ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/ExtendedSystem.cpp
Revision: 458
Committed: Fri Apr 4 19:47:19 2003 UTC (21 years, 3 months ago) by gezelter
File size: 5735 byte(s)
Log Message:
Changes for Extended System

File Contents

# User Rev Content
1 gezelter 453 #include <math.h>
2 gezelter 454 #include "Atom.hpp"
3     #include "Molecule.hpp"
4     #include "SimInfo.hpp"
5     #include "Thermo.hpp"
6     #include "ExtendedSystem.hpp"
7 gezelter 453
8     ExtendedSystem::ExtendedSystem( SimInfo &info ) {
9    
10     // get what information we need from the SimInfo object
11    
12     entry_plug = &info;
13 gezelter 458 nAtoms = entry_plug->n_atoms;
14     atoms = entry_plug->atoms;
15     nMols = entry_plug->n_mol;
16     molecules = entry_plug->molecules;
17     nOriented = entry_plug->n_oriented;
18     ndf = entry_plug->ndf;
19 gezelter 457 zeta = 0.0;
20     epsilonDot = 0.0;
21 gezelter 453
22     }
23    
24 gezelter 457 void ExtendedSystem::NoseHooverNVT( double dt, double ke ){
25 gezelter 453
26     // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
27    
28 gezelter 454 int i;
29 gezelter 457 double NkBT, zetaScale, ke_temp;
30 gezelter 454 double vx, vy, vz, jx, jy, jz;
31 gezelter 457 const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
32     const double e_convert = 4.184e-4; // to convert ke from kcal/mol to
33     // amu*Ang^2*fs^-2/K
34 gezelter 458 DirectionalAtom* dAtom;
35    
36    
37 gezelter 457 ke_temp = ke * e_convert;
38 gezelter 458 NkBT = (double)ndf * kB * targetTemp;
39 gezelter 453
40 gezelter 457 // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
41 gezelter 453 // qmass is set in the parameter file
42 gezelter 457
43     zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
44 gezelter 453 zetaScale = zeta * dt;
45    
46     // perform thermostat scaling on linear velocities and angular momentum
47 gezelter 458 for(i = 0; i < nAtoms; i++){
48 gezelter 454
49     vx = atoms[i]->get_vx();
50     vy = atoms[i]->get_vy();
51     vz = atoms[i]->get_vz();
52    
53 gezelter 457 atoms[i]->set_vx(vx * (1.0 - zetaScale));
54     atoms[i]->set_vy(vy * (1.0 - zetaScale));
55     atoms[i]->set_vz(vz * (1.0 - zetaScale));
56 gezelter 453 }
57 gezelter 458 if( nOriented ){
58 gezelter 454
59 gezelter 458 for( i=0; i < nAtoms; i++ ){
60 gezelter 454
61     if( atoms[i]->isDirectional() ){
62    
63     dAtom = (DirectionalAtom *)atoms[i];
64    
65     jx = dAtom->getJx();
66     jy = dAtom->getJy();
67     jz = dAtom->getJz();
68    
69 gezelter 457 dAtom->setJx(jx * (1.0 - zetaScale));
70     dAtom->setJy(jy * (1.0 - zetaScale));
71     dAtom->setJz(jz * (1.0 - zetaScale));
72 gezelter 454 }
73     }
74     }
75 gezelter 453 }
76    
77    
78 gezelter 457 void ExtendedSystem::NoseHooverAndersonNPT( double dt,
79     double ke,
80     double p_int ) {
81 gezelter 453
82     // Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
83     // Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500
84    
85 gezelter 457 double oldBox[3];
86     double newBox[3];
87     const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
88     const double p_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1
89     const double e_convert = 4.184e-4; // to convert ke from kcal/mol to
90     // amu*Ang^2*fs^-2/K
91 gezelter 453
92 gezelter 458 double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp;
93     double volume, p_mol;
94     double vx, vy, vz, jx, jy, jz;
95     DirectionalAtom* dAtom;
96     int i;
97 gezelter 453
98 gezelter 457 p_ext = targetPressure * p_units;
99     p_mol = p_int * p_units;
100 gezelter 453
101 gezelter 458 entry_plug->getBox(oldBox);
102 gezelter 457
103     volume = oldBox[0]*oldBox[1]*oldBox[2];
104    
105     ke_temp = ke * e_convert;
106 gezelter 458 NkBT = (double)ndf * kB * targetTemp;
107 gezelter 457
108 gezelter 453 // propogate the strain rate
109    
110 gezelter 457 epsilonDot += dt * ((p_mol - p_ext) * volume /
111     (tauRelax*tauRelax * kB * targetTemp) );
112 gezelter 453
113     // determine the change in cell volume
114 gezelter 457 scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0));
115 gezelter 453
116 gezelter 457 newBox[0] = oldBox[0] * scale;
117     newBox[1] = oldBox[1] * scale;
118     newBox[2] = oldBox[2] * scale;
119     volume = newBox[0]*newBox[1]*newBox[2];
120 gezelter 453
121 gezelter 458 entry_plug->setBox(newBox);
122    
123 gezelter 453 // perform affine transform to update positions with volume fluctuations
124 gezelter 457 this->AffineTransform( oldBox, newBox );
125 gezelter 453
126 gezelter 454 epsilonScale = epsilonDot * dt;
127 gezelter 453
128     // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
129     // qmass is set in the parameter file
130 gezelter 457
131     zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
132 gezelter 453 zetaScale = zeta * dt;
133    
134     // apply barostating and thermostating to velocities and angular momenta
135 gezelter 458 for(i = 0; i < nAtoms; i++){
136 gezelter 454
137     vx = atoms[i]->get_vx();
138     vy = atoms[i]->get_vy();
139     vz = atoms[i]->get_vz();
140    
141 gezelter 457 atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale));
142     atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale));
143     atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale));
144 gezelter 453 }
145 gezelter 458 if( nOriented ){
146 gezelter 454
147 gezelter 458 for( i=0; i < nAtoms; i++ ){
148 gezelter 454
149     if( atoms[i]->isDirectional() ){
150    
151     dAtom = (DirectionalAtom *)atoms[i];
152    
153     jx = dAtom->getJx();
154     jy = dAtom->getJy();
155     jz = dAtom->getJz();
156    
157     dAtom->setJx( jx * (1.0 - zetaScale));
158     dAtom->setJy( jy * (1.0 - zetaScale));
159     dAtom->setJz( jz * (1.0 - zetaScale));
160     }
161     }
162     }
163 gezelter 453 }
164    
165 gezelter 457 void ExtendedSystem::AffineTransform( double oldBox[3], double newBox[3] ){
166 gezelter 453
167     int i;
168 gezelter 457 double r[3];
169     double boxNum[3];
170     double percentScale[3];
171     double rxi, ryi, rzi;
172 gezelter 453
173     // first determine the scaling factor from the box size change
174 gezelter 457 percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0];
175     percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1];
176     percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2];
177 gezelter 453
178     for (i=0; i < nMols; i++) {
179    
180 gezelter 458 molecules[i].getCOM(r);
181 gezelter 453
182 gezelter 457 // find the minimum image coordinates of the molecular centers of mass:
183 gezelter 453
184 gezelter 457 boxNum[0] = oldBox[0] * copysign(1.0,r[0]) *
185     (double)(int)(fabs(r[0]/oldBox[0]) + 0.5);
186 gezelter 453
187 gezelter 457 boxNum[1] = oldBox[1] * copysign(1.0,r[1]) *
188     (double)(int)(fabs(r[1]/oldBox[1]) + 0.5);
189 gezelter 453
190 gezelter 457 boxNum[2] = oldBox[2] * copysign(1.0,r[2]) *
191     (double)(int)(fabs(r[2]/oldBox[2]) + 0.5);
192 gezelter 453
193 gezelter 457 rxi = r[0] - boxNum[0];
194     ryi = r[1] - boxNum[1];
195     rzi = r[2] - boxNum[2];
196    
197 gezelter 453 // update the minimum image coordinates using the scaling factor
198 gezelter 457 rxi += rxi*percentScale[0];
199     ryi += ryi*percentScale[1];
200     rzi += rzi*percentScale[2];
201 gezelter 453
202 gezelter 457 r[0] = rxi + boxNum[0];
203     r[1] = ryi + boxNum[1];
204     r[2] = rzi + boxNum[2];
205    
206 gezelter 458 molecules[i].moveCOM(r);
207 gezelter 453 }
208     }