ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/ExtendedSystem.cpp
Revision: 468
Committed: Mon Apr 7 16:56:38 2003 UTC (21 years, 3 months ago) by gezelter
File size: 5753 byte(s)
Log Message:
Many fixes to add extended system

File Contents

# User Rev Content
1 gezelter 453 #include <math.h>
2 gezelter 454 #include "Atom.hpp"
3     #include "Molecule.hpp"
4     #include "SimInfo.hpp"
5     #include "Thermo.hpp"
6     #include "ExtendedSystem.hpp"
7 gezelter 453
8 gezelter 466 ExtendedSystem::ExtendedSystem( SimInfo* the_entry_plug ) {
9 gezelter 453
10     // get what information we need from the SimInfo object
11    
12 gezelter 466 entry_plug = the_entry_plug;
13 gezelter 458 nAtoms = entry_plug->n_atoms;
14     atoms = entry_plug->atoms;
15     nMols = entry_plug->n_mol;
16     molecules = entry_plug->molecules;
17     nOriented = entry_plug->n_oriented;
18     ndf = entry_plug->ndf;
19 gezelter 457 zeta = 0.0;
20     epsilonDot = 0.0;
21 gezelter 453
22     }
23    
24 gezelter 457 void ExtendedSystem::NoseHooverNVT( double dt, double ke ){
25 gezelter 453
26     // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
27    
28 gezelter 454 int i;
29 gezelter 457 double NkBT, zetaScale, ke_temp;
30 gezelter 454 double vx, vy, vz, jx, jy, jz;
31 gezelter 457 const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
32     const double e_convert = 4.184e-4; // to convert ke from kcal/mol to
33     // amu*Ang^2*fs^-2/K
34 gezelter 458 DirectionalAtom* dAtom;
35    
36 gezelter 457 ke_temp = ke * e_convert;
37 gezelter 458 NkBT = (double)ndf * kB * targetTemp;
38 gezelter 453
39 gezelter 457 // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
40 gezelter 453 // qmass is set in the parameter file
41 gezelter 457
42     zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
43 gezelter 453 zetaScale = zeta * dt;
44    
45     // perform thermostat scaling on linear velocities and angular momentum
46 gezelter 458 for(i = 0; i < nAtoms; i++){
47 gezelter 454
48     vx = atoms[i]->get_vx();
49     vy = atoms[i]->get_vy();
50     vz = atoms[i]->get_vz();
51    
52 gezelter 457 atoms[i]->set_vx(vx * (1.0 - zetaScale));
53     atoms[i]->set_vy(vy * (1.0 - zetaScale));
54     atoms[i]->set_vz(vz * (1.0 - zetaScale));
55 gezelter 453 }
56 gezelter 458 if( nOriented ){
57 gezelter 454
58 gezelter 458 for( i=0; i < nAtoms; i++ ){
59 gezelter 454
60     if( atoms[i]->isDirectional() ){
61    
62     dAtom = (DirectionalAtom *)atoms[i];
63    
64     jx = dAtom->getJx();
65     jy = dAtom->getJy();
66     jz = dAtom->getJz();
67    
68 gezelter 457 dAtom->setJx(jx * (1.0 - zetaScale));
69     dAtom->setJy(jy * (1.0 - zetaScale));
70     dAtom->setJz(jz * (1.0 - zetaScale));
71 gezelter 454 }
72     }
73     }
74 gezelter 453 }
75    
76    
77 gezelter 457 void ExtendedSystem::NoseHooverAndersonNPT( double dt,
78     double ke,
79     double p_int ) {
80 gezelter 453
81     // Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
82     // Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500
83    
84 gezelter 457 double oldBox[3];
85     double newBox[3];
86     const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
87     const double p_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1
88     const double e_convert = 4.184e-4; // to convert ke from kcal/mol to
89     // amu*Ang^2*fs^-2/K
90 gezelter 453
91 gezelter 458 double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp;
92     double volume, p_mol;
93     double vx, vy, vz, jx, jy, jz;
94     DirectionalAtom* dAtom;
95     int i;
96 gezelter 453
97 gezelter 457 p_ext = targetPressure * p_units;
98     p_mol = p_int * p_units;
99 gezelter 453
100 gezelter 458 entry_plug->getBox(oldBox);
101 gezelter 457
102     volume = oldBox[0]*oldBox[1]*oldBox[2];
103    
104     ke_temp = ke * e_convert;
105 gezelter 458 NkBT = (double)ndf * kB * targetTemp;
106 gezelter 457
107 gezelter 453 // propogate the strain rate
108    
109 gezelter 457 epsilonDot += dt * ((p_mol - p_ext) * volume /
110     (tauRelax*tauRelax * kB * targetTemp) );
111 gezelter 453
112     // determine the change in cell volume
113 gezelter 457 scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0));
114 gezelter 453
115 gezelter 457 newBox[0] = oldBox[0] * scale;
116     newBox[1] = oldBox[1] * scale;
117     newBox[2] = oldBox[2] * scale;
118     volume = newBox[0]*newBox[1]*newBox[2];
119 gezelter 453
120 gezelter 458 entry_plug->setBox(newBox);
121    
122 gezelter 453 // perform affine transform to update positions with volume fluctuations
123 gezelter 457 this->AffineTransform( oldBox, newBox );
124 gezelter 453
125 gezelter 454 epsilonScale = epsilonDot * dt;
126 gezelter 453
127     // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
128     // qmass is set in the parameter file
129 gezelter 457
130     zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
131 gezelter 453 zetaScale = zeta * dt;
132    
133     // apply barostating and thermostating to velocities and angular momenta
134 gezelter 458 for(i = 0; i < nAtoms; i++){
135 gezelter 454
136     vx = atoms[i]->get_vx();
137     vy = atoms[i]->get_vy();
138     vz = atoms[i]->get_vz();
139    
140 gezelter 457 atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale));
141     atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale));
142     atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale));
143 gezelter 453 }
144 gezelter 458 if( nOriented ){
145 gezelter 454
146 gezelter 458 for( i=0; i < nAtoms; i++ ){
147 gezelter 454
148     if( atoms[i]->isDirectional() ){
149    
150     dAtom = (DirectionalAtom *)atoms[i];
151    
152     jx = dAtom->getJx();
153     jy = dAtom->getJy();
154     jz = dAtom->getJz();
155    
156     dAtom->setJx( jx * (1.0 - zetaScale));
157     dAtom->setJy( jy * (1.0 - zetaScale));
158     dAtom->setJz( jz * (1.0 - zetaScale));
159     }
160     }
161     }
162 gezelter 453 }
163    
164 gezelter 457 void ExtendedSystem::AffineTransform( double oldBox[3], double newBox[3] ){
165 gezelter 453
166     int i;
167 gezelter 457 double r[3];
168     double boxNum[3];
169     double percentScale[3];
170     double rxi, ryi, rzi;
171 gezelter 453
172     // first determine the scaling factor from the box size change
173 gezelter 457 percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0];
174     percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1];
175     percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2];
176 gezelter 453
177     for (i=0; i < nMols; i++) {
178    
179 gezelter 458 molecules[i].getCOM(r);
180 gezelter 453
181 gezelter 457 // find the minimum image coordinates of the molecular centers of mass:
182 gezelter 453
183 gezelter 457 boxNum[0] = oldBox[0] * copysign(1.0,r[0]) *
184     (double)(int)(fabs(r[0]/oldBox[0]) + 0.5);
185 gezelter 453
186 gezelter 457 boxNum[1] = oldBox[1] * copysign(1.0,r[1]) *
187     (double)(int)(fabs(r[1]/oldBox[1]) + 0.5);
188 gezelter 453
189 gezelter 457 boxNum[2] = oldBox[2] * copysign(1.0,r[2]) *
190     (double)(int)(fabs(r[2]/oldBox[2]) + 0.5);
191 gezelter 453
192 gezelter 457 rxi = r[0] - boxNum[0];
193     ryi = r[1] - boxNum[1];
194     rzi = r[2] - boxNum[2];
195    
196 gezelter 453 // update the minimum image coordinates using the scaling factor
197 gezelter 457 rxi += rxi*percentScale[0];
198     ryi += ryi*percentScale[1];
199     rzi += rzi*percentScale[2];
200 gezelter 453
201 gezelter 457 r[0] = rxi + boxNum[0];
202     r[1] = ryi + boxNum[1];
203     r[2] = rzi + boxNum[2];
204    
205 gezelter 458 molecules[i].moveCOM(r);
206 gezelter 453 }
207     }