ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/ExtendedSystem.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/ExtendedSystem.cpp (file contents):
Revision 454 by gezelter, Fri Apr 4 01:57:11 2003 UTC vs.
Revision 468 by gezelter, Mon Apr 7 16:56:38 2003 UTC

# Line 5 | Line 5 | ExtendedSystem::ExtendedSystem( SimInfo &info ) {
5   #include "Thermo.hpp"
6   #include "ExtendedSystem.hpp"
7  
8 < ExtendedSystem::ExtendedSystem( SimInfo &info ) {
8 > ExtendedSystem::ExtendedSystem( SimInfo* the_entry_plug ) {
9  
10    // get what information we need from the SimInfo object
11    
12 <  entry_plug = &info;
13 <  nAtoms = info.n_atoms;
14 <  atoms = info.atoms;
15 <  nMols = info.n_mol;
16 <  molecules = info.molecules;
17 <  zeta = 0;
12 >  entry_plug = the_entry_plug;
13 >  nAtoms = entry_plug->n_atoms;
14 >  atoms = entry_plug->atoms;
15 >  nMols = entry_plug->n_mol;
16 >  molecules = entry_plug->molecules;
17 >  nOriented = entry_plug->n_oriented;
18 >  ndf = entry_plug->ndf;
19 >  zeta = 0.0;
20 >  epsilonDot = 0.0;
21  
22   }
23  
24 < ExtendedSystem::~ExtendedSystem() {  
22 < }
24 > void ExtendedSystem::NoseHooverNVT( double dt, double ke ){
25  
24
25 void ExtendedSystem::NoseHooverNVT( double dt ){
26
26    // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
27    
28    int i;
29 <  double kB, keconverter, NkBT, zetaScale, ke_temp;
29 >  double NkBT, zetaScale, ke_temp;
30    double vx, vy, vz, jx, jy, jz;
31 <  
32 <  kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
33 <  keconverter = 4.184e-4; // to convert ke from kcal/mol to amu*Ang^2*fs^-2 / K
34 <  
36 <  ke_temp = getKinetic() * keconverter;
37 <  NkBT = (double)getNDF() * kB * targetTemp;
31 >  const double kB = 8.31451e-7;     // boltzmann constant in amu*Ang^2*fs^-2/K
32 >  const double e_convert = 4.184e-4;    // to convert ke from kcal/mol to
33 >                                        // amu*Ang^2*fs^-2/K
34 >  DirectionalAtom* dAtom;    
35  
36 <  // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin &
36 >  ke_temp = ke * e_convert;
37 >  NkBT = (double)ndf * kB * targetTemp;
38 >
39 >  // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
40    // qmass is set in the parameter file
41 <  zeta += dt*((ke_temp*2 - NkBT)/qmass);
41 >
42 >  zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
43    zetaScale = zeta * dt;
44  
45    // perform thermostat scaling on linear velocities and angular momentum
46 <  
46 <  for(i = 0; i < n_atoms; i++){
46 >  for(i = 0; i < nAtoms; i++){
47      
48      vx = atoms[i]->get_vx();
49      vy = atoms[i]->get_vy();
50      vz = atoms[i]->get_vz();
51      
52 <    atoms[i]->set_vx(vx - zetaScale * vx);
53 <    atoms[i]->set_vy(vy - zetaScale * vy);
54 <    atoms[i]->set_vz(vz - zetaScale * vz);
52 >    atoms[i]->set_vx(vx * (1.0 - zetaScale));
53 >    atoms[i]->set_vy(vy * (1.0 - zetaScale));
54 >    atoms[i]->set_vz(vz * (1.0 - zetaScale));
55    }
56 <  if( n_oriented ){
56 >  if( nOriented ){
57      
58 <    for( i=0; i < n_atoms; i++ ){
58 >    for( i=0; i < nAtoms; i++ ){
59        
60        if( atoms[i]->isDirectional() ){
61          
# Line 65 | Line 65 | void ExtendedSystem::NoseHooverNVT( double dt ){
65          jy = dAtom->getJy();
66          jz = dAtom->getJz();
67          
68 <        dAtom->setJx( jx - zetaScale * jx);
69 <        dAtom->setJy( jy - zetaScale * jy);
70 <        dAtom->setJz( jz - zetaScale * jz);
68 >        dAtom->setJx(jx * (1.0 - zetaScale));
69 >        dAtom->setJy(jy * (1.0 - zetaScale));
70 >        dAtom->setJz(jz * (1.0 - zetaScale));
71        }
72      }  
73    }
74   }
75  
76  
77 < void ExtendedSystem::NoseHooverAndersonNPT(double pressure, double ke,
78 <                                           double dt, double temp ) {
77 > void ExtendedSystem::NoseHooverAndersonNPT( double dt,
78 >                                            double ke,
79 >                                            double p_int ) {
80  
81    // Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
82    // Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500
83  
84 <  int i, j, degrees_freedom;
85 <  double pressure, dt, temp, pressure_units, epsilonScale;
86 <  double ke, kB, vxi, vyi, vzi, pressure_ext;
87 <  double boxx_old, boxy_old, boxz_old;
88 <  double keconverter, NkBT, zetaScale, ke_temp;
89 <  double jxi, jyi, jzi, scale;
84 >  double oldBox[3];
85 >  double newBox[3];
86 >  const double kB = 8.31451e-7;     // boltzmann constant in amu*Ang^2*fs^-2/K
87 >  const double p_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1
88 >  const double e_convert = 4.184e-4;    // to convert ke from kcal/mol to
89 >                                        // amu*Ang^2*fs^-2/K
90  
91 <  kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
92 <  pressure_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1
93 <  degrees_freedom = 6*nmol; // number of degrees of freedom for the system
94 <  keconverter = 4.184e-4; // to convert ke from kcal/mol to amu*Ang^2*fs^-2/K
91 >  double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp;
92 >  double volume, p_mol;
93 >  double vx, vy, vz, jx, jy, jz;
94 >  DirectionalAtom* dAtom;
95 >  int i;
96  
97 <  pressure_ext = pressure * pressure_units;
98 <  volume = boxx*boxy*boxz;
97 <  ke_temp = ke * keconverter;
98 <  NkBT = degrees_freedom*kB*temp;
97 >  p_ext = targetPressure * p_units;
98 >  p_mol = p_int * p_units;
99  
100 +  entry_plug->getBox(oldBox);
101 +
102 +  volume = oldBox[0]*oldBox[1]*oldBox[2];
103 +
104 +  ke_temp = ke * e_convert;
105 +  NkBT = (double)ndf * kB * targetTemp;
106 +
107    // propogate the strain rate
108  
109 <  epsilon_dot +=  dt * ( (p_mol - pressure_ext)*volume
110 <                         / (tau_relax*tau_relax * kB * targetTemp) );
109 >  epsilonDot +=  dt * ((p_mol - p_ext) * volume /
110 >                       (tauRelax*tauRelax * kB * targetTemp) );
111  
112    // determine the change in cell volume
113 <  scale = pow( (1.0 + dt * 3.0 * epsilon_dot), (1.0 / 3.0));
113 >  scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0));
114  
115 <  volume = volume * pow(scale, 3.0);
115 >  newBox[0] = oldBox[0] * scale;
116 >  newBox[1] = oldBox[1] * scale;
117 >  newBox[2] = oldBox[2] * scale;
118 >  volume = newBox[0]*newBox[1]*newBox[2];
119  
120 +  entry_plug->setBox(newBox);
121 +
122    // perform affine transform to update positions with volume fluctuations
123 <  affine_transform( scale );
123 >  this->AffineTransform( oldBox, newBox );
124  
113  // save old lengths and update box size
114  boxx_old = boxx;
115  boxy_old = boxy;
116  boxz_old = boxz;
117
118  boxx = boxx_old*scale;
119  boxy = boxy_old*scale;
120  boxz = boxz_old*scale;
121
125    epsilonScale = epsilonDot * dt;
126  
127    // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
128    // qmass is set in the parameter file
129 <  zeta += dt * ( (ke_temp*2 - NkBT) / qmass );
129 >
130 >  zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
131    zetaScale = zeta * dt;
132    
133    // apply barostating and thermostating to velocities and angular momenta
134 <  for(i = 0; i < n_atoms; i++){
134 >  for(i = 0; i < nAtoms; i++){
135      
136      vx = atoms[i]->get_vx();
137      vy = atoms[i]->get_vy();
138      vz = atoms[i]->get_vz();
139      
140 <    atoms[i]->set_vx(vx * (1.0 - zetaScale * epsilonScale));
141 <    atoms[i]->set_vy(vy * (1.0 - zetaScale * epsilonScale));
142 <    atoms[i]->set_vz(vz * (1.0 - zetaScale * epsilonScale));
140 >    atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale));
141 >    atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale));
142 >    atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale));
143    }
144 <  if( n_oriented ){
144 >  if( nOriented ){
145      
146 <    for( i=0; i < n_atoms; i++ ){
146 >    for( i=0; i < nAtoms; i++ ){
147        
148        if( atoms[i]->isDirectional() ){
149          
# Line 157 | Line 161 | void ExtendedSystem::AffineTransform( double scale ){
161    }
162   }
163  
164 < void ExtendedSystem::AffineTransform( double scale ){
164 > void ExtendedSystem::AffineTransform( double oldBox[3], double newBox[3] ){
165  
166    int i;
167 <  double boxx_old, boxy_old, boxz_old, percentScale;
168 <  double boxx_num, boxy_num, boxz_num, rxi, ryi, rzi;
169 <  double[3] r;
167 >  double r[3];
168 >  double boxNum[3];
169 >  double percentScale[3];
170 >  double rxi, ryi, rzi;
171      
172    // first determine the scaling factor from the box size change
173 <  percentScale = (boxx - boxx_old)/boxx_old;
173 >  percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0];
174 >  percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1];
175 >  percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2];
176    
170
177    for (i=0; i < nMols; i++) {
178      
179 <    molecules[i]->getCOM(r);
179 >    molecules[i].getCOM(r);
180      
181 <    // find the minimum image coordinates of the molecular centers of mass:
181 >    // find the minimum image coordinates of the molecular centers of mass:    
182      
183 <    
184 <    boxx_num = boxx_old*copysign(1.0,r[0])*(double)(int)(fabs(r[0]/boxx_old)+0.5);
183 >    boxNum[0] = oldBox[0] * copysign(1.0,r[0]) *
184 >      (double)(int)(fabs(r[0]/oldBox[0]) + 0.5);
185  
186 <    boxx_num = boxx_old*dsign(1.0d0,rx(i))*int(abs(rx(i)/boxx_old)+0.5d0);
187 <    boxy_num = boxy_old*dsign(1.0d0,ry(i))*int(abs(ry(i)/boxy_old)+0.5d0);
182 <    boxz_num = boxz_old*dsign(1.0d0,rz(i))*int(abs(rz(i)/boxz_old)+0.5d0);
186 >    boxNum[1] = oldBox[1] * copysign(1.0,r[1]) *
187 >      (double)(int)(fabs(r[1]/oldBox[1]) + 0.5);
188  
189 <    rxi = rx(i) - boxx_num;
190 <    ryi = ry(i) - boxy_num;
186 <    rzi = rz(i) - boxz_num;
189 >    boxNum[2] = oldBox[2] * copysign(1.0,r[2]) *
190 >      (double)(int)(fabs(r[2]/oldBox[2]) + 0.5);
191  
192 +    rxi = r[0] - boxNum[0];
193 +    ryi = r[1] - boxNum[1];
194 +    rzi = r[2] - boxNum[2];
195 +
196      // update the minimum image coordinates using the scaling factor
197 <    rxi = rxi + rxi*percentScale;
198 <    ryi = ryi + ryi*percentScale;
199 <    rzi = rzi + rzi*percentScale;
197 >    rxi += rxi*percentScale[0];
198 >    ryi += ryi*percentScale[1];
199 >    rzi += rzi*percentScale[2];
200  
201 <    rx(i) = rxi + boxx_num;
202 <    ry(i) = ryi + boxy_num;
203 <    rz(i) = rzi + boxz_num;
201 >    r[0] = rxi + boxNum[0];
202 >    r[1] = ryi + boxNum[1];
203 >    r[2] = rzi + boxNum[2];
204 >
205 >    molecules[i].moveCOM(r);
206    }
207   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines