ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/ExtendedSystem.cpp
Revision: 471
Committed: Mon Apr 7 20:51:59 2003 UTC (21 years, 3 months ago) by gezelter
File size: 5806 byte(s)
Log Message:
Working on NVT

File Contents

# User Rev Content
1 gezelter 453 #include <math.h>
2 gezelter 454 #include "Atom.hpp"
3     #include "Molecule.hpp"
4     #include "SimInfo.hpp"
5     #include "Thermo.hpp"
6     #include "ExtendedSystem.hpp"
7 gezelter 453
8 gezelter 466 ExtendedSystem::ExtendedSystem( SimInfo* the_entry_plug ) {
9 gezelter 453
10     // get what information we need from the SimInfo object
11    
12 gezelter 466 entry_plug = the_entry_plug;
13 gezelter 458 nAtoms = entry_plug->n_atoms;
14     atoms = entry_plug->atoms;
15     nMols = entry_plug->n_mol;
16     molecules = entry_plug->molecules;
17     nOriented = entry_plug->n_oriented;
18     ndf = entry_plug->ndf;
19 gezelter 457 zeta = 0.0;
20     epsilonDot = 0.0;
21 gezelter 453
22     }
23    
24 gezelter 457 void ExtendedSystem::NoseHooverNVT( double dt, double ke ){
25 gezelter 453
26     // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
27    
28 gezelter 454 int i;
29 gezelter 457 double NkBT, zetaScale, ke_temp;
30 gezelter 454 double vx, vy, vz, jx, jy, jz;
31 gezelter 457 const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
32     const double e_convert = 4.184e-4; // to convert ke from kcal/mol to
33     // amu*Ang^2*fs^-2/K
34 gezelter 458 DirectionalAtom* dAtom;
35    
36 gezelter 457 ke_temp = ke * e_convert;
37 gezelter 458 NkBT = (double)ndf * kB * targetTemp;
38 gezelter 453
39 gezelter 457 // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
40 gezelter 453 // qmass is set in the parameter file
41 gezelter 457
42     zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
43 gezelter 471 std::cerr << "ke_temp = " << ke_temp << "\n";
44    
45 gezelter 453 zetaScale = zeta * dt;
46 gezelter 471
47 gezelter 453
48 gezelter 471
49 gezelter 453 // perform thermostat scaling on linear velocities and angular momentum
50 gezelter 458 for(i = 0; i < nAtoms; i++){
51 gezelter 454
52     vx = atoms[i]->get_vx();
53     vy = atoms[i]->get_vy();
54     vz = atoms[i]->get_vz();
55    
56 gezelter 457 atoms[i]->set_vx(vx * (1.0 - zetaScale));
57     atoms[i]->set_vy(vy * (1.0 - zetaScale));
58     atoms[i]->set_vz(vz * (1.0 - zetaScale));
59 gezelter 453 }
60 gezelter 458 if( nOriented ){
61 gezelter 454
62 gezelter 458 for( i=0; i < nAtoms; i++ ){
63 gezelter 454
64     if( atoms[i]->isDirectional() ){
65    
66     dAtom = (DirectionalAtom *)atoms[i];
67    
68     jx = dAtom->getJx();
69     jy = dAtom->getJy();
70     jz = dAtom->getJz();
71    
72 gezelter 457 dAtom->setJx(jx * (1.0 - zetaScale));
73     dAtom->setJy(jy * (1.0 - zetaScale));
74     dAtom->setJz(jz * (1.0 - zetaScale));
75 gezelter 454 }
76     }
77     }
78 gezelter 453 }
79    
80    
81 gezelter 457 void ExtendedSystem::NoseHooverAndersonNPT( double dt,
82     double ke,
83     double p_int ) {
84 gezelter 453
85     // Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
86     // Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500
87    
88 gezelter 457 double oldBox[3];
89     double newBox[3];
90     const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
91     const double p_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1
92     const double e_convert = 4.184e-4; // to convert ke from kcal/mol to
93     // amu*Ang^2*fs^-2/K
94 gezelter 453
95 gezelter 458 double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp;
96     double volume, p_mol;
97     double vx, vy, vz, jx, jy, jz;
98     DirectionalAtom* dAtom;
99     int i;
100 gezelter 453
101 gezelter 457 p_ext = targetPressure * p_units;
102     p_mol = p_int * p_units;
103 gezelter 453
104 gezelter 458 entry_plug->getBox(oldBox);
105 gezelter 457
106     volume = oldBox[0]*oldBox[1]*oldBox[2];
107    
108     ke_temp = ke * e_convert;
109 gezelter 458 NkBT = (double)ndf * kB * targetTemp;
110 gezelter 457
111 gezelter 453 // propogate the strain rate
112    
113 gezelter 457 epsilonDot += dt * ((p_mol - p_ext) * volume /
114     (tauRelax*tauRelax * kB * targetTemp) );
115 gezelter 453
116     // determine the change in cell volume
117 gezelter 457 scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0));
118 gezelter 453
119 gezelter 457 newBox[0] = oldBox[0] * scale;
120     newBox[1] = oldBox[1] * scale;
121     newBox[2] = oldBox[2] * scale;
122     volume = newBox[0]*newBox[1]*newBox[2];
123 gezelter 453
124 gezelter 458 entry_plug->setBox(newBox);
125    
126 gezelter 453 // perform affine transform to update positions with volume fluctuations
127 gezelter 457 this->AffineTransform( oldBox, newBox );
128 gezelter 453
129 gezelter 454 epsilonScale = epsilonDot * dt;
130 gezelter 453
131     // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
132     // qmass is set in the parameter file
133 gezelter 457
134     zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
135 gezelter 453 zetaScale = zeta * dt;
136    
137     // apply barostating and thermostating to velocities and angular momenta
138 gezelter 458 for(i = 0; i < nAtoms; i++){
139 gezelter 454
140     vx = atoms[i]->get_vx();
141     vy = atoms[i]->get_vy();
142     vz = atoms[i]->get_vz();
143    
144 gezelter 457 atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale));
145     atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale));
146     atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale));
147 gezelter 453 }
148 gezelter 458 if( nOriented ){
149 gezelter 454
150 gezelter 458 for( i=0; i < nAtoms; i++ ){
151 gezelter 454
152     if( atoms[i]->isDirectional() ){
153    
154     dAtom = (DirectionalAtom *)atoms[i];
155    
156     jx = dAtom->getJx();
157     jy = dAtom->getJy();
158     jz = dAtom->getJz();
159    
160     dAtom->setJx( jx * (1.0 - zetaScale));
161     dAtom->setJy( jy * (1.0 - zetaScale));
162     dAtom->setJz( jz * (1.0 - zetaScale));
163     }
164     }
165     }
166 gezelter 453 }
167    
168 gezelter 457 void ExtendedSystem::AffineTransform( double oldBox[3], double newBox[3] ){
169 gezelter 453
170     int i;
171 gezelter 457 double r[3];
172     double boxNum[3];
173     double percentScale[3];
174     double rxi, ryi, rzi;
175 gezelter 453
176     // first determine the scaling factor from the box size change
177 gezelter 457 percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0];
178     percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1];
179     percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2];
180 gezelter 453
181     for (i=0; i < nMols; i++) {
182    
183 gezelter 458 molecules[i].getCOM(r);
184 gezelter 453
185 gezelter 457 // find the minimum image coordinates of the molecular centers of mass:
186 gezelter 453
187 gezelter 457 boxNum[0] = oldBox[0] * copysign(1.0,r[0]) *
188     (double)(int)(fabs(r[0]/oldBox[0]) + 0.5);
189 gezelter 453
190 gezelter 457 boxNum[1] = oldBox[1] * copysign(1.0,r[1]) *
191     (double)(int)(fabs(r[1]/oldBox[1]) + 0.5);
192 gezelter 453
193 gezelter 457 boxNum[2] = oldBox[2] * copysign(1.0,r[2]) *
194     (double)(int)(fabs(r[2]/oldBox[2]) + 0.5);
195 gezelter 453
196 gezelter 457 rxi = r[0] - boxNum[0];
197     ryi = r[1] - boxNum[1];
198     rzi = r[2] - boxNum[2];
199    
200 gezelter 453 // update the minimum image coordinates using the scaling factor
201 gezelter 457 rxi += rxi*percentScale[0];
202     ryi += ryi*percentScale[1];
203     rzi += rzi*percentScale[2];
204 gezelter 453
205 gezelter 457 r[0] = rxi + boxNum[0];
206     r[1] = ryi + boxNum[1];
207     r[2] = rzi + boxNum[2];
208    
209 gezelter 458 molecules[i].moveCOM(r);
210 gezelter 453 }
211     }