ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/ExtendedSystem.cpp
Revision: 483
Committed: Wed Apr 9 04:06:43 2003 UTC (21 years, 3 months ago) by gezelter
File size: 8792 byte(s)
Log Message:
fixes for NPT and NVT

File Contents

# User Rev Content
1 gezelter 453 #include <math.h>
2 gezelter 454 #include "Atom.hpp"
3     #include "Molecule.hpp"
4     #include "SimInfo.hpp"
5     #include "Thermo.hpp"
6     #include "ExtendedSystem.hpp"
7 gezelter 481 #include "simError.h"
8 gezelter 453
9 gezelter 466 ExtendedSystem::ExtendedSystem( SimInfo* the_entry_plug ) {
10 gezelter 453
11     // get what information we need from the SimInfo object
12    
13 gezelter 466 entry_plug = the_entry_plug;
14 gezelter 457 zeta = 0.0;
15     epsilonDot = 0.0;
16 gezelter 481 have_tau_thermostat = 0;
17     have_tau_barostat = 0;
18     have_target_temp = 0;
19     have_target_pressure = 0;
20     have_qmass = 0;
21    
22 gezelter 453 }
23    
24 gezelter 457 void ExtendedSystem::NoseHooverNVT( double dt, double ke ){
25 gezelter 453
26     // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
27    
28 gezelter 454 int i;
29 gezelter 457 double NkBT, zetaScale, ke_temp;
30 gezelter 454 double vx, vy, vz, jx, jy, jz;
31 gezelter 457 const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
32     const double e_convert = 4.184e-4; // to convert ke from kcal/mol to
33     // amu*Ang^2*fs^-2/K
34 gezelter 458 DirectionalAtom* dAtom;
35    
36 gezelter 481 if (this->NVTready()) {
37 gezelter 453
38 gezelter 481 atoms = entry_plug->atoms;
39 gezelter 454
40 gezelter 481 ke_temp = ke * e_convert;
41     NkBT = (double)entry_plug->ndf * kB * targetTemp;
42 gezelter 454
43 gezelter 481 // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
44     // qmass is set in the parameter file
45    
46     zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
47    
48     zetaScale = zeta * dt;
49    
50     std::cerr << "zetaScale = " << zetaScale << "\n";
51    
52     // perform thermostat scaling on linear velocities and angular momentum
53     for(i = 0; i < entry_plug->n_atoms; i++){
54 gezelter 454
55 gezelter 481 vx = atoms[i]->get_vx();
56     vy = atoms[i]->get_vy();
57     vz = atoms[i]->get_vz();
58    
59     atoms[i]->set_vx(vx * (1.0 - zetaScale));
60     atoms[i]->set_vy(vy * (1.0 - zetaScale));
61     atoms[i]->set_vz(vz * (1.0 - zetaScale));
62     }
63     if( entry_plug->n_oriented ){
64    
65     for( i=0; i < entry_plug->n_atoms; i++ ){
66 gezelter 454
67 gezelter 481 if( atoms[i]->isDirectional() ){
68    
69     dAtom = (DirectionalAtom *)atoms[i];
70    
71     jx = dAtom->getJx();
72     jy = dAtom->getJy();
73     jz = dAtom->getJz();
74    
75     dAtom->setJx(jx * (1.0 - zetaScale));
76     dAtom->setJy(jy * (1.0 - zetaScale));
77     dAtom->setJz(jz * (1.0 - zetaScale));
78     }
79     }
80     }
81 gezelter 454 }
82 gezelter 453 }
83    
84    
85 gezelter 457 void ExtendedSystem::NoseHooverAndersonNPT( double dt,
86     double ke,
87 gezelter 483 double p_tensor[9] ) {
88 gezelter 453
89     // Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
90     // Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500
91    
92 gezelter 457 double oldBox[3];
93     double newBox[3];
94     const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
95     const double p_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1
96     const double e_convert = 4.184e-4; // to convert ke from kcal/mol to
97     // amu*Ang^2*fs^-2/K
98 gezelter 453
99 gezelter 474 int i;
100 gezelter 458 double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp;
101     double volume, p_mol;
102     double vx, vy, vz, jx, jy, jz;
103     DirectionalAtom* dAtom;
104 gezelter 453
105 gezelter 481 if (this->NPTready()) {
106     atoms = entry_plug->atoms;
107 gezelter 454
108 gezelter 481 p_ext = targetPressure * p_units;
109 gezelter 483 p_mol = (p_tensor[0] + p_tensor[4] + p_tensor[8])/3.0;
110    
111 gezelter 481 entry_plug->getBox(oldBox);
112     volume = oldBox[0]*oldBox[1]*oldBox[2];
113 gezelter 454
114 gezelter 481 ke_temp = ke * e_convert;
115     NkBT = (double)entry_plug->ndf * kB * targetTemp;
116    
117 gezelter 483 // propagate the strain rate
118 gezelter 481
119     epsilonDot += dt * ((p_mol - p_ext) * volume /
120     (tauBarostat*tauBarostat * kB * targetTemp) );
121    
122     // determine the change in cell volume
123     scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0));
124 gezelter 483 std::cerr << "pmol = " << p_mol << " p_ext = " << p_ext << " scale = " << scale << "\n";
125 gezelter 481
126     newBox[0] = oldBox[0] * scale;
127     newBox[1] = oldBox[1] * scale;
128     newBox[2] = oldBox[2] * scale;
129     volume = newBox[0]*newBox[1]*newBox[2];
130    
131     entry_plug->setBox(newBox);
132    
133     // perform affine transform to update positions with volume fluctuations
134     this->AffineTransform( oldBox, newBox );
135    
136     epsilonScale = epsilonDot * dt;
137    
138     // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
139     // qmass is set in the parameter file
140    
141     zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
142     zetaScale = zeta * dt;
143    
144     std::cerr << "zetaScale = " << zetaScale << " epsilonScale = " << epsilonScale << "\n";
145    
146     // apply barostating and thermostating to velocities and angular momenta
147     for(i = 0; i < entry_plug->n_atoms; i++){
148 gezelter 454
149 gezelter 481 vx = atoms[i]->get_vx();
150     vy = atoms[i]->get_vy();
151     vz = atoms[i]->get_vz();
152    
153     atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale));
154     atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale));
155     atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale));
156     }
157     if( entry_plug->n_oriented ){
158    
159     for( i=0; i < entry_plug->n_atoms; i++ ){
160 gezelter 454
161 gezelter 481 if( atoms[i]->isDirectional() ){
162    
163     dAtom = (DirectionalAtom *)atoms[i];
164    
165     jx = dAtom->getJx();
166     jy = dAtom->getJy();
167     jz = dAtom->getJz();
168    
169     dAtom->setJx( jx * (1.0 - zetaScale));
170     dAtom->setJy( jy * (1.0 - zetaScale));
171     dAtom->setJz( jz * (1.0 - zetaScale));
172     }
173     }
174     }
175 gezelter 454 }
176 gezelter 453 }
177    
178 gezelter 457 void ExtendedSystem::AffineTransform( double oldBox[3], double newBox[3] ){
179 gezelter 453
180     int i;
181 gezelter 457 double r[3];
182     double boxNum[3];
183     double percentScale[3];
184 gezelter 476 double delta[3];
185 gezelter 457 double rxi, ryi, rzi;
186 gezelter 474
187     molecules = entry_plug->molecules;
188 gezelter 453
189     // first determine the scaling factor from the box size change
190 gezelter 457 percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0];
191     percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1];
192     percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2];
193 gezelter 453
194 gezelter 474 for (i=0; i < entry_plug->n_mol; i++) {
195 gezelter 453
196 gezelter 458 molecules[i].getCOM(r);
197 gezelter 475
198 gezelter 457 // find the minimum image coordinates of the molecular centers of mass:
199 gezelter 453
200 gezelter 457 boxNum[0] = oldBox[0] * copysign(1.0,r[0]) *
201     (double)(int)(fabs(r[0]/oldBox[0]) + 0.5);
202 gezelter 453
203 gezelter 457 boxNum[1] = oldBox[1] * copysign(1.0,r[1]) *
204     (double)(int)(fabs(r[1]/oldBox[1]) + 0.5);
205 gezelter 453
206 gezelter 457 boxNum[2] = oldBox[2] * copysign(1.0,r[2]) *
207     (double)(int)(fabs(r[2]/oldBox[2]) + 0.5);
208 gezelter 453
209 gezelter 457 rxi = r[0] - boxNum[0];
210     ryi = r[1] - boxNum[1];
211     rzi = r[2] - boxNum[2];
212    
213 gezelter 453 // update the minimum image coordinates using the scaling factor
214 gezelter 457 rxi += rxi*percentScale[0];
215     ryi += ryi*percentScale[1];
216     rzi += rzi*percentScale[2];
217 gezelter 453
218 gezelter 476 delta[0] = r[0] - (rxi + boxNum[0]);
219     delta[1] = r[1] - (ryi + boxNum[1]);
220     delta[2] = r[2] - (rzi + boxNum[2]);
221 gezelter 457
222 gezelter 476 molecules[i].moveCOM(delta);
223 gezelter 453 }
224     }
225 gezelter 481
226     short int ExtendedSystem::NVTready() {
227     const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
228     double NkBT;
229    
230     if (!have_target_temp) {
231     sprintf( painCave.errMsg,
232     "ExtendedSystem error: You can't use NVT without a targetTemp!\n"
233     );
234     painCave.isFatal = 1;
235     simError();
236     return -1;
237     }
238    
239     if (!have_qmass) {
240     if (have_tau_thermostat) {
241    
242     NkBT = (double)entry_plug->ndf * kB * targetTemp;
243     std::cerr << "Setting qMass = " << tauThermostat * NkBT << "\n";
244     this->setQmass(tauThermostat * NkBT);
245    
246     } else {
247     sprintf( painCave.errMsg,
248     "ExtendedSystem error: If you use the constant temperature\n"
249     " ensemble, you must set either tauThermostat or qMass.\n");
250     painCave.isFatal = 1;
251     simError();
252     }
253     }
254    
255 gezelter 483 return 1;
256 gezelter 481 }
257    
258     short int ExtendedSystem::NPTready() {
259     const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
260     double NkBT;
261    
262     if (!have_target_temp) {
263     sprintf( painCave.errMsg,
264     "ExtendedSystem error: You can't use NPT without a targetTemp!\n"
265     );
266     painCave.isFatal = 1;
267     simError();
268     return -1;
269     }
270    
271     if (!have_target_pressure) {
272     sprintf( painCave.errMsg,
273     "ExtendedSystem error: You can't use NPT without a targetPressure!\n"
274     );
275     painCave.isFatal = 1;
276     simError();
277     return -1;
278     }
279    
280     if (!have_tau_barostat) {
281     sprintf( painCave.errMsg,
282     "ExtendedSystem error: If you use the NPT\n"
283     " ensemble, you must set tauBarostat.\n");
284     painCave.isFatal = 1;
285     simError();
286     }
287    
288     if (!have_qmass) {
289     if (have_tau_thermostat) {
290    
291     NkBT = (double)entry_plug->ndf * kB * targetTemp;
292     std::cerr << "Setting qMass = " << tauThermostat * NkBT << "\n";
293     this->setQmass(tauThermostat * NkBT);
294    
295     } else {
296     sprintf( painCave.errMsg,
297     "ExtendedSystem error: If you use the NPT\n"
298     " ensemble, you must set either tauThermostat or qMass.\n");
299     painCave.isFatal = 1;
300     simError();
301     }
302     }
303 gezelter 483 return 1;
304 gezelter 481 }
305