ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/ExtendedSystem.cpp
Revision: 474
Committed: Mon Apr 7 21:42:19 2003 UTC (21 years, 3 months ago) by gezelter
File size: 6032 byte(s)
Log Message:
Fixes for NPT and NVT

File Contents

# User Rev Content
1 gezelter 453 #include <math.h>
2 gezelter 454 #include "Atom.hpp"
3     #include "Molecule.hpp"
4     #include "SimInfo.hpp"
5     #include "Thermo.hpp"
6     #include "ExtendedSystem.hpp"
7 gezelter 453
8 gezelter 466 ExtendedSystem::ExtendedSystem( SimInfo* the_entry_plug ) {
9 gezelter 453
10     // get what information we need from the SimInfo object
11    
12 gezelter 466 entry_plug = the_entry_plug;
13 gezelter 457 zeta = 0.0;
14     epsilonDot = 0.0;
15 gezelter 453 }
16    
17 gezelter 457 void ExtendedSystem::NoseHooverNVT( double dt, double ke ){
18 gezelter 453
19     // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
20    
21 gezelter 454 int i;
22 gezelter 457 double NkBT, zetaScale, ke_temp;
23 gezelter 454 double vx, vy, vz, jx, jy, jz;
24 gezelter 457 const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
25     const double e_convert = 4.184e-4; // to convert ke from kcal/mol to
26     // amu*Ang^2*fs^-2/K
27 gezelter 458 DirectionalAtom* dAtom;
28 gezelter 474 atoms = entry_plug->atoms;
29 gezelter 458
30 gezelter 457 ke_temp = ke * e_convert;
31 gezelter 474 NkBT = (double)entry_plug->ndf * kB * targetTemp;
32 gezelter 453
33 gezelter 457 // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
34 gezelter 453 // qmass is set in the parameter file
35 gezelter 457
36     zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
37 gezelter 471
38 gezelter 453 zetaScale = zeta * dt;
39 gezelter 471
40 gezelter 474 std::cerr << "zetaScale = " << zetaScale << "\n";
41 gezelter 453
42     // perform thermostat scaling on linear velocities and angular momentum
43 gezelter 474 for(i = 0; i < entry_plug->n_atoms; i++){
44 gezelter 454
45     vx = atoms[i]->get_vx();
46     vy = atoms[i]->get_vy();
47     vz = atoms[i]->get_vz();
48 gezelter 474
49 gezelter 457 atoms[i]->set_vx(vx * (1.0 - zetaScale));
50     atoms[i]->set_vy(vy * (1.0 - zetaScale));
51     atoms[i]->set_vz(vz * (1.0 - zetaScale));
52 gezelter 453 }
53 gezelter 474 if( entry_plug->n_oriented ){
54 gezelter 454
55 gezelter 474 for( i=0; i < entry_plug->n_atoms; i++ ){
56 gezelter 454
57     if( atoms[i]->isDirectional() ){
58    
59     dAtom = (DirectionalAtom *)atoms[i];
60    
61     jx = dAtom->getJx();
62     jy = dAtom->getJy();
63     jz = dAtom->getJz();
64    
65 gezelter 457 dAtom->setJx(jx * (1.0 - zetaScale));
66     dAtom->setJy(jy * (1.0 - zetaScale));
67     dAtom->setJz(jz * (1.0 - zetaScale));
68 gezelter 454 }
69     }
70     }
71 gezelter 453 }
72    
73    
74 gezelter 457 void ExtendedSystem::NoseHooverAndersonNPT( double dt,
75     double ke,
76     double p_int ) {
77 gezelter 453
78     // Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
79     // Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500
80    
81 gezelter 457 double oldBox[3];
82     double newBox[3];
83     const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
84     const double p_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1
85     const double e_convert = 4.184e-4; // to convert ke from kcal/mol to
86     // amu*Ang^2*fs^-2/K
87 gezelter 453
88 gezelter 474 int i;
89 gezelter 458 double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp;
90     double volume, p_mol;
91     double vx, vy, vz, jx, jy, jz;
92     DirectionalAtom* dAtom;
93 gezelter 474 atoms = entry_plug->atoms;
94 gezelter 453
95 gezelter 457 p_ext = targetPressure * p_units;
96 gezelter 474 p_mol = p_int;
97 gezelter 453
98 gezelter 458 entry_plug->getBox(oldBox);
99 gezelter 457
100     volume = oldBox[0]*oldBox[1]*oldBox[2];
101    
102     ke_temp = ke * e_convert;
103 gezelter 474 NkBT = (double)entry_plug->ndf * kB * targetTemp;
104 gezelter 457
105 gezelter 453 // propogate the strain rate
106    
107 gezelter 457 epsilonDot += dt * ((p_mol - p_ext) * volume /
108     (tauRelax*tauRelax * kB * targetTemp) );
109 gezelter 453
110 gezelter 474
111     std::cerr << "p_mol = " << p_mol << " p_ext = " << p_ext << " volume = " << volume << " tauRelax = " << tauRelax << "\n";
112    
113    
114 gezelter 453 // determine the change in cell volume
115 gezelter 457 scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0));
116 gezelter 453
117 gezelter 457 newBox[0] = oldBox[0] * scale;
118     newBox[1] = oldBox[1] * scale;
119     newBox[2] = oldBox[2] * scale;
120     volume = newBox[0]*newBox[1]*newBox[2];
121 gezelter 453
122 gezelter 458 entry_plug->setBox(newBox);
123    
124 gezelter 453 // perform affine transform to update positions with volume fluctuations
125 gezelter 457 this->AffineTransform( oldBox, newBox );
126 gezelter 453
127 gezelter 454 epsilonScale = epsilonDot * dt;
128 gezelter 453
129     // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
130     // qmass is set in the parameter file
131 gezelter 457
132     zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
133 gezelter 453 zetaScale = zeta * dt;
134 gezelter 474
135     std::cerr << "zetaScale = " << zetaScale << "epsilonScale = " << epsilonScale << "\n";
136 gezelter 453
137     // apply barostating and thermostating to velocities and angular momenta
138 gezelter 474 for(i = 0; i < entry_plug->n_atoms; i++){
139 gezelter 454
140     vx = atoms[i]->get_vx();
141     vy = atoms[i]->get_vy();
142     vz = atoms[i]->get_vz();
143    
144 gezelter 457 atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale));
145     atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale));
146     atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale));
147 gezelter 453 }
148 gezelter 474 if( entry_plug->n_oriented ){
149 gezelter 454
150 gezelter 474 for( i=0; i < entry_plug->n_atoms; i++ ){
151 gezelter 454
152     if( atoms[i]->isDirectional() ){
153    
154     dAtom = (DirectionalAtom *)atoms[i];
155    
156     jx = dAtom->getJx();
157     jy = dAtom->getJy();
158     jz = dAtom->getJz();
159    
160     dAtom->setJx( jx * (1.0 - zetaScale));
161     dAtom->setJy( jy * (1.0 - zetaScale));
162     dAtom->setJz( jz * (1.0 - zetaScale));
163     }
164     }
165     }
166 gezelter 453 }
167    
168 gezelter 457 void ExtendedSystem::AffineTransform( double oldBox[3], double newBox[3] ){
169 gezelter 453
170     int i;
171 gezelter 457 double r[3];
172     double boxNum[3];
173     double percentScale[3];
174     double rxi, ryi, rzi;
175 gezelter 474
176     molecules = entry_plug->molecules;
177 gezelter 453
178     // first determine the scaling factor from the box size change
179 gezelter 457 percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0];
180     percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1];
181     percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2];
182 gezelter 453
183 gezelter 474 for (i=0; i < entry_plug->n_mol; i++) {
184 gezelter 453
185 gezelter 458 molecules[i].getCOM(r);
186 gezelter 453
187 gezelter 457 // find the minimum image coordinates of the molecular centers of mass:
188 gezelter 453
189 gezelter 457 boxNum[0] = oldBox[0] * copysign(1.0,r[0]) *
190     (double)(int)(fabs(r[0]/oldBox[0]) + 0.5);
191 gezelter 453
192 gezelter 457 boxNum[1] = oldBox[1] * copysign(1.0,r[1]) *
193     (double)(int)(fabs(r[1]/oldBox[1]) + 0.5);
194 gezelter 453
195 gezelter 457 boxNum[2] = oldBox[2] * copysign(1.0,r[2]) *
196     (double)(int)(fabs(r[2]/oldBox[2]) + 0.5);
197 gezelter 453
198 gezelter 457 rxi = r[0] - boxNum[0];
199     ryi = r[1] - boxNum[1];
200     rzi = r[2] - boxNum[2];
201    
202 gezelter 453 // update the minimum image coordinates using the scaling factor
203 gezelter 457 rxi += rxi*percentScale[0];
204     ryi += ryi*percentScale[1];
205     rzi += rzi*percentScale[2];
206 gezelter 453
207 gezelter 457 r[0] = rxi + boxNum[0];
208     r[1] = ryi + boxNum[1];
209     r[2] = rzi + boxNum[2];
210    
211 gezelter 458 molecules[i].moveCOM(r);
212 gezelter 453 }
213     }