ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Atom.hpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Atom.hpp (file contents):
Revision 413 by mmeineke, Wed Mar 26 21:54:49 2003 UTC vs.
Revision 878 by gezelter, Fri Dec 12 15:42:13 2003 UTC

# Line 1 | Line 1
1   #ifndef _ATOM_H_
2   #define _ATOM_H_
3  
4 < #include <cstring>
5 < #include <cstdlib>
4 > #include <string.h>
5 > #include <stdlib.h>
6   #include <iostream>
7  
8 + #include "SimState.hpp"
9 +
10   class Atom{
11   public:
12  
13 <  Atom(int theIndex);
13 >  Atom(int theIndex, SimState* theConfig );
14    virtual ~Atom() {}
15  
16 <  static double* pos; // the position array
15 <  static double* vel; // the velocity array
16 <  static double* frc; // the forc array
17 <  static double* trq; // the torque vector  ( space fixed )
18 <  static double* Amat; // the rotation matrix
19 <  static double* mu; // the dipole moment array
20 <  static double* ul; // the lab frame unit directional vector
21 <  static int nElements;
16 >  virtual void setCoords(void);
17  
18 <  static void createArrays (int the_nElements);
19 <  static void destroyArrays(void);
25 <  void addAtoms(int nAdded, double* Apos, double* Avel, double* Afrc,
26 <                double* Atrq, double* AAmat, double* Amu,
27 <                double* Aul);
28 <  void deleteAtom(int theIndex);
29 <  void deleteRange(int startIndex, int stopIndex);
18 >  void getPos( double theP[3] );
19 >  void setPos( double theP[3] );
20  
21 <  static double* getPosArray( void ) { return pos; }
22 <  static double* getVelArray( void ) { return vel; }
23 <  static double* getFrcArray( void ) { return frc; }
24 <  static double* getTrqArray( void ) { return trq; }
25 <  static double* getAmatArray( void ) { return Amat; }
26 <  static double* getMuArray( void ) { return mu; }
37 <  static double* getUlArray( void ) { return ul; }
38 <  
39 <  double getX() const {return pos[offsetX];}
40 <  double getY() const {return pos[offsetY];}
41 <  double getZ() const {return pos[offsetZ];}
42 <  void setX(double x) {pos[offsetX] = x;}
43 <  void setY(double y) {pos[offsetY] = y;}
44 <  void setZ(double z) {pos[offsetZ] = z;}
45 <  
46 <  double get_vx() const  {return vel[offsetX];}
47 <  double get_vy() const  {return vel[offsetY];}
48 <  double get_vz() const  {return vel[offsetZ];}
49 <  void set_vx(double vx) {vel[offsetX] = vx;}
50 <  void set_vy(double vy) {vel[offsetY] = vy;}
51 <  void set_vz(double vz) {vel[offsetZ] = vz;}
52 <  
53 <  double getFx() const   {return frc[offsetX];}
54 <  double getFy() const   {return frc[offsetY];}
55 <  double getFz() const   {return frc[offsetZ];}
56 <  void addFx(double add) {frc[offsetX] += add;}
57 <  void addFy(double add) {frc[offsetY] += add;}
58 <  void addFz(double add) {frc[offsetZ] += add;}
21 >  void getVel( double theV[3] );
22 >  void setVel( double theV[3] );
23 >
24 >  void getFrc( double theF[3] );
25 >  void addFrc( double theF[3] );
26 >
27    virtual void zeroForces() = 0;
28  
29    double getMass() const {return c_mass;}
30    void setMass(double mass) {c_mass = mass;}
31 +
32 +  double getEamRcut() const {return myEamRcut;}
33 +  void setEamRcut(double eamRcut) {myEamRcut = eamRcut;}
34    
35    double getSigma() const {return c_sigma;}
36    void setSigma(double sigma) {c_sigma = sigma;}
# Line 95 | Line 66 | class Atom{ (public)
66    void seVDW( void )        { is_VDW = 1; is_LJ = 0; }
67    int isVDW( void )    { return is_VDW; }
68  
69 +  void setEAM( void ) { is_EAM = 1; }
70 +  int  isEAM( void ) { return is_EAM; }
71 +
72    virtual int isDirectional( void ) = 0;
73  
74  
75   protected:
76    
77 +  SimState* myConfig;
78 +
79 +  double* pos; // the position array
80 +  double* vel; // the velocity array
81 +  double* frc; // the forc array
82 +  double* trq; // the torque vector  ( space fixed )
83 +  double* Amat; // the rotation matrix
84 +  double* mu;   // the array of dipole moments
85 +  double* ul;   // the lab frame unit directional vector
86 +
87    double c_mass; /* the mass of the atom in amu */
88    double c_sigma; /* the sigma parameter for van der walls interactions */
89    double c_epslon; /* the esplon parameter for VDW interactions */
90    double c_covalent; // The covalent radius of the atom.
91  
92 +  double myEamRcut; // Atom rcut for eam defined by the forcefield.
93 +
94    int index; /* set the atom's index */
95    int offset; // the atom's offset in the storage array
96    int offsetX, offsetY, offsetZ;
# Line 121 | Line 107 | class Atom{ (public)
107    int has_dipole; // dipole boolean
108    int is_VDW;    // VDW boolean
109    int is_LJ;    // LJ boolean
110 +  int is_EAM; //EAM boolean
111  
112 +  bool hasCoords;
113 +
114   #ifdef IS_MPI
115    int myGlobalIndex;
116   #endif
# Line 131 | Line 120 | class GeneralAtom : public Atom{ (public)
120   class GeneralAtom : public Atom{
121  
122   public:
123 <  GeneralAtom(int theIndex): Atom(theIndex){}
123 >  GeneralAtom(int theIndex, SimState* theConfig): Atom(theIndex, theConfig){}
124    virtual ~GeneralAtom(){}
125  
126    int isDirectional( void ){ return 0; }
127 <  void zeroForces() {
139 <    frc[offsetX] = 0.0;
140 <    frc[offsetY] = 0.0;
141 <    frc[offsetZ] = 0.0;
142 <  }
127 >  void zeroForces( void );
128   };
129  
130   class DirectionalAtom : public Atom {
131    
132   public:
133 <  DirectionalAtom(int theIndex) : Atom(theIndex)
133 >  DirectionalAtom(int theIndex, SimState* theConfig) : Atom(theIndex,
134 >                                                            theConfig)
135    {
136      ssdIdentity = 0;
137      sux = 0.0;
138      suy = 0.0;
139      suz = 0.0;
140 +    myMu = 0.0;
141    }
142    virtual ~DirectionalAtom() {}
143  
144 +  virtual void setCoords(void);
145 +
146 +  void printAmatIndex( void );
147 +
148    int isDirectional(void) { return 1; }
149    
150    void setSSD( int value) { ssdIdentity = value; }
151    int isSSD(void) {return ssdIdentity; }
152  
162  void setA( double the_A[3][3] );
163
164  void setI( double the_I[3][3] );
165
166  void setQ( double the_q[4] );
153    
154    void setEuler( double phi, double theta, double psi );
155 +
156 +  double getSUx( void ) { return sux; }
157 +  double getSUy( void ) { return suy; }
158 +  double getSUz( void ) { return suz; }
159    
160    void setSUx( double the_sux ) { sux = the_sux; }
161    void setSUy( double the_suy ) { suy = the_suy; }
162    void setSUz( double the_suz ) { suz = the_suz; }
163  
164 <  void setJx( double the_jx ) { jx = the_jx; }
175 <  void setJy( double the_jy ) { jy = the_jy; }
176 <  void setJz( double the_jz ) { jz = the_jz; }
177 <    
178 <  void addTx( double the_tx ) { trq[offsetX] += the_tx;}
179 <  void addTy( double the_ty ) { trq[offsetY] += the_ty;}
180 <  void addTz( double the_tz ) { trq[offsetZ] += the_tz;}
164 >  void zeroForces();
165  
182  void zeroForces() {
183    frc[offsetX] = 0.0;
184    frc[offsetY] = 0.0;
185    frc[offsetZ] = 0.0;
186
187    trq[offsetX] = 0.0;
188    trq[offsetY] = 0.0;
189    trq[offsetZ] = 0.0;
190  }
191
192  double getAxx( void ) { return Amat[Axx]; }
193  double getAxy( void ) { return Amat[Axy]; }
194  double getAxz( void ) { return Amat[Axz]; }
195  
196  double getAyx( void ) { return Amat[Ayx]; }
197  double getAyy( void ) { return Amat[Ayy]; }
198  double getAyz( void ) { return Amat[Ayz]; }
199  
200  double getAzx( void ) { return Amat[Azx]; }
201  double getAzy( void ) { return Amat[Azy]; }
202  double getAzz( void ) { return Amat[Azz]; }
203
166    void getA( double the_A[3][3] ); // get the full rotation matrix
167 +  void setA( double the_A[3][3] );
168  
206  double getSUx( void ) { return sux; }
207  double getSUy( void ) { return suy; }
208  double getSUz( void ) { return suz; }
209
169    void getU( double the_u[3] ); // get the unit vetor
170 +  void updateU( void );
171 +
172    void getQ( double the_q[4] ); // get the quanternions
173 +  void setQ( double the_q[4] );
174  
175 +  void getJ( double theJ[3] );
176 +  void setJ( double theJ[3] );
177 +
178    double getJx( void ) { return jx; }
179    double getJy( void ) { return jy; }
180    double getJz( void ) { return jz; }
181  
182 <  double getTx( void ) { return trq[offsetX];}
183 <  double getTy( void ) { return trq[offsetY]; }
184 <  double getTz( void ) { return trq[offsetZ]; }
182 >  void setJx( double the_jx ) { jx = the_jx; }
183 >  void setJy( double the_jy ) { jy = the_jy; }
184 >  void setJz( double the_jz ) { jz = the_jz; }
185  
186 +  void getTrq( double theT[3] );
187 +  void addTrq( double theT[3] );
188 +
189 +  //  double getTx( void ) { return trq[offsetX];}
190 +  //  double getTy( void ) { return trq[offsetY]; }
191 +  //  double getTz( void ) { return trq[offsetZ]; }
192 +
193 +  void setI( double the_I[3][3] );
194 +  void getI( double the_I[3][3] );
195 +  
196    double getIxx( void ) { return Ixx; }
197    double getIxy( void ) { return Ixy; }
198    double getIxz( void ) { return Ixz; }
# Line 230 | Line 205 | class DirectionalAtom : public Atom { (public)
205    double getIzy( void ) { return Izy; }
206    double getIzz( void ) { return Izz; }
207  
208 <  double getMu( void ) { return mu[index]; }
209 <  void setMu( double the_mu ) { mu[index] = the_mu; }
208 >  double getMu( void );
209 >  void setMu( double the_mu );
210  
211    void lab2Body( double r[3] );
212    void body2Lab( double r[3] );
238  void updateU( void );
213  
214 +
215 +  // Four functions added for derivatives with respect to Euler Angles:
216 +  // (Needed for minimization routines):
217 +
218 +  void getGrad(double gradient[6] );
219 +  void getEulerAngles( double myEuler[3] );
220 +
221 +  double max(double x, double y);
222 +  double min(double x, double y);
223 +  
224 +
225   private:
226    int dIndex;
227  
228 +  double myMu;
229 +
230    double sux, suy, suz; // the standard unit vector    ( body fixed )
231    double jx, jy, jz;    // the angular momentum vector ( body fixed )
232    

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines