# | Line 4 | Line 4 | |
---|---|---|
4 | #include "SimInfo.hpp" | |
5 | #include "Thermo.hpp" | |
6 | #include "ExtendedSystem.hpp" | |
7 | + | #include "simError.h" |
8 | ||
9 | < | ExtendedSystem::ExtendedSystem( SimInfo &info ) { |
9 | > | ExtendedSystem::ExtendedSystem( SimInfo* the_entry_plug ) { |
10 | ||
11 | // get what information we need from the SimInfo object | |
12 | ||
13 | < | entry_plug = &info; |
13 | < | nAtoms = entry_plug->n_atoms; |
14 | < | atoms = entry_plug->atoms; |
15 | < | nMols = entry_plug->n_mol; |
16 | < | molecules = entry_plug->molecules; |
17 | < | nOriented = entry_plug->n_oriented; |
18 | < | ndf = entry_plug->ndf; |
13 | > | entry_plug = the_entry_plug; |
14 | zeta = 0.0; | |
15 | epsilonDot = 0.0; | |
16 | + | have_tau_thermostat = 0; |
17 | + | have_tau_barostat = 0; |
18 | + | have_target_temp = 0; |
19 | + | have_target_pressure = 0; |
20 | + | have_qmass = 0; |
21 | ||
22 | } | |
23 | ||
# | Line 33 | Line 33 | void ExtendedSystem::NoseHooverNVT( double dt, double | |
33 | // amu*Ang^2*fs^-2/K | |
34 | DirectionalAtom* dAtom; | |
35 | ||
36 | + | if (this->NVTready()) { |
37 | ||
38 | < | ke_temp = ke * e_convert; |
38 | < | NkBT = (double)ndf * kB * targetTemp; |
39 | < | |
40 | < | // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
41 | < | // qmass is set in the parameter file |
42 | < | |
43 | < | zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
44 | < | zetaScale = zeta * dt; |
45 | < | |
46 | < | // perform thermostat scaling on linear velocities and angular momentum |
47 | < | for(i = 0; i < nAtoms; i++){ |
38 | > | atoms = entry_plug->atoms; |
39 | ||
40 | < | vx = atoms[i]->get_vx(); |
41 | < | vy = atoms[i]->get_vy(); |
51 | < | vz = atoms[i]->get_vz(); |
40 | > | ke_temp = ke * e_convert; |
41 | > | NkBT = (double)entry_plug->ndf * kB * targetTemp; |
42 | ||
43 | < | atoms[i]->set_vx(vx * (1.0 - zetaScale)); |
44 | < | atoms[i]->set_vy(vy * (1.0 - zetaScale)); |
55 | < | atoms[i]->set_vz(vz * (1.0 - zetaScale)); |
56 | < | } |
57 | < | if( nOriented ){ |
43 | > | // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
44 | > | // qmass is set in the parameter file |
45 | ||
46 | < | for( i=0; i < nAtoms; i++ ){ |
46 | > | zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
47 | > | |
48 | > | zetaScale = zeta * dt; |
49 | > | |
50 | > | std::cerr << "zetaScale = " << zetaScale << "\n"; |
51 | > | |
52 | > | // perform thermostat scaling on linear velocities and angular momentum |
53 | > | for(i = 0; i < entry_plug->n_atoms; i++){ |
54 | ||
55 | < | if( atoms[i]->isDirectional() ){ |
56 | < | |
57 | < | dAtom = (DirectionalAtom *)atoms[i]; |
55 | > | vx = atoms[i]->get_vx(); |
56 | > | vy = atoms[i]->get_vy(); |
57 | > | vz = atoms[i]->get_vz(); |
58 | > | |
59 | > | atoms[i]->set_vx(vx * (1.0 - zetaScale)); |
60 | > | atoms[i]->set_vy(vy * (1.0 - zetaScale)); |
61 | > | atoms[i]->set_vz(vz * (1.0 - zetaScale)); |
62 | > | } |
63 | > | if( entry_plug->n_oriented ){ |
64 | > | |
65 | > | for( i=0; i < entry_plug->n_atoms; i++ ){ |
66 | ||
67 | < | jx = dAtom->getJx(); |
68 | < | jy = dAtom->getJy(); |
69 | < | jz = dAtom->getJz(); |
70 | < | |
71 | < | dAtom->setJx(jx * (1.0 - zetaScale)); |
72 | < | dAtom->setJy(jy * (1.0 - zetaScale)); |
73 | < | dAtom->setJz(jz * (1.0 - zetaScale)); |
74 | < | } |
75 | < | } |
67 | > | if( atoms[i]->isDirectional() ){ |
68 | > | |
69 | > | dAtom = (DirectionalAtom *)atoms[i]; |
70 | > | |
71 | > | jx = dAtom->getJx(); |
72 | > | jy = dAtom->getJy(); |
73 | > | jz = dAtom->getJz(); |
74 | > | |
75 | > | dAtom->setJx(jx * (1.0 - zetaScale)); |
76 | > | dAtom->setJy(jy * (1.0 - zetaScale)); |
77 | > | dAtom->setJz(jz * (1.0 - zetaScale)); |
78 | > | } |
79 | > | } |
80 | > | } |
81 | } | |
82 | } | |
83 | ||
# | Line 89 | Line 96 | void ExtendedSystem::NoseHooverAndersonNPT( double dt, | |
96 | const double e_convert = 4.184e-4; // to convert ke from kcal/mol to | |
97 | // amu*Ang^2*fs^-2/K | |
98 | ||
99 | + | int i; |
100 | double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp; | |
101 | double volume, p_mol; | |
102 | double vx, vy, vz, jx, jy, jz; | |
103 | DirectionalAtom* dAtom; | |
96 | – | int i; |
104 | ||
105 | < | p_ext = targetPressure * p_units; |
106 | < | p_mol = p_int * p_units; |
100 | < | |
101 | < | entry_plug->getBox(oldBox); |
102 | < | |
103 | < | volume = oldBox[0]*oldBox[1]*oldBox[2]; |
104 | < | |
105 | < | ke_temp = ke * e_convert; |
106 | < | NkBT = (double)ndf * kB * targetTemp; |
107 | < | |
108 | < | // propogate the strain rate |
109 | < | |
110 | < | epsilonDot += dt * ((p_mol - p_ext) * volume / |
111 | < | (tauRelax*tauRelax * kB * targetTemp) ); |
112 | < | |
113 | < | // determine the change in cell volume |
114 | < | scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0)); |
115 | < | |
116 | < | newBox[0] = oldBox[0] * scale; |
117 | < | newBox[1] = oldBox[1] * scale; |
118 | < | newBox[2] = oldBox[2] * scale; |
119 | < | volume = newBox[0]*newBox[1]*newBox[2]; |
120 | < | |
121 | < | entry_plug->setBox(newBox); |
122 | < | |
123 | < | // perform affine transform to update positions with volume fluctuations |
124 | < | this->AffineTransform( oldBox, newBox ); |
125 | < | |
126 | < | epsilonScale = epsilonDot * dt; |
127 | < | |
128 | < | // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
129 | < | // qmass is set in the parameter file |
130 | < | |
131 | < | zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
132 | < | zetaScale = zeta * dt; |
133 | < | |
134 | < | // apply barostating and thermostating to velocities and angular momenta |
135 | < | for(i = 0; i < nAtoms; i++){ |
105 | > | if (this->NPTready()) { |
106 | > | atoms = entry_plug->atoms; |
107 | ||
108 | < | vx = atoms[i]->get_vx(); |
109 | < | vy = atoms[i]->get_vy(); |
139 | < | vz = atoms[i]->get_vz(); |
108 | > | p_ext = targetPressure * p_units; |
109 | > | p_mol = p_int * p_units; |
110 | ||
111 | < | atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale)); |
112 | < | atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale)); |
143 | < | atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale)); |
144 | < | } |
145 | < | if( nOriented ){ |
111 | > | entry_plug->getBox(oldBox); |
112 | > | volume = oldBox[0]*oldBox[1]*oldBox[2]; |
113 | ||
114 | < | for( i=0; i < nAtoms; i++ ){ |
115 | < | |
116 | < | if( atoms[i]->isDirectional() ){ |
117 | < | |
118 | < | dAtom = (DirectionalAtom *)atoms[i]; |
114 | > | ke_temp = ke * e_convert; |
115 | > | NkBT = (double)entry_plug->ndf * kB * targetTemp; |
116 | > | |
117 | > | // propogate the strain rate |
118 | > | |
119 | > | epsilonDot += dt * ((p_mol - p_ext) * volume / |
120 | > | (tauBarostat*tauBarostat * kB * targetTemp) ); |
121 | > | |
122 | > | // determine the change in cell volume |
123 | > | scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0)); |
124 | > | |
125 | > | newBox[0] = oldBox[0] * scale; |
126 | > | newBox[1] = oldBox[1] * scale; |
127 | > | newBox[2] = oldBox[2] * scale; |
128 | > | volume = newBox[0]*newBox[1]*newBox[2]; |
129 | > | |
130 | > | entry_plug->setBox(newBox); |
131 | > | |
132 | > | // perform affine transform to update positions with volume fluctuations |
133 | > | this->AffineTransform( oldBox, newBox ); |
134 | > | |
135 | > | epsilonScale = epsilonDot * dt; |
136 | > | |
137 | > | // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
138 | > | // qmass is set in the parameter file |
139 | > | |
140 | > | zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
141 | > | zetaScale = zeta * dt; |
142 | > | |
143 | > | std::cerr << "zetaScale = " << zetaScale << " epsilonScale = " << epsilonScale << "\n"; |
144 | > | |
145 | > | // apply barostating and thermostating to velocities and angular momenta |
146 | > | for(i = 0; i < entry_plug->n_atoms; i++){ |
147 | > | |
148 | > | vx = atoms[i]->get_vx(); |
149 | > | vy = atoms[i]->get_vy(); |
150 | > | vz = atoms[i]->get_vz(); |
151 | > | |
152 | > | atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale)); |
153 | > | atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale)); |
154 | > | atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale)); |
155 | > | } |
156 | > | if( entry_plug->n_oriented ){ |
157 | > | |
158 | > | for( i=0; i < entry_plug->n_atoms; i++ ){ |
159 | ||
160 | < | jx = dAtom->getJx(); |
161 | < | jy = dAtom->getJy(); |
162 | < | jz = dAtom->getJz(); |
163 | < | |
164 | < | dAtom->setJx( jx * (1.0 - zetaScale)); |
165 | < | dAtom->setJy( jy * (1.0 - zetaScale)); |
166 | < | dAtom->setJz( jz * (1.0 - zetaScale)); |
167 | < | } |
168 | < | } |
160 | > | if( atoms[i]->isDirectional() ){ |
161 | > | |
162 | > | dAtom = (DirectionalAtom *)atoms[i]; |
163 | > | |
164 | > | jx = dAtom->getJx(); |
165 | > | jy = dAtom->getJy(); |
166 | > | jz = dAtom->getJz(); |
167 | > | |
168 | > | dAtom->setJx( jx * (1.0 - zetaScale)); |
169 | > | dAtom->setJy( jy * (1.0 - zetaScale)); |
170 | > | dAtom->setJz( jz * (1.0 - zetaScale)); |
171 | > | } |
172 | > | } |
173 | > | } |
174 | } | |
175 | } | |
176 | ||
# | Line 168 | Line 180 | void ExtendedSystem::AffineTransform( double oldBox[3] | |
180 | double r[3]; | |
181 | double boxNum[3]; | |
182 | double percentScale[3]; | |
183 | + | double delta[3]; |
184 | double rxi, ryi, rzi; | |
185 | + | |
186 | + | molecules = entry_plug->molecules; |
187 | ||
188 | // first determine the scaling factor from the box size change | |
189 | percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0]; | |
190 | percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1]; | |
191 | percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2]; | |
192 | ||
193 | < | for (i=0; i < nMols; i++) { |
193 | > | for (i=0; i < entry_plug->n_mol; i++) { |
194 | ||
195 | molecules[i].getCOM(r); | |
196 | < | |
196 | > | |
197 | // find the minimum image coordinates of the molecular centers of mass: | |
198 | ||
199 | boxNum[0] = oldBox[0] * copysign(1.0,r[0]) * | |
# | Line 199 | Line 214 | void ExtendedSystem::AffineTransform( double oldBox[3] | |
214 | ryi += ryi*percentScale[1]; | |
215 | rzi += rzi*percentScale[2]; | |
216 | ||
217 | < | r[0] = rxi + boxNum[0]; |
218 | < | r[1] = ryi + boxNum[1]; |
219 | < | r[2] = rzi + boxNum[2]; |
217 | > | delta[0] = r[0] - (rxi + boxNum[0]); |
218 | > | delta[1] = r[1] - (ryi + boxNum[1]); |
219 | > | delta[2] = r[2] - (rzi + boxNum[2]); |
220 | ||
221 | < | molecules[i].moveCOM(r); |
221 | > | molecules[i].moveCOM(delta); |
222 | } | |
223 | } | |
224 | + | |
225 | + | short int ExtendedSystem::NVTready() { |
226 | + | const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
227 | + | double NkBT; |
228 | + | |
229 | + | if (!have_target_temp) { |
230 | + | sprintf( painCave.errMsg, |
231 | + | "ExtendedSystem error: You can't use NVT without a targetTemp!\n" |
232 | + | ); |
233 | + | painCave.isFatal = 1; |
234 | + | simError(); |
235 | + | return -1; |
236 | + | } |
237 | + | |
238 | + | if (!have_qmass) { |
239 | + | if (have_tau_thermostat) { |
240 | + | |
241 | + | NkBT = (double)entry_plug->ndf * kB * targetTemp; |
242 | + | std::cerr << "Setting qMass = " << tauThermostat * NkBT << "\n"; |
243 | + | this->setQmass(tauThermostat * NkBT); |
244 | + | |
245 | + | } else { |
246 | + | sprintf( painCave.errMsg, |
247 | + | "ExtendedSystem error: If you use the constant temperature\n" |
248 | + | " ensemble, you must set either tauThermostat or qMass.\n"); |
249 | + | painCave.isFatal = 1; |
250 | + | simError(); |
251 | + | } |
252 | + | } |
253 | + | |
254 | + | return 0; |
255 | + | } |
256 | + | |
257 | + | short int ExtendedSystem::NPTready() { |
258 | + | const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
259 | + | double NkBT; |
260 | + | |
261 | + | if (!have_target_temp) { |
262 | + | sprintf( painCave.errMsg, |
263 | + | "ExtendedSystem error: You can't use NPT without a targetTemp!\n" |
264 | + | ); |
265 | + | painCave.isFatal = 1; |
266 | + | simError(); |
267 | + | return -1; |
268 | + | } |
269 | + | |
270 | + | if (!have_target_pressure) { |
271 | + | sprintf( painCave.errMsg, |
272 | + | "ExtendedSystem error: You can't use NPT without a targetPressure!\n" |
273 | + | ); |
274 | + | painCave.isFatal = 1; |
275 | + | simError(); |
276 | + | return -1; |
277 | + | } |
278 | + | |
279 | + | if (!have_tau_barostat) { |
280 | + | sprintf( painCave.errMsg, |
281 | + | "ExtendedSystem error: If you use the NPT\n" |
282 | + | " ensemble, you must set tauBarostat.\n"); |
283 | + | painCave.isFatal = 1; |
284 | + | simError(); |
285 | + | } |
286 | + | |
287 | + | if (!have_qmass) { |
288 | + | if (have_tau_thermostat) { |
289 | + | |
290 | + | NkBT = (double)entry_plug->ndf * kB * targetTemp; |
291 | + | std::cerr << "Setting qMass = " << tauThermostat * NkBT << "\n"; |
292 | + | this->setQmass(tauThermostat * NkBT); |
293 | + | |
294 | + | } else { |
295 | + | sprintf( painCave.errMsg, |
296 | + | "ExtendedSystem error: If you use the NPT\n" |
297 | + | " ensemble, you must set either tauThermostat or qMass.\n"); |
298 | + | painCave.isFatal = 1; |
299 | + | simError(); |
300 | + | } |
301 | + | } |
302 | + | return 0; |
303 | + | } |
304 | + |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |