| 47 |  | !!           precomputation of spline parameters. | 
| 48 |  | !! | 
| 49 |  | !! @author Charles F. Vardeman II | 
| 50 | < | !! @version $Id: interpolation.F90,v 1.1 2006-04-14 19:57:04 gezelter Exp $ | 
| 50 | > | !! @version $Id: interpolation.F90,v 1.3 2006-04-14 21:06:55 chrisfen Exp $ | 
| 51 |  |  | 
| 52 |  |  | 
| 53 |  | module  INTERPOLATION | 
| 64 |  | real(kind=dp) :: dx | 
| 65 |  | real(kind=dp) :: dx_i | 
| 66 |  | real (kind=dp), pointer,dimension(:)   :: x => null() | 
| 67 | < | real (kind=dp), pointer,dimension(4,:) :: c => null() | 
| 67 | > | real (kind=dp), pointer,dimension(:,:) :: c => null() | 
| 68 |  | end type cubicSpline | 
| 69 |  |  | 
| 70 | – | interface splineLookup | 
| 71 | – | module procedure multiSplint | 
| 72 | – | module procedure splintd | 
| 73 | – | module procedure splintd1 | 
| 74 | – | module procedure splintd2 | 
| 75 | – | end interface | 
| 76 | – |  | 
| 70 |  | interface newSpline | 
| 71 | < | module procedure newSplineWithoutDerivs | 
| 79 | < | module procedure newSplineWithDerivs | 
| 71 | > | module procedure newSpline | 
| 72 |  | end interface | 
| 73 |  |  | 
| 74 |  | public :: deleteSpline | 
| 76 |  | contains | 
| 77 |  |  | 
| 78 |  |  | 
| 79 | < | subroutine newSplineWithoutDerivs(cs, x, y, yp1, ypn, boundary) | 
| 79 | > | subroutine newSpline(cs, x, y, yp1, ypn) | 
| 80 |  |  | 
| 81 |  | !************************************************************************ | 
| 82 |  | ! | 
| 97 |  | !  Parameters: | 
| 98 |  | ! | 
| 99 |  | !    Input, real x(N), the abscissas or X values of | 
| 100 | < | !    the data points.  The entries of TAU are assumed to be | 
| 100 | > | !    the data points.  The entries of x are assumed to be | 
| 101 |  | !    strictly increasing. | 
| 102 |  | ! | 
| 103 |  | !    Input, real y(I), contains the function value at x(I) for | 
| 114 |  | type (cubicSpline), intent(inout) :: cs | 
| 115 |  | real( kind = DP ), intent(in) :: x(:), y(:) | 
| 116 |  | real( kind = DP ), intent(in) :: yp1, ypn | 
| 125 | – | character(len=*), intent(in) :: boundary | 
| 117 |  | real( kind = DP ) :: g, divdif1, divdif3, dx | 
| 118 |  | integer :: i, alloc_error, np | 
| 119 |  |  | 
| 152 |  | cs%c(1,i) = y(i) | 
| 153 |  | enddo | 
| 154 |  |  | 
| 155 | < | if ((boundary.eq.'l').or.(boundary.eq.'L').or. & | 
| 156 | < | (boundary.eq.'b').or.(boundary.eq.'B')) then | 
| 166 | < | cs%c(2,1) = yp1 | 
| 167 | < | else | 
| 168 | < | cs%c(2,1) = 0.0_DP | 
| 169 | < | endif | 
| 170 | < | if ((boundary.eq.'u').or.(boundary.eq.'U').or. & | 
| 171 | < | (boundary.eq.'b').or.(boundary.eq.'B')) then | 
| 172 | < | cs%c(2,1) = ypn | 
| 173 | < | else | 
| 174 | < | cs%c(2,1) = 0.0_DP | 
| 175 | < | endif | 
| 155 | > | ! Set the first derivative of the function to the second coefficient of | 
| 156 | > | ! each of the endpoints | 
| 157 |  |  | 
| 158 | + | cs%c(2,1) = yp1 | 
| 159 | + | cs%c(2,np) = ypn | 
| 160 | + |  | 
| 161 | + |  | 
| 162 |  | ! | 
| 163 |  | !  Set up the right hand side of the linear system. | 
| 164 |  | ! | 
| 174 |  | do i = 2, cs%np - 1 | 
| 175 |  | cs%c(4,i) = 2.0_DP * ( x(i+1) - x(i-1) ) | 
| 176 |  | end do | 
| 177 | < | cs%c(4,n) = 1.0_DP | 
| 193 | < | ! | 
| 194 | < | !  Set the off-diagonal coefficients. | 
| 195 | < | ! | 
| 196 | < | cs%c(3,1) = 0.0_DP | 
| 197 | < | do i = 2, cs%np | 
| 198 | < | cs%c(3,i) = x(i) - x(i-1) | 
| 199 | < | end do | 
| 200 | < | ! | 
| 201 | < | !  Forward elimination. | 
| 202 | < | ! | 
| 203 | < | do i = 2, cs%np - 1 | 
| 204 | < | g = -cs%c(3,i+1) / cs%c(4,i-1) | 
| 205 | < | cs%c(4,i) = cs%c(4,i) + g * cs%c(3,i-1) | 
| 206 | < | cs%c(2,i) = cs%c(2,i) + g * cs%c(2,i-1) | 
| 207 | < | end do | 
| 208 | < | ! | 
| 209 | < | !  Back substitution for the interior slopes. | 
| 210 | < | ! | 
| 211 | < | do i = cs%np - 1, 2, -1 | 
| 212 | < | cs%c(2,i) = ( cs%c(2,i) - cs%c(3,i) * cs%c(2,i+1) ) / cs%c(4,i) | 
| 213 | < | end do | 
| 214 | < | ! | 
| 215 | < | !  Now compute the quadratic and cubic coefficients used in the | 
| 216 | < | !  piecewise polynomial representation. | 
| 217 | < | ! | 
| 218 | < | do i = 1, cs%np - 1 | 
| 219 | < | dx = x(i+1) - x(i) | 
| 220 | < | divdif1 = ( cs%c(1,i+1) - cs%c(1,i) ) / dx | 
| 221 | < | divdif3 = cs%c(2,i) + cs%c(2,i+1) - 2.0_DP * divdif1 | 
| 222 | < | cs%c(3,i) = ( divdif1 - cs%c(2,i) - divdif3 ) / dx | 
| 223 | < | cs%c(4,i) = divdif3 / ( dx * dx ) | 
| 224 | < | end do | 
| 225 | < |  | 
| 226 | < | cs%c(3,np) = 0.0_DP | 
| 227 | < | cs%c(4,np) = 0.0_DP | 
| 228 | < |  | 
| 229 | < | cs%dx = dx | 
| 230 | < | cs%dxi = 1.0_DP / dx | 
| 231 | < | return | 
| 232 | < | end subroutine newSplineWithoutDerivs | 
| 233 | < |  | 
| 234 | < | subroutine newSplineWithDerivs(cs, x, y, yp) | 
| 235 | < |  | 
| 236 | < | !************************************************************************ | 
| 177 | > | cs%c(4,cs%np) = 1.0_DP | 
| 178 |  | ! | 
| 238 | – | ! newSplineWithDerivs | 
| 239 | – |  | 
| 240 | – | implicit none | 
| 241 | – |  | 
| 242 | – | type (cubicSpline), intent(inout) :: cs | 
| 243 | – | real( kind = DP ), intent(in) :: x(:), y(:), yp(:) | 
| 244 | – | real( kind = DP ) :: g, divdif1, divdif3, dx | 
| 245 | – | integer :: i, alloc_error, np | 
| 246 | – |  | 
| 247 | – | alloc_error = 0 | 
| 248 | – |  | 
| 249 | – | if (cs%np .ne. 0) then | 
| 250 | – | call handleWarning("interpolation::newSplineWithDerivs", & | 
| 251 | – | "Type was already created") | 
| 252 | – | call deleteSpline(cs) | 
| 253 | – | end if | 
| 254 | – |  | 
| 255 | – | ! make sure the sizes match | 
| 256 | – |  | 
| 257 | – | if ((size(x) .ne. size(y)).or.(size(x) .ne. size(yp))) then | 
| 258 | – | call handleError("interpolation::newSplineWithDerivs", & | 
| 259 | – | "Array size mismatch") | 
| 260 | – | end if | 
| 261 | – |  | 
| 262 | – | np = size(x) | 
| 263 | – | cs%np = np | 
| 264 | – |  | 
| 265 | – | allocate(cs%x(np), stat=alloc_error) | 
| 266 | – | if(alloc_error .ne. 0) then | 
| 267 | – | call handleError("interpolation::newSplineWithDerivs", & | 
| 268 | – | "Error in allocating storage for x") | 
| 269 | – | endif | 
| 270 | – |  | 
| 271 | – | allocate(cs%c(4,np), stat=alloc_error) | 
| 272 | – | if(alloc_error .ne. 0) then | 
| 273 | – | call handleError("interpolation::newSplineWithDerivs", & | 
| 274 | – | "Error in allocating storage for c") | 
| 275 | – | endif | 
| 276 | – |  | 
| 277 | – | do i = 1, np | 
| 278 | – | cs%x(i) = x(i) | 
| 279 | – | cs%c(1,i) = y(i) | 
| 280 | – | cs%c(2,i) = yp(i) | 
| 281 | – | enddo | 
| 282 | – | ! | 
| 283 | – | !  Set the diagonal coefficients. | 
| 284 | – | ! | 
| 285 | – | cs%c(4,1) = 1.0_DP | 
| 286 | – | do i = 2, cs%np - 1 | 
| 287 | – | cs%c(4,i) = 2.0_DP * ( x(i+1) - x(i-1) ) | 
| 288 | – | end do | 
| 289 | – | cs%c(4,n) = 1.0_DP | 
| 290 | – | ! | 
| 179 |  | !  Set the off-diagonal coefficients. | 
| 180 |  | ! | 
| 181 |  | cs%c(3,1) = 0.0_DP | 
| 208 |  | cs%c(4,i) = divdif3 / ( dx * dx ) | 
| 209 |  | end do | 
| 210 |  |  | 
| 211 | < | cs%c(3,np) = 0.0_DP | 
| 212 | < | cs%c(4,np) = 0.0_DP | 
| 211 | > | cs%c(3,cs%np) = 0.0_DP | 
| 212 | > | cs%c(4,cs%np) = 0.0_DP | 
| 213 |  |  | 
| 214 |  | cs%dx = dx | 
| 215 | < | cs%dxi = 1.0_DP / dx | 
| 328 | < |  | 
| 215 | > | cs%dx_i = 1.0_DP / dx | 
| 216 |  | return | 
| 217 |  | end subroutine newSplineWithoutDerivs | 
| 218 |  |  | 
| 262 |  | type (cubicSpline), intent(in) :: cs | 
| 263 |  | real( kind = DP ), intent(in)  :: xval | 
| 264 |  | real( kind = DP ), intent(out) :: yval | 
| 265 | + | real( kind = DP ) :: dx | 
| 266 |  | integer :: i, j | 
| 267 |  | ! | 
| 268 |  | !  Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains | 
| 317 |  | type (cubicSpline), intent(in) :: cs | 
| 318 |  | real( kind = DP ), intent(in)  :: xval | 
| 319 |  | real( kind = DP ), intent(out) :: yval | 
| 320 | + | real( kind = DP ) :: dx | 
| 321 |  | integer :: i, j | 
| 322 |  | ! | 
| 323 |  | !  Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains | 
| 324 |  | !  or is nearest to xval. | 
| 325 |  |  | 
| 326 | < | j = MAX(1, MIN(cs%np, idint((xval-cs%x(1)) * cs%dxi) + 1)) | 
| 326 | > | j = MAX(1, MIN(cs%np, idint((xval-cs%x(1)) * cs%dx_i) + 1)) | 
| 327 |  |  | 
| 328 |  | dx = xval - cs%x(j) | 
| 329 |  |  |