 |  | 
| 83 | type (cubicSpline), intent(inout) :: cs | 
| 84 | real( kind = DP ), intent(in) :: x(:), y(:) | 
| 85 | real( kind = DP ) :: fp1, fpn, p | 
| 86 | REAL( KIND = DP), DIMENSION(size(x)-1) :: diff_y, H | 
| 87 |  | 
| 88 | logical, intent(in) :: isUniform | 
| 89 | integer :: i, alloc_error, n, k | 
| 90 |  | 
| 91 | alloc_error = 0 | 
| 92 |  | 
| 93 | if (cs%n .ne. 0) then | 
| 94 | call handleWarning("interpolation::newSpline", & | 
| 95 | "cubicSpline struct was already created") | 
| 96 | call deleteSpline(cs) | 
| 97 | end if | 
| 98 |  | 
| 99 | ! make sure the sizes match | 
| 100 |  | 
| 101 | n = size(x) | 
| 102 |  | 
| 103 | if ( size(y) .ne. size(x) ) then | 
| 104 | call handleError("interpolation::newSpline", & | 
| 105 | "Array size mismatch") | 
| 106 | end if | 
| 107 |  | 
| 108 | cs%n = n | 
| 109 | cs%isUniform = isUniform | 
| 110 |  | 
| 111 | allocate(cs%x(n), stat=alloc_error) | 
| 112 | if(alloc_error .ne. 0) then | 
| 113 | call handleError("interpolation::newSpline", & | 
| 114 | "Error in allocating storage for x") | 
| 115 | endif | 
| 116 |  | 
| 117 | allocate(cs%y(n), stat=alloc_error) | 
| 118 | if(alloc_error .ne. 0) then | 
| 119 | call handleError("interpolation::newSpline", & | 
| 120 | "Error in allocating storage for y") | 
| 121 | endif | 
| 122 |  | 
| 123 | allocate(cs%b(n), stat=alloc_error) | 
| 124 | if(alloc_error .ne. 0) then | 
| 125 | call handleError("interpolation::newSpline", & | 
| 126 | "Error in allocating storage for b") | 
| 127 | endif | 
| 128 |  | 
| 129 | allocate(cs%c(n), stat=alloc_error) | 
| 130 | if(alloc_error .ne. 0) then | 
| 131 | call handleError("interpolation::newSpline", & | 
| 132 | "Error in allocating storage for c") | 
| 133 | endif | 
| 134 |  | 
| 135 | allocate(cs%d(n), stat=alloc_error) | 
| 136 | if(alloc_error .ne. 0) then | 
| 137 | call handleError("interpolation::newSpline", & | 
| 138 | "Error in allocating storage for d") | 
| 139 | endif | 
| 140 |  | 
| 141 | ! make sure we are monotinically increasing in x: | 
| 142 |  | 
| 143 | h = diff(x) | 
| 144 | if (any(h <= 0)) then | 
| 145 | call handleError("interpolation::newSpline", & | 
| 146 | "Negative dx interval found") | 
| 147 | end if | 
| 148 |  | 
| 149 | ! load x and y values into the cubicSpline structure: | 
| 150 |  | 
| 151 | do i = 1, n | 
| 152 | cs%x(i) = x(i) | 
| 153 | cs%y(i) = y(i) | 
| 154 | end do | 
| 155 |  | 
| 156 | ! Calculate coefficients for the tridiagonal system: store | 
| 157 | ! sub-diagonal in B, diagonal in D, difference quotient in C. | 
| 158 |  | 
| 159 | cs%b(1:n-1) = h | 
| 160 | diff_y = diff(y) | 
| 161 | cs%c(1:n-1) = diff_y / h | 
| 162 |  | 
| 163 | if (n == 2) then | 
| 164 | ! Assume the derivatives at both endpoints are zero | 
| 165 | ! another assumption could be made to have a linear interpolant | 
| 166 | ! between the two points.  In that case, the b coefficients | 
| 167 | ! below would be diff_y(1)/h(1) and the c and d coefficients would | 
| 168 | ! both be zero. | 
| 169 | cs%b(1) = 0.0_dp | 
| 170 | cs%c(1) = -3.0_dp * (diff_y(1)/h(1))**2 | 
| 171 | cs%d(1) = -2.0_dp * (diff_y(1)/h(1))**3 | 
| 172 | cs%b(2) = cs%b(1) | 
| 173 | cs%c(2) = 0.0_dp | 
| 174 | cs%d(2) = 0.0_dp | 
| 175 | cs%dx_i = 1.0_dp / h(1) | 
| 176 | return | 
| 177 | end if | 
| 178 |  | 
| 179 | cs%d(1) = 2.0_dp * cs%b(1) | 
| 180 | do i = 2, n-1 | 
| 181 | cs%d(i) = 2.0_dp * (cs%b(i) + cs%b(i-1)) | 
| 182 | end do | 
| 183 | cs%d(n) = 2.0_dp * cs%b(n-1) | 
| 184 |  | 
| 185 | ! Calculate estimates for the end slopes using polynomials | 
| 186 | ! that interpolate the data nearest the end. | 
| 187 |  | 
| 188 | fp1 = cs%c(1) - cs%b(1)*(cs%c(2) - cs%c(1))/(cs%b(1) + cs%b(2)) | 
| 189 | if (n > 3) then | 
| 190 | fp1 = fp1 + cs%b(1)*((cs%b(1) + cs%b(2))*(cs%c(3) - cs%c(2))/ & | 
| 191 | (cs%b(2) + cs%b(3)) - cs%c(2) + cs%c(1))/(x(4) - x(1)) | 
| 192 | end if | 
| 193 |  | 
| 194 | fpn = cs%c(n-1) + cs%b(n-1)*(cs%c(n-1) - cs%c(n-2))/(cs%b(n-2) + cs%b(n-1)) | 
| 195 | if (n > 3) then | 
| 196 | fpn = fpn + cs%b(n-1)*(cs%c(n-1) - cs%c(n-2) - (cs%b(n-2) + cs%b(n-1))* & | 
| 197 | (cs%c(n-2) - cs%c(n-3))/(cs%b(n-2) + cs%b(n-3)))/(x(n) - x(n-3)) | 
| 198 | end if | 
| 199 |  | 
| 200 | ! Calculate the right hand side and store it in C. | 
| 201 |  | 
| 202 | cs%c(n) = 3.0_dp * (fpn - cs%c(n-1)) | 
| 203 | do i = n-1,2,-1 | 
| 204 | cs%c(i) = 3.0_dp * (cs%c(i) - cs%c(i-1)) | 
| 205 | end do | 
| 206 | cs%c(1) = 3.0_dp * (cs%c(1) - fp1) | 
| 207 |  | 
| 208 | ! Solve the tridiagonal system. | 
| 209 |  | 
| 210 | do k = 2, n | 
| 211 | p = cs%b(k-1) / cs%d(k-1) | 
| 212 | cs%d(k) = cs%d(k) - p*cs%b(k-1) | 
| 213 | cs%c(k) = cs%c(k) - p*cs%c(k-1) | 
| 214 | end do | 
| 215 | cs%c(n) = cs%c(n) / cs%d(n) | 
| 216 | do k = n-1, 1, -1 | 
| 217 | cs%c(k) = (cs%c(k) - cs%b(k) * cs%c(k+1)) / cs%d(k) | 
| 218 | end do | 
| 219 |  | 
| 220 | ! Calculate the coefficients defining the spline. | 
| 221 |  | 
| 222 | cs%d(1:n-1) = diff(cs%c) / (3.0_dp * h) | 
| 223 | cs%b(1:n-1) = diff_y / h - h * (cs%c(1:n-1) + h * cs%d(1:n-1)) | 
| 224 | cs%b(n) = cs%b(n-1) + h(n-1) * (2.0_dp*cs%c(n-1) + h(n-1)*3.0_dp*cs%d(n-1)) | 
| 225 |  | 
| 226 | if (isUniform) then | 
| 227 | cs%dx_i = 1.0d0 / (x(2) - x(1)) | 
| 228 | endif | 
| 229 |  | 
| 230 | return | 
| 231 |  | 
| 232 | contains | 
| 233 |  | 
| 234 | function diff(v) | 
| 235 | ! Auxiliary function to compute the forward difference | 
| 236 | ! of data stored in a vector v. | 
| 237 |  | 
| 238 | implicit none | 
| 239 | real (kind = dp), dimension(:), intent(in) :: v | 
| 240 | real (kind = dp), dimension(size(v)-1) :: diff | 
| 241 |  | 
| 242 | integer :: n | 
| 243 |  | 
| 244 | n = size(v) | 
| 245 | diff = v(2:n) - v(1:n-1) | 
| 246 | return | 
| 247 | end function diff | 
| 248 |  | 
| 249 | end subroutine newSpline | 
| 250 |  | 
| 251 | subroutine deleteSpline(this) | 
| 252 |  | 
| 253 | type(cubicSpline) :: this | 
| 254 |  | 
| 255 | if(associated(this%x)) then | 
| 256 | deallocate(this%x) | 
| 257 | this%x => null() | 
| 258 | end if | 
| 259 | if(associated(this%c)) then | 
| 260 | deallocate(this%c) | 
| 261 | this%c => null() | 
| 262 | end if | 
| 263 |  | 
| 264 | this%n = 0 | 
| 265 |  | 
| 266 | end subroutine deleteSpline | 
| 267 |  | 
| 268 | subroutine lookupNonuniformSpline(cs, xval, yval) | 
| 269 |  | 
| 270 | implicit none | 
| 271 |  | 
| 272 | type (cubicSpline), intent(in) :: cs | 
| 273 | real( kind = DP ), intent(in)  :: xval | 
| 274 | real( kind = DP ), intent(out) :: yval | 
| 275 | real( kind = DP ) ::  dx | 
| 276 | integer :: i, j | 
| 277 | ! | 
| 278 | !  Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains | 
| 279 | !  or is nearest to xval. | 
| 280 | ! | 
| 281 | j = cs%n - 1 | 
| 282 |  | 
| 283 | do i = 0, cs%n - 2 | 
| 284 |  | 
| 285 | if ( xval < cs%x(i+1) ) then | 
| 286 | j = i | 
| 287 | exit | 
| 288 | end if | 
| 289 |  | 
| 290 | end do | 
| 291 | ! | 
| 292 | !  Evaluate the cubic polynomial. | 
| 293 | ! | 
| 294 | dx = xval - cs%x(j) | 
| 295 | yval = cs%y(j) + dx*(cs%b(j) + dx*(cs%c(j) + dx*cs%d(j))) | 
| 296 |  | 
| 297 | return | 
| 298 | end subroutine lookupNonuniformSpline | 
| 299 |  | 
| 300 | subroutine lookupUniformSpline(cs, xval, yval) | 
| 301 |  | 
| 302 | implicit none | 
| 303 |  | 
| 304 | type (cubicSpline), intent(in) :: cs | 
| 305 | real( kind = DP ), intent(in)  :: xval | 
| 306 | real( kind = DP ), intent(out) :: yval | 
| 307 | real( kind = DP ) ::  dx | 
| 308 | integer :: i, j | 
| 309 | ! | 
| 310 | !  Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains | 
| 311 | !  or is nearest to xval. | 
| 312 |  | 
| 313 | j = MAX(1, MIN(cs%n-1, idint((xval-cs%x(1)) * cs%dx_i) + 1)) | 
| 314 |  | 
| 315 | dx = xval - cs%x(j) | 
| 316 | yval = cs%y(j) + dx*(cs%b(j) + dx*(cs%c(j) + dx*cs%d(j))) | 
| 317 |  | 
| 318 | return | 
| 319 | end subroutine lookupUniformSpline | 
| 320 |  | 
| 321 | subroutine lookupUniformSpline1d(cs, xval, yval, dydx) | 
| 322 |  | 
| 323 | implicit none | 
| 324 |  | 
| 325 | type (cubicSpline), intent(in) :: cs | 
| 326 | real( kind = DP ), intent(in)  :: xval | 
| 327 | real( kind = DP ), intent(out) :: yval, dydx | 
| 328 | real( kind = DP ) :: dx | 
| 329 | integer :: i, j | 
| 330 |  | 
| 331 | !  Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains | 
| 332 | !  or is nearest to xval. | 
| 333 |  | 
| 334 |  | 
| 335 | j = MAX(1, MIN(cs%n-1, idint((xval-cs%x(1)) * cs%dx_i) + 1)) | 
| 336 |  | 
| 337 | dx = xval - cs%x(j) | 
| 338 | yval = cs%y(j) + dx*(cs%b(j) + dx*(cs%c(j) + dx*cs%d(j))) | 
| 339 |  | 
| 340 | dydx = cs%b(j) + dx*(2.0d0 * cs%c(j) + 3.0d0 * dx * cs%d(j)) | 
| 341 |  | 
| 342 | return | 
| 343 | end subroutine lookupUniformSpline1d | 
| 344 |  | 
| 345 | subroutine lookupSpline(cs, xval, yval) | 
| 346 |  | 
| 347 | type (cubicSpline), intent(in) :: cs | 
| 348 | real( kind = DP ), intent(inout) :: xval | 
| 349 | real( kind = DP ), intent(inout) :: yval | 
| 350 |  | 
| 351 | if (cs%isUniform) then | 
| 352 | call lookupUniformSpline(cs, xval, yval) | 
| 353 | else | 
| 354 | call lookupNonuniformSpline(cs, xval, yval) | 
| 355 | endif | 
| 356 |  | 
| 357 | return | 
| 358 | end subroutine lookupSpline | 
| 359 |  | 
| 360 | end module interpolation |