ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/ExtendedSystem.cpp
Revision: 471
Committed: Mon Apr 7 20:51:59 2003 UTC (21 years, 3 months ago) by gezelter
File size: 5806 byte(s)
Log Message:
Working on NVT

File Contents

# Content
1 #include <math.h>
2 #include "Atom.hpp"
3 #include "Molecule.hpp"
4 #include "SimInfo.hpp"
5 #include "Thermo.hpp"
6 #include "ExtendedSystem.hpp"
7
8 ExtendedSystem::ExtendedSystem( SimInfo* the_entry_plug ) {
9
10 // get what information we need from the SimInfo object
11
12 entry_plug = the_entry_plug;
13 nAtoms = entry_plug->n_atoms;
14 atoms = entry_plug->atoms;
15 nMols = entry_plug->n_mol;
16 molecules = entry_plug->molecules;
17 nOriented = entry_plug->n_oriented;
18 ndf = entry_plug->ndf;
19 zeta = 0.0;
20 epsilonDot = 0.0;
21
22 }
23
24 void ExtendedSystem::NoseHooverNVT( double dt, double ke ){
25
26 // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
27
28 int i;
29 double NkBT, zetaScale, ke_temp;
30 double vx, vy, vz, jx, jy, jz;
31 const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
32 const double e_convert = 4.184e-4; // to convert ke from kcal/mol to
33 // amu*Ang^2*fs^-2/K
34 DirectionalAtom* dAtom;
35
36 ke_temp = ke * e_convert;
37 NkBT = (double)ndf * kB * targetTemp;
38
39 // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
40 // qmass is set in the parameter file
41
42 zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
43 std::cerr << "ke_temp = " << ke_temp << "\n";
44
45 zetaScale = zeta * dt;
46
47
48
49 // perform thermostat scaling on linear velocities and angular momentum
50 for(i = 0; i < nAtoms; i++){
51
52 vx = atoms[i]->get_vx();
53 vy = atoms[i]->get_vy();
54 vz = atoms[i]->get_vz();
55
56 atoms[i]->set_vx(vx * (1.0 - zetaScale));
57 atoms[i]->set_vy(vy * (1.0 - zetaScale));
58 atoms[i]->set_vz(vz * (1.0 - zetaScale));
59 }
60 if( nOriented ){
61
62 for( i=0; i < nAtoms; i++ ){
63
64 if( atoms[i]->isDirectional() ){
65
66 dAtom = (DirectionalAtom *)atoms[i];
67
68 jx = dAtom->getJx();
69 jy = dAtom->getJy();
70 jz = dAtom->getJz();
71
72 dAtom->setJx(jx * (1.0 - zetaScale));
73 dAtom->setJy(jy * (1.0 - zetaScale));
74 dAtom->setJz(jz * (1.0 - zetaScale));
75 }
76 }
77 }
78 }
79
80
81 void ExtendedSystem::NoseHooverAndersonNPT( double dt,
82 double ke,
83 double p_int ) {
84
85 // Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
86 // Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500
87
88 double oldBox[3];
89 double newBox[3];
90 const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K
91 const double p_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1
92 const double e_convert = 4.184e-4; // to convert ke from kcal/mol to
93 // amu*Ang^2*fs^-2/K
94
95 double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp;
96 double volume, p_mol;
97 double vx, vy, vz, jx, jy, jz;
98 DirectionalAtom* dAtom;
99 int i;
100
101 p_ext = targetPressure * p_units;
102 p_mol = p_int * p_units;
103
104 entry_plug->getBox(oldBox);
105
106 volume = oldBox[0]*oldBox[1]*oldBox[2];
107
108 ke_temp = ke * e_convert;
109 NkBT = (double)ndf * kB * targetTemp;
110
111 // propogate the strain rate
112
113 epsilonDot += dt * ((p_mol - p_ext) * volume /
114 (tauRelax*tauRelax * kB * targetTemp) );
115
116 // determine the change in cell volume
117 scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0));
118
119 newBox[0] = oldBox[0] * scale;
120 newBox[1] = oldBox[1] * scale;
121 newBox[2] = oldBox[2] * scale;
122 volume = newBox[0]*newBox[1]*newBox[2];
123
124 entry_plug->setBox(newBox);
125
126 // perform affine transform to update positions with volume fluctuations
127 this->AffineTransform( oldBox, newBox );
128
129 epsilonScale = epsilonDot * dt;
130
131 // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin
132 // qmass is set in the parameter file
133
134 zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass );
135 zetaScale = zeta * dt;
136
137 // apply barostating and thermostating to velocities and angular momenta
138 for(i = 0; i < nAtoms; i++){
139
140 vx = atoms[i]->get_vx();
141 vy = atoms[i]->get_vy();
142 vz = atoms[i]->get_vz();
143
144 atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale));
145 atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale));
146 atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale));
147 }
148 if( nOriented ){
149
150 for( i=0; i < nAtoms; i++ ){
151
152 if( atoms[i]->isDirectional() ){
153
154 dAtom = (DirectionalAtom *)atoms[i];
155
156 jx = dAtom->getJx();
157 jy = dAtom->getJy();
158 jz = dAtom->getJz();
159
160 dAtom->setJx( jx * (1.0 - zetaScale));
161 dAtom->setJy( jy * (1.0 - zetaScale));
162 dAtom->setJz( jz * (1.0 - zetaScale));
163 }
164 }
165 }
166 }
167
168 void ExtendedSystem::AffineTransform( double oldBox[3], double newBox[3] ){
169
170 int i;
171 double r[3];
172 double boxNum[3];
173 double percentScale[3];
174 double rxi, ryi, rzi;
175
176 // first determine the scaling factor from the box size change
177 percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0];
178 percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1];
179 percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2];
180
181 for (i=0; i < nMols; i++) {
182
183 molecules[i].getCOM(r);
184
185 // find the minimum image coordinates of the molecular centers of mass:
186
187 boxNum[0] = oldBox[0] * copysign(1.0,r[0]) *
188 (double)(int)(fabs(r[0]/oldBox[0]) + 0.5);
189
190 boxNum[1] = oldBox[1] * copysign(1.0,r[1]) *
191 (double)(int)(fabs(r[1]/oldBox[1]) + 0.5);
192
193 boxNum[2] = oldBox[2] * copysign(1.0,r[2]) *
194 (double)(int)(fabs(r[2]/oldBox[2]) + 0.5);
195
196 rxi = r[0] - boxNum[0];
197 ryi = r[1] - boxNum[1];
198 rzi = r[2] - boxNum[2];
199
200 // update the minimum image coordinates using the scaling factor
201 rxi += rxi*percentScale[0];
202 ryi += ryi*percentScale[1];
203 rzi += rzi*percentScale[2];
204
205 r[0] = rxi + boxNum[0];
206 r[1] = ryi + boxNum[1];
207 r[2] = rzi + boxNum[2];
208
209 molecules[i].moveCOM(r);
210 }
211 }